Advanced Composite Research Center, Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA)
Advanced Composite Research Center, Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA)
Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University
出版者
宇宙航空研究開発機構(JAXA)
出版者(英)
Japan Aerospace Exploration Agency (JAXA)
雑誌名
宇宙航空研究開発機構研究開発資料
雑誌名(英)
JAXA Research and Development Memorandum
巻
JAXA-RM-12-012
ページ
1 - 8
発行年
2013-02-28
抄録(英)
Drastic structural weight reduction is needed in order to make possible the practical reusable space transportation system. Utilization of carbon fiber reinforced plastic (CFRP) to the structural material of cryogenic propellant tank can significantly reduce the structural weight. However, at the cryogenic temperature, significant thermal stress occurs between the metallic mouthpiece (boss) and the CFRP tank wall because of the large difference of the coefficients of the thermal expansion (CTE). The thermal stress causes the debonding between the boss and the wall, and it may lead to the catastrophic failure of the whole tank structure. Recently, the design method which can relax the thermal stress was proposed by Suemasu and his colleagues. However, the method was not demonstrated experimentally yet. Therefore in the present study, four types of cryogenic composite tank specimen were manufactured. Two specimens were designed by the proposed method. The specimens were cooled down to cryogenic temperature (-190 C) by immersing them into the liquid nitrogen pool. The test results demonstrated the validity of the method. The results showed that we could design the practical CFRP cryogenic tank by the proposed method.
内容記述
形態: カラー図版あり
内容記述(英)
Physical characteristics: Original contains color illustrations