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I. Introduction.

§1. The interference effect of the ground upon the lift of a
monbplane aerofoil has been completely discussed theoretically by one
of us in the previous papers®, and it has been found that the theoretical
results are in good agreement with experiments. In a recent paper®
Dr. P. pE HALLER has also re-investigated the problem theoretically by
using Jacosr's elliptic functions instead of WEIERSTRASS's functions and

has confirmed our results,

(1) S. Tomotrika, T. NAGAMIYA and Y. TaxenNoutri, The Lift on a Flat Plate placed
near a Plane Wall, with Special Reference to the Effect of the Ground uzpon the Lift of a
Monoplane Aerofoil. Report Aeron. Res. Inst., Tokyo Imp. Univ., No.97 (1933) ; S. TOMOTIK A,
Further Studies on the Effect of the Ground upon the Lift of a Monopiane Aerofoil. ibid.,
No. 120 (1935).

(2) P.DE HALLER, La portance et la trainée induite minimum d'une aile au voisinage
du sol. Mitteilungen aus dem Institut fiir Aerodynamik, E.T. H., Ziirich. Nos. 4/5 (1936),
99-131.
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A similar case in which the semi-infinite flow of fluid past a flat
plate or an aerofoil is bounded, on the lower side of the plate or aerofoil,
by a free surface, instead of a rigid plane wall, has not yet been subjected
to any rigorous mathematical analysis, although a simple approximate
treatment has already been made by replacing an aerofoil by a bound
rectilinear vortex®, The theoretical discussion of the interference effect
of such a free surface upon the lift of the plate or aerofoil placed in the
vicinity of the free surface is however not only interesting from the
theoretical point of view, but also important from the practical standpoint.

In effect, if the sea water is assumed to be at rest and the gravity

is not taken into consideration, then the fluid pressure in the sea is

everywhere constant, in accordance with the fundamental hydrodynamical

equation for pressure, and therefore the boundary surface between the
sea water and the air may be considered as a free surface along which
the pressure is constant.

Thus, the present hydrodynamical problem has an intimate connection
with the practically important case of a seaplane flying near the surface
of the sea.

The interference of the sea upon the lift and pitching moment of a
seaplane while taxi-ing over the sea has a large effect upon the take-off
run, because the resulting change in angle of attack and immersion of
the hull will give rise to a change in water resistance. Full scale tests
at Felixstowe, England, have shown that the maximum lift of a seaplane
is increased by about 10 per cent due to the interference effect of the sea®.

It seems that the approximate vortex theory is incapable of explaining
satisfactorily this interference effect, and so far as we are aware, no
exact theory has yet been proposed in order to explain the phenomenon.

In view of the practical importahce of the problem, a mathematical
analysis has been worked out, the results of which will be described in

the present paper.

(1) See, e.g., W.F. DuraND, Aerodynamic Theory, 11 (1935), 241.
(2) Report for the year 1933, National Physical Laboratory, 202.
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Effect of Surface of Sea on the Lift of a Seaplane. 73

In this paper, the lifting force acting on a flat plate is first calculated
in the case when the semi-infinite two-dimensional flow of fluid past the
plate is bounded, on the lower side of the plate, by a free surface, and
the interference effect of such a free surface upon the lift of the plate
‘is discussed in detail for various values of the angle 6f attack as well
as of the distance of the piafe from the bounding free surface. The
theoretical results are then applied to the case of a seaplane flying near
the surface of the sea and the interference effect of the sea upon the

lift of a seaplane while taxi-ing over the sea is discussed.

II. The Conformal Transformations.

§ 2. Taking the z-plane as the plane of fluid motion, we consider
a steady irrotational continuous two-dimensional flow of an incompressible
perfect fluid past a flat plate AA’ placed near an infinite free surface
which bounds ‘the fluid on the lower side of the plate. What we are
concerned with in the present paper is the investigation of the interference
effect of such a free surface upon the lift experienced by the plate.

