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Development of High Fidelity Model-based Re-entry Safety Analysis Tool LS-DARC
— Part 1
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Exponential progress in space exploration both for science and engineering have been made in a half century.
Space debris problem is a growing concern to be tackled internationally to keep our space activity sustainable. For
the improvement in the ground safety related to the survived debris after the destructive re-entry of the rocket
upper stages and the spacecrafts, the comprehensive considerations on the design and the disposal operation
should be made. High-fidelity model-based re-entry safety analysis tool LS-DARC is under the development in
JAXA. Purpose of this study is an establishment of quantitative assessment of the design and disposal operation
change effect on the re-entry risk. Consequently, a) design for demise from the initial development phase, and b)
accurate risk prediction by reducing epistemic uncertainty are realized. LS-DARC is multi-physics coupling
analysis code including the aerodynamic and 6DoF trajectory analysis, surface heat flux distribution analysis,
three-dimensional thermal transfer analysis. Complicated real geometry can be considered including the small
curvature effect on the heat flux increase and the shape change due to structure demise. Development status of
LS-DARC is overviewed and the research needs are discussed.
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R&D Directorate, Research Unit Ill ( JEDI )
2

R&D Research Unit Ill (JAXA's Engineering Digital Innovation Center)
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Technological Challenges to Expand Space Frontier

Exploration
on Planet / Asteroids

Space Station

» Efficient Risk Control based on QRA
with considering various uncertainties

®» QRA based on physics-based simulations
- Physics model formulation, Accuracy improve
- Practicality for time and resources

» Ultimate Robust Design of Space Systems

Force of JEDI : High Fidelity Simulations

Reentry Safety

Acoustics Rocket Engine
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Technological Challenges for our Sustainable Space Activity |

Low cost active debris removal
(Risk control by removing existing objects)

" Formulating international standards and guidelines
(‘Rule-based risk control, sharing knowledge )

> Uncertainty factors are identified, quantified based on the
flight experiment, high fidelity simulations, and ground test.
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Update Plan for Re-entry Safety Analysis Tools at JAXA

1) By improvement of re-entry safety analysis methods, accuracy improvement EC analysis and
design for demise will be achieved.

2) By understanding physical mechanism, physics-based model and assumptions are re-considered.
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Epistemic Uncertainty Quantification Strategy 112561

> Started from low cost Unit validation, then expensive Integrated validation.
> High fidelity simulation to understand physics and cover huge parameter space.
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Uncertainty Factors
> (1) Model Accuracy
——3 (2) Attitude Stability Mode
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{ Heat flux : Empirical model } (3) Shape (Complexity)
(4) Shape (Shape Change)
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> (5) Initial conditions (Temperature...)

> Experiment not to miss unknown physics. X2
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Spacecraft-oriented Re-entry Risk Analysis Tool : LS-DARC 34!

> LS - Destructive Atmospheric Re-entry Code ( LS-DARC )

> Development start from FY2015, will be completed 15t ver. in this year.

> Heat flux model with considering local curvature effect !!

> Investigation on dynamic sampling®®!, GPU-based shadowing.

> Model validation by wind tunnel and flight data is under the way for upper stages.
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> High Altitude (Rarefied Flow)
<UNITED>
- Handling Complicated Geometry

Boltzmann equation of kinetic
equations theory

No chemical reaction is considered
reaction
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with 6DOF motion (Cartesi 7[/ NEGEIRENETN (B model for internal  energy
_ ; 'l relaxation relaxation [15]
FaSt ComPUtatlon (Tuned f model Constant (Zr=5, Zv=50) model for

- Various Numerical Model
- Validated & Widely Applie

relaxation coefficient of rotational
and vibrational energy

Diffusion reflection boundary at
model 300K (wall)

107 - 108

3D compressible Navier—Stokes egs.
equations

Detailed chemical reaction, Fast time
Reaction integration ERENAB4, Flamlet(3¢]

Moderate/Low Altitude (Continuum Flow)
<LS-GRID!'¢l / FLOWI!7.18]>
- Handling Complicated Geometry
with 6DOF motion (Cartesian Grid-based) Cell-centered FVM
- Fast Computation Spatial Green-Gauss(27.2829 etc,
(Tuned for HPC , Adaptive Mesh Refinement) [SSSERERE Fnietskosmian & imiter et
- Various Numerical Models

High-order FR method (32
- Validated!'9-211 & Applied to cryogenics(?2 and e
combustion(?3l

Shima’s Method
[
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Model DES/DDES2¢]

Time 2" order
Integration LU-SGS34 with inner iterations

-Arbitrary unstructured grid
-Body-fitted Cartesian grid![26]
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High Fidelity Simulations - Random tumbling or Trim ?

