National Aerospace Laboratory Kakuda Research Center
National Aerospace Laboratory Kakuda Research Center
National Aerospace Laboratory Kakuda Research Center
National Aerospace Laboratory Kakuda Research Center
National Space Development Agency of Japan
Ishikawajima-Harima Heavy Industries Co, Ltd
Ishikawajima-Harima Heavy Industries Co, Ltd
A pressure-fed, blowdown, Hydrazine/NTO (Nitrogen Tetroxide) apogee propulsion system had been selected for the ETS-6. One of the problems encountered during the development of the engine was the occurrence of pops (popping) at the higher operating chamber pressures. Pops are irregular high amplitude pressure pulses. It is generally agreed that pops is a liquid spray/gas two-phase explosion triggered by a local explosion near the jet impingement region. The effects of operating parameters on pops observed in the development tests of the apogee engine for the ETS-6 were inconsistent with those reported earlier for single impingelement injectors: pops with the apogee engine injectors was more likely to occur at higher chamber pressures, higher injection velocities, and higher propellant temperatures. Pops data were correlated fairly well in chamber pressures (bar-P(sub c)) vs. fuel Reynolds number (R(sub ef)) plane. However, the range of operating parameters for the above correlation were very narrow since they were obtained during injector screening tests for a particular application to the apogee engine. It was also felt that the above correlation was too simplistic to capture any effect of design parameters of multi-element injectors. In the present study, the demarcation between pops and the pops-free region was determined in broader operating ranges and design parameters. The range of bar-P(sub c) and R(sub ef) was extended by exchanging graphite nozzle throat inserts with different throat diameters. The injectors were carefully selected to obtain effects, if any, of: (1) film cooling fraction; (2) secondary mixing; and (3) number of elements and/or fuel orifice diameters. It was found that there was a threshold fuel Reynolds number below which no pops were observed at any chamber pressures and that the pops region curve in the bar-P(sub c)-R(sub ef) plane had two branches: upper branches and lower branches.