We shall begin with the conformal transformations necessary for
the problem. ‘ S

We assume for the present that the circulation round the .plate is
zero. Also we assume that at infinity upstream the fluid flows, with a
constant velocity U, from left. to right .parallel to the boundary free
surface.

A part of a partiCular:strea'm line coincides with the s_urfac‘é of the
plate. Let this stream line be defined by 4 = 0, where x]f 15 the stream
function. If we suppose that the axis of z is drawn parallel to the
direction of flow at infinity upstream, the flow pattern in the z-plane
may become as shown in Fig. 1. We denote the value of + on the
bounding free stream line by —, and B is the angle of attack of the
plate. Since the pressure on the free surface is everywhere conétant,

the velocity of flow along this surface is also constant and is equal

to U.
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Fig. 1. z-plane.

If then we denote the complex velocity potential for the irrotational
continuous flow under consideration by f= ¢+iy, where ¢ is the
velocity potential, the f-plane becomes as shown in Fig. 2.

0
B CiC B
Ho_ GiiG _H

Fig. 2. f-plane.

By making a cut along CG G’ C’ as shown in the figure, we transform
the f-plane on to the upper half of a t-plane by ScHwARz-CHRISTOFFEL’S
method. The transformation equation is

af ?—b®
af _ oy ,
dt vV (F—AE—9)

(1)

where b corresponds to B/,—b to B, ¢ to C’,—c to C, g to G’ and —¢
to G respectively. The constant M will be determined presently.
~ The t-plane is shown in Fig. 3.

GC BOB CCG

Fig. 3. (-plane.
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Next, by employing § function with periods 2w;, 2ws, wWhere e, is
real and w3 is purely imaginary such that @; >0, ws/i >0, we transform
conformally the upper half of the {-plane into a rectangle of sides 2,

and w3/t in an s-plane by the relation :
= §(s)—es. : (2)

vThen; the points B, B,, C, C’, G’, G’, H, H,, i.e-, { = "”b) b,_c, cJ‘_—g)
g9, —o0, o correspond to s=pu,—p, oyt ws, —o1twsz, w1, —w;, O, O

respectively®, and the s-plane becomes as illustrated in Fig. 4.

—wyprae=C’ B O B C=w,+ Wy

§=0 .
~w =G HH G=w,
Fig. 4. s-plane.
We have from (1)Aand (2)
d df dt _ 1
R L ORI} (3)

This differential equation can be integrated immediately and we get

f=—M[te)+Pws]. (4)

To this expression must be added an arbitrary constant, which can
however be neglected.

Since we assume that the circulation round the plate is zero in the
flow defined by f, this function f has a period 2e;, and this condition

gives a relation as follows:

(1) In the Report No. 97, - on page 5 should be read as -p’, where 7. is the conjugate
complex of p.. ’ '

This document is provided by JAXA.



76 _ S. Tomotika and 1. Imai.

Plp) = ——. - (3)

w)

Also, from the condition that ¥ differs by iy at § = w1 and s = w1+ ws,

we have
Jo—fo =1 = "*M[’?:; +JO(/.L)0)3], (6)
which, in conjunction with (5) and the well-known LEGENDRE's relation,
gives
M= Zhor (7)
Yo
Thus, we get‘ finally
f= =206+ P(us] , (8)
w

and

d ®
A — 2ol pe)—p]

__ 24rm ol(s + p) ols—p)
o [o®) oW (9)

Further, the inside of the rectangle in the s-plane is transformed
conformally into a ring region in a Z-plane bounded by two concentric

circles of radii 1 and q [ = exp (—:—’ wi)<l] , by the relation:
) 4

= w1+ ws——(f)—llog Z. (10)
1

Then, the face of the plate corresponds to the outer circle and the
bounding free surface to the inner circle.