Demonstration 6DoF Analysis by DSMC code (UNITED)

High Fidelity Simulations - 1%t Breakup Mechanism ?

12

Demonstration 6DoF Analysis by DSMC code (UNITED)
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Re-entry Flight Test — Model Validation and Understand PhYsics

De-orbit to
the atmosphere  Re-entry Re-entry
Ty breakup
/ %ﬁ@ = . / Passive separation
Boot y | 4

Totally off during
the mission

[

Isolate flight

N

In-flight
data acquiring:
Temp, accel, rot,

in-flight “._  Parachute
experiments:
TPS, new measurement elease

> Pressure & Temperature Sensors.
(Wired, Wireless is future option)

> GPS/Iridium radio interference.

.
Data sending S% B' Bag inflation
by Iridium system a

> Reasonable cost & size.

> Currently under the certification.

> Understanding of the flow mechanism during the re-entry.

> Uncertainty quantification especially for the aerodynamic characteristics
and the heat flux models.

> Further accuracy improvement based on the detailed understanding of
the physics and the bits from the high-fidelity numerical simulation fields.

> JAXA wants to develop spacecraft-oriented re-entry risk analysis,
and CNES wants to compare CFD and the local surface method results.

STEP1 : Basics (FY2015~2017)
- Well studied and much experiments
- Less uncertainty factors

and known |.C. and B.C.

STEP2 : Rocket Upper Stage (FY2017)
- Less studies
- To know current model accuracy

for realistic problems

(e.g.) Shock interaction, concave shape
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Basic Shape: Analysis Conditions and Grid

> Geometries are cylinder and box (Sub-systems of rocket upper stage).
> M, = 11.72 for box, M,, = 14.35 for cylinder.

> Laminar flow, 2" order Green-Gauss with Venkatakrishnan limiter, SLAU2
for Euler flux, 2" order time accuracy by LU-SGS with inner iteration.

Total : 2.64 million cells

Minimum grid size:

3.36 X 10° Cell Reynolds number=0.5 for box
1.39 X 10~ Cell Reynolds number=0.5 for cylinder
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Upper Stage: Analysis Conditions and Grid

> Geometries are simplified rocket upper stage.
> M, = 10.64 at 45 km.

> Baldwin-Lomax model, 2" order Green-Gauss with Barth-Jespersen limiter,
SLAU for Euler flux, 2" order time accuracy by LU-SGS with inner iteration.

Grid for JAXA -~ Grid for CNES
Total : 3.97 million cells Total : 7.94 million cells
Minimum grid size: Minimum grid size:

1.85 X 10°® Cell Reynolds number=5.0 1.0Xx10°

Upper Stage: Comparison of CFD and Correlation Models [4]

> Results by CFD and correlation models are in good agreement.
Large local peak at nozzle rip can also quantitatively predicted.

> Larger heat flux by correlation models over tanks in wake flow.
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Upper Stage: Comparison of CFD and Correlation Models 14

> Much smaller for correlation model than CFD result.
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> Real shape effect can be considered.
- Possibility of trim
- Increased aerodynamic heating area
- Rapture due to local heating spot
( by heat flux model with considering
local curvature effect )

>Easy-to-Use, Just prepare 3D mesh
for thermal analysis.

- Fully automated analysis can be
realized.

e
>LS-DARC can be applied to 456
301.583

- Natural decay prediction |§§§§§§ .

- Conceptual design studies w15 0se 20se 40se

(Minimum dV for re-entry, etc...) o

o . B
[>Model validation work is under the way. %
|§i§:§§i
309.641
305.000
w5720 60S 80se 100se
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Conclusion and Future Works

>Uncertainty quantification strategy was proposed.
>Benchmark study for basic shapes and rocket upper stage were carried out
between JAXA and CNES.
- Key flow mechanism such as significant larger heat flux at sharp edges,
and the shock interaction and low dynamic pressure wake effect
for multiple bodies were clarified.
- Heat flux predicted by correlation models are in good agreement with CFD
even for significant large heat flux peak at sharp corners.

> Further research should be done for aerodynamics and heat flux models
Formulation for
1) Concave shapes
2) Wake effect (low dynamic pressure)
3) Shock interactions
4) Turbulent boundary layer effect
5) Non-zero hidden leeward surfaces
Validation for
1) Heat flux with small curvature effect
> Further research also for destruction modeling
at high temperatures

> Validation and detailed analysis for upper stage o
are currently under the way.

High-fidelity Analysis Wind-tunnel tests
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