§3. Now, for the flow defined by f the conjugate complex velocity
v (= v,—iv,) at any point in the z-plane is- given by

(1) As in our former papers, we define the velocity potential ¢.as v =grad ¢, where
v is the velocity vector of the fluid element at any point.
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af
o= (11)
T de
If we denote by | ;| the absolute magnitude of the fluid velocity at any
point and by @ an angle which the direction of velocity at that point

makes with the positive direction of the x-axis, we have v; = || €.

Therefore, writing

Q2 =0+ilog|wnl, , (12)

we have
vl=ﬂ=e“"9. (13)
dz

The direction of flow at every point on the surface of the flat plate
is known, so that the real part @ of the function £ is given from the
outset. On the bounding free surface, however, the value of @ is not
known from the beginning, but the fluid velocity along it .is constant
and equal to U, since the fluid pressure on the free surface is everywhere
constant and is equal to the pressure in the fluid at infinity. Thus, the
imaginary part of the function @ on the free surface is known and is
equal to log U.

We assume further that there exist neither sources, sinks nor
vortices, so that the function @ is everywhere regular in the field of fluid
motion,

As mentioned in the preceding paragraph, the region of fluid motion
in the z-plane is transformed conformally into the ring region in the
Z-plane, and the face of the plate corfesponds to the outer circle of
radius 1, while the free surface corresponds to the inner circle of radius
g. Thus, in the Z-plane the function 2, expressed as a function of Z,
must be such that it is everywhere regular in the said ring region and
its real part on the outer circle assumes the prescribed value, @(4) say,
expressed as a function of the central angle @, while its imaginary

part on the inner circle is constant. Such a function can however be
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. determined if we make use of the formula given below, which has been
established rigorously in our previdus papers®,

In general, let F(Z) be an analytic function satlsfymg the conditions
that it is everywhere regular in a ring region bounded by two concentric
'/rl)<l] in the Z-plane and its real

part on the outer circle takes the form ¢(6), the known function of the

‘circles of radii 1 and ¢ [ = exp (

central angle 6, while its imaginary part on the inner circle is equal to

a constant, k say. Then, the expression for F(Z) is

i, 2&)3]

wi, 2(03] }dG +'Lk
(14)

F(Z) = % s co(e){c[(% log Z—%H)
0

—Ca[( log Z— _a)

the half-periods of ¢ functions here used being @, 2ws as indicated in

the formula.

Thus, if we substitute the known value for @(6) and put k = log U,

we can obtain by this formula the expression for our function 2(Z).

Since, however, we are not interested, from the practical point of
view, in an irrotational flow with no circulatory motion round the plate,
we shall not entér into the detailed calculations of £ for this case, and
only the results will be described briefly. On calculating £ by the above

formula and then taking account of the obvious relations:

dz _ dz df _ wdf
ds  df ds ds '’

(1) S. TomoTika, On Certain Problems of DIRICHLET for an Annular Reg:on, with
Special Reference to Hydrodynamxcal Applications. Proc. Phys. -Math, Scc., Japan. [3] 14
(1932), 197-213. S. ToMoTIK A, A New Derivation of the Formula solving a Kind of DIRICHLET'S -
Problem for a Ring Region. ibid., [3] 18 (1936), 427-435. In these papers, the imaginary
part on the inner circle was assumed to be zero. However, when it has a constant value, k
say, the required formula can be obtained simply by adding ik . '
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&) T

we express dz/ds as a function of s. Then, if we denote by s; and s,
those points in the s-plane which correspond to the edges A and A’ of
the plate respectively, it is easily proved that

(4) =0, (%) =o.
ds $=s8, ds 8=8;
Consequently, from the relation:

df _ _im , df |de

v = =,
' dz o dZ
we see that the fluid velocity at A and A’ becomes infinite in the flow

under consideration where the circulation round the plate is zero.

§ 4. As mentioned just in the above, in the continuous flow with
no circulation round the plate the fluid vélocity at both edges of the
plate is infinite and the stream line does not leave the trailing edge
smoothly. In order to avoid this we supe{rpose,'as usual, a circulatory
flow in the clockwise sense round the plate and following Joukowskr's
hypothesis, we determine the constant of circulation « such that the
velocity at the trailing edge A becomes finite.

Now, if this circulatory ﬂoW is transformed into the Z-plane, we
may obtain a circulatory flow with the same circulation occurring in
the counter-clockwise sense round the inner circle. .

Thus, 'denoting by f’ the complex velocity potential for the super-

posed circulatory motion, we have

fl= =% log 7, (15)

27T

and since the outer and inner circles in the Z-plane are stream lines of
this flow, f’ satisfies the boundary conditions in the z-plane.

If we express f/ in terms of s, by the aid of (10), we get

fl=—"L (s—o1—ws). (16)

2w
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Consequently, the complex velocity potential X for an irrotational

continuous flow around the flat plate is, in the most general case, given

by

x=f+f,

that is,
x = =R c6) + s ] - s—wn—on) - (17)
T - . - o] :

Differentiating this with respect to g, we have

d 0@ K |

. We now determine, with Joukowskr, the circulation x such that
the flow leaves the trailing edge A of the plate smoothly. 1If, as before,
we denote by s; the point in the s-plane which corresponds to A in the

z-plane, the condition for determining « is proved without difficulty to be

dx\ _—
QE o. (19)

s=sl

Putting (18) in (19), « can be determined as:

- =2ﬁ“[mw—pmﬂ. (20)

2w;

and substituting this in (18), we have

%?Sc_ = @[W(s)—ﬁ(sl)] , (21)
or

dx _ __ 29w a(s+s)a(s—si) (22)

ds T [o(s)a(s))T

The flow pattern in the z-plane becomes as shown in Fig. 5.
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Fig. 5. z-plane.

It is easily proved from (22) that dX/ds vanishes also when
8= —81+2w3. This point in the s-plane corresponds to the point B on
the plate shown in the above figure, where the fluid velocity is nil.

The region of fluid motion in the z-plane is transformed, as before,
conformally into a ring region in the Z-plane bounded by two concentric
circles of radii 1 and q[ = exp(%j 7r’i)<l] , and the face of the plate
corresponds to the outer circle, whilst the free surface to the inner
circle. The various points are transformed, as shown in Fig. 6, where

we assume that 6, >0 and consequently ¢; > 6.

. B
A
A =",
H B ei(Zﬂ—Bl) ,
H'

A

Fig. 6. Z-plane.

Further, since the points A, B and A’ correspond to the points

81 ,—81+ 2wz and s; in the s-plane respectively, we have

This document is provided by JAXA.



o0
N

S. Tomotika and I. hnai. -

w]
— 0 = w1+ w3—51,
T

(23)

)
—102 = w;t+w3—S: .
. :

§5. In the flow defined by X, the conjugate complex velocity in
the z-plane is given by dX/dz and this can be written in the form:
dx —i0
22 = e
dz
where @ stands for O@+ilog|i], as in § 3, @ being the- angle between
the direction of flow and the positive direction of the z-axis. We shall

, (24)

now calculate the function £.

As mentioned previously, the function £ must be, when expressed
as a function of Z, of such properties that ‘it is everywhere regular in
the ring region in the Z-plane, and its real part § on the outer circle
assumes the given form @(6), say, whilst its imaginary part on the inner
circle is constant and equal to log U .

Since these properties are the same as those for the function F(Z)
in § 3, the function ©(Z) can be determined by the did of the formula

(14). Thus,
w1, 2“’3]

(-2

o) = & [ o [ (e 720

1, 2w3]}d9+’l:10g U.
(25)

The function @(f) for our case is defined, as can easily be seen from
Figs. 5 and 6, as follows:

o0) = %+8 ) (2m—6, <0 < 69);

= “—721’*'3, (6. <0 <61); (26)

—-%4—3 , (6:<<8<4m—06).

This document is provided by JAXA.



Effect of Surface of Sea on the Lift of a Seapia

Putting this in the integrand in. the formula (25) and carrying out the

integration, we get

9(Z) = ilog U—" (~%+8> log (—1)

&:0 [(ﬂ log Z + —w—lﬂr—Zwl) ©1, 2w3]
i L .
Eso[ 2 log Z— -9!-92) w1, 2w3]
ar

1T
(27)

+ 7 log

where, in general, &(u) = os(u)/o(u) -
If, further, we express £ as a function of s by making use of the

relations (10) and (23), we have

2(s) = ilog U—% [{-—§+ 5)log (—1)

+ 7 log 530[(8-*'81—20)3) i w1y 20.)3] ] . (28)

Enl(s—s2) |1, 2ax]

Thus, putting log (—1) = i, €% can be written in the form:

026 — 1 gi(-7+9) Enl(s+s1— 209 | @1, 23] ) 20)
Ex[(s—s2) | w1, 203] (=0

Since, however, this is expressed in terms of the elliptic functions
with half-periods ;, 203, we have now to express it in terms of elliptic

functions with half-periods w;, ws.

We put in general

P01 015 203) = E1, (02|01, 203 = Ey, §£(203]| w1, 203) = E3,
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where' 'wz = —(w1+2ws). Then, we have the following relations®:
Eu?
a'(u | W], w3) =e 2 a'(ul(m ’ 2(0;3) a‘a(u I Wi, 2(03) »
Eyu?

a(U]|w,w;) =€ 2 {[as(u | o1, 203) ]

+ VIE]—E'al/Ez—Es [0‘(’“ l W], 20’3)]2 } ’

y (30)
_ - Eau?
a(U|lw, ws) =e 2 {[O‘g(u | w1, 2w3) ]2
— vV E\—EsV' E;—E;, [o(u | o1, 20)3)]2} ,
€y— €3 = —4V/E1*E3'I/E2—E3 ,‘ J
in which f(w1] w1, w3) = €1, 8 wz] w1, w3) = €2, (w3| w1, wa) = €3.

Further we have®, for the functions with periods 2w;, 2ws,

Ex(U—20,) = —Exe(u) ,

} (a, B =1, 2 3) (31)
an(u——zw.,) = EuO(u) y

where in general &.4(u) = o (u)/o(u) .

By the aid of these formulae we can express ¢ in terms of elliptic
functions with periods 2w;, 2w3. In the following calculations, as in
the formulae (31), the half-periods w;, w3 will not be indicated explicitly
for the elliptic functions with peribds 201, 203 .

We have from (30), by dividing respectively the second and third

formulae by the first and taking the last formula into account,

En(u) = Ex(U | @1, 2w3)—i(62—63)503(u | w1, 20.) ,

(32)

an(u) = Exnlu l ®1, 203) +-;—(€2—ea)503(u | @], 2w3) ’

(1) J. TANNERY et J. MoLK, Eléments de la théorie des fonctions elliptiques, 2 (1896),
244-245. .
(2) J. TANNERY et J. MOLK, loc. cit., 2 (1896), 28o.
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. where &u(u) = 1/&u5(u) , (a‘:—— 1,2, 3), and from these formulae we get

easily

%(62—63)503(71 w1, 203) = —[520(’&6)‘~ Eeo(u)] . (33)

Thus,Awriting (s—s2) and (s—?sl——zwg) for u respectively we have
—;—(62“63)503[(8“32) lo, 2ws] = —-[Ezo(s —32)_—830(8—-82)] , (34)
and
%(62'— e3)&os [(s +81—2ws) | w1, 2@3]
= -—[Em(s+s;——2w3)—fao(s+sl—-2w3)] . (35)
By (31), equation (35) can also be written as:
_;.(ez—ea)eﬁa[(sm—zmg) o1, 28] = En(s+s1) +Enls+s1) . (36)

Dividing (34) by (36) side by side we get

Eal(s—8) | w1, 205]  _ _ Exls— ) —Eals —sz)

Exl(s+ 81— 2w3) | w1, 23] - Ex(s +81) + &xo(s + Sx) ’ (37)
or
530[(84‘81—- 20)3)[(01 , 2&)3] —_ 520(8‘-82)— 530(8—82) . (38)
Ex[(s —82) | w1, 23] Ean(s+81)+En(s+s1)

However we have, in general,

[5:0(“)]2'_‘[5;'*0(%)]2 = (e[i_ea) ’ (a’ B =1,2, 3) . (39)
Therefore

Ea[(s + 81— 2w3) | @1, 23]
Ea[(5—$2) | @1, 23]

=1 [Ezo(s +81)— Eaols + 81)] [520(8—432) — Ex(s —82)] . (40)

€y —€e3
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‘Thus, combining this with (29) and introducing the angle of attack B
by % 7m—8& = 8, we have ¢i2® in terms of elliptic functions with periods

2w, 2wg in the form:

e-i 8

U(ez —_ 63)

¢ = [520(3“1'81)—‘ Ew(s-i-sl)][fzo(s"— 82) —Eals ‘"32):] . (41)

§6. We have assumed that at infinity H upstream the fluid flows,
with the constant velocity U, from left to right parallel to the free
surface, and we have taken the x-axis parallel to the direction of flow
at infinity upstream. Therefore, since the point H at infinity upstream
corresponds to the point s =0 in the s—plahe, the condition at H is

given by ; .
et | = L 2
o [eoe] . (42)

The point H’ at infinity downstream corresponds however to the same

point s = O in the s-plane, so that the condition at H’ is the same as (42).
P

Inserting (41) in (42) we have

—if
—U—(:Z—_;a—)[fzo(sl) “Em(sl)] [520(32)—530(82)] = (IJ ’
i.e., ,
[ €anls) —Elsn) ][ Emlsa)— Enls) | = — (e—ea)e™ . (43)
By using the formulae (39), equation (43) can also be written in
the form: '
[520(81)4'520(81)][520(82)+530(82)] = —(e2—eg)e ™. (44)

From (43) and (44) we have, by adding and subtracting respectively,

Ex(81)620(82) + Esols1)6a(s2) = —(e2—e3) cos B, 1 (45)
a0(81)E20(S) + Ezo(S1)620(s2) = i(e2—es) sin 8. I
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Now, we put

2 =0 — 26, T=w—20. (46)
T ko

Then, , and 2 are evidently both real, and by (23) s; and s; are written

in the forms:

8 =21t ows, S = T2t ws. , (47)
We have

Exn(ss) = Eal;+ wg) = — 1/61—631/ 62— eafoa(xj) ’ } . )
- J=1,2
Ea(s;) = En(xi+ ws) = 1V ea— esis(crs) , ,

where &4(u) = oo (u)/os(u) , (@, B8 =1, 2, 3) in general.
Substituting these in (45) we have

E13(21)618(22) — (€1— €3)Ea(1) Sos(22) = cos B,
Ve —es [an(xl)&s(xg) +E;3(xl)foa(wz)] = —sin 8, } (48)
from which we get the following equation : |
tan [ Ve —esfal@r) | +tan [ Va—atu@) [+8 =0,  (49)
or, in terms of & functions,
tan-1| 2(0) 191(—;"1—1) + tan1| 9(9) &1(;% +8=o0. (50)

F4(0) 292(_371_) - " J4(0) 02( g’ )

2w 2w1

This is the first equation for determining the two real quantities x; and ;.

IOI. Development of the Transformations.

§7. In the next place, we shall express z in terms of s. From

(24) we have

dz _ 0dx
ds ¢ ds ’ (51)
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and by (22) and (41) this can be written in the form:

dz — 2\,&0(«)18_"B

ds wU(ez— &)

o(s—sy) [oa(s+8)—aa(s+ )] [a2(s—82) —as(s—s)] . (52)

X
o(s—sy) [0(81) 0‘(8)]2
We put '
dz 24w e |
—_— = —_—___,F N
G5 T P— (s) (53)
where

F(s) = o(s— s1) [o2(s+ 81)—as(s + )] [oe(s—S2) —0s(s—82)]
=) o(s—sp) [o(sDa(s)]? (54)

Also, we put

Fi(s) = a(s — 81) oa(s+81) oa(s—sp) + o35 +31) 7s(s —32) ,

o(s—s2) [o(s1)a(s) P (55)
Fils) = 26— as(s+ s1) az(s——SZ)+q2(s+sl)ag(s—82) .
s) a(s—s2) : [o(s1)a(s) T '
Then, we evidently have
F(s) = Fy(s)—F(s) , - (596)
and it will be proved that
Fi(s+201) = Fi(s) } (57)
F1(8+2m3) = F](S) N
and o o ‘
Fy(s+2w;) = F(s), } (58)
F2(8+ 2(03) = —Fz(S) .

Thus, Fy(s) is an elliptic function of the first kind, whilst Fy(s) is an

elliptic function of the second kind, and both functions have a double
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- pole at s =0 and a simple pole at s =g . Hence, remembering their
respective periodicity-properties given in (57) and (58), they can be split

up into simple elements in the forms:
Fi(s) = Co+ Ci8() + Col'(8) + Colls—s2) , (59)
Fy(s) = B16w(s) + Ba&y(s) + Bséwl(s—s2) , (60)
where Cy, C;, C2, Cs, Bi1, B2 anci B; are constants which will be
determined in the following lines.

These constants are, however, by no means all independent of each

other, and there exist some relations between them. In the first place,

the perfect periodicity-property of the function Fy(s) requires a relation
that

Cl + C3 =0, (61)
because the periodicity-property for €(s) is {(s+2w.) = £(s)+ 274, (@ =1,

2, 3), though ¢’(s)=—#(s) has the perfect periodicity-property. Secondly,
since it is evident from the definitions of F(s) and F3(s) that

[Fi(s) ]s; o, [Fz(S)]s:s o,

we get two relations, namely :

Co+ Ci&(s1) + Cel' (1) + Csl(s1—s2) = 0, (62)

Bi&w(s1) + Bz&jp(s1) + Bsén(si—s2) = 0. (63)
Thus, we have three relations between seven constants (), C1>, C:, Cs,
By, Bs;, B;, so that only four of them are independent of each other.

We now calculate the values of these constants. By virtue of the

formulae :

olu+0)s(u—a) = [0 oua) | —[olw)o@],
o(u+a)o(u—a) = oc(u)o.(u)os(a)o(a) (64)
—o(a)os(a)ap(u)o(u) ,

(@, B,7=1,2,3)
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we have, for small values of s, the following expansions: ‘

as(s+s)a(s—s1) = —a(s)as(s) +o1(s)aalss)s+ - - - -

= —[ots0)] {xols)—Eualsr) mlo)s + -+ -+ }

oxs+81)a(s—s1) = —a(s))aa(s) +arlsr)as(sr)s+ - - - -

= —[0(81)]2 {520(31)_510(3‘) Ealsy)s + - - } ’

oi(s—ss) _ ols+sdos(s—ss) _ _ [ au(s) + ai(s)aulsd) o, ...
ols—s2)  ofs+s)a(s—ssz) U o(s2) [o(sF

oxs—s) _ ols+sdaals—s) _ _ [oalsy) | oulsddanlsa) o
a(s—sy) o(s+82)o(s—sy) \ a(sz) [o(s?

}
= —{Enls) + Eulnlods + -} o
|

= — {&unls) + Enolsa)Emlsa)s + -+ -+ .

Thus, the function Fy(s) is expanded in a power series of s in the

form :

Fi(s) = {&m(si)alsd +Enlolsd ) 5
_@wm@WMQ@@@+mmmwg+mu@9

On the other hand, we have, from (59),

G- (66)

F(s) = —%-}‘ A

Thus, we have

C=— {510(81) — 510(82)} {520(31)530(82) + 530(81)520(32)} ’ l
(67)
Co= — {520(81)520(82) + &a0(S1)E20(52) } ’ I
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or, taking (45) into account,

Cr = —iles— &) {€uls)—Eulsa) | sin B, }

Co = (ez—es) cos .

91

(68)

The constant C; can be determined by the relation (61). Alternatively,

it is given by

Cs = lim [ (s— s) Fi(s) | -

8§—89

By performing the calculations we get

Cy= —oB1=8)_ s
3 [o(s) oG {02(81+82) a3(s: 32)}

= {Eulsn) —&ulse)) {Eanlsn)6as) + Eolsr)mls:) |
= —C,
as we should have expected. Thus,
Cs = i(ez— es) {u(s)—Euolsa) | sin 8.
The constant 'Co‘is determined by (62), namely :

Co = ‘ClC(Sl)—CZCI(SI)"'CSC(SI"‘S2) .

(69)

(70)

In like manner, the function Fi(s) can be expanded in the form:

Fyfs) = {Goo)m(sn) + Emlsi)é(s) |5

. {510(81)—‘ 3 10(82)} {520(31)520(82) + 530(81)5&(82)} é +eeee, (71)

and also we have, by (60),

Fai(s) = _£22+£L+.... .
S s

(72)

This document is provided by JAXA.




92 ~ S. Tomotika and I. I'mai.
. Thus,
B = —{ulsr) —&uo(s2)} { Els1)én(ss) + Exls1)Em(sa) |
By = — {€m(s)éa(s) + En(s)én(sa)] ] 7

or, taking the relations (45) into account, we have

B; = (e2—e3) {510(81)—510(32)} cos B,
o (74)
B; = —i(ez—e3) sin 8.
Finally, the constant Bs can be determined by
Bs = lim [s—s)F(s) ],
S—>89
and we have
By= — - CO=8) {4 5) +oulsi+
" oot Lot +onts )
= Cs.
Therefore .
B = 'i(ez —63){510(5‘1)‘“510(32)} sin 8 . (75)

As shown in the above, the three constants By, By, Bs must satisfy

the condition (63) identically. This can however be verified without

difficulty by making use of a formula®:

ot @)op(u— )oa(b+ 0)a(b—c)
+ o (U +b)os(u—b)a.(c+ a)a(c—a)
+a,(u+c)os(u—c)ou(a +b)o(a—b) = o,

(@, B,v=1,2,3).

(1) J. TANNERY et J. MoLK, loc. cit.,, 1 (1893), 195.
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Lastly, we can express z as a function of s. We have

dz _ _ 2ypeie® . _
= e {Fis)— Fuls))

_ 2¢nw e

7w U(e;— e3)

{Cot+ CLL(E) + C'(8) + Colls—s)

— B1 £10(s) — B2£19(s)— Bséols —82)} » (76)
and therefore on integrating we get

_ _ 2Yowe |

S ——.

CoS + Cl log G‘(S) + Cz.c (S) + Ca log 0(8—82)

—B; log [an(S) —Ezo(s)] —B:€1(s)
—Bslog [530(8 —85)—&nls —82)] } y  (77)

or, remembering the relation C; = By, we -have

= —2hwe™ (ool c
2 er(ez—ea){ 08+ Ci log a(s) + C2&(s)

-—-E; log [an(s)—Ezo(s)]‘—BzEm(s)

+Bilog[ms—s) tais—a)]}, )

where an arbitrary constant of integration has been neglected.

§8. When we start from a point in the z-plane and arrive, after
encircling once round the plate, at that point, z must return to its
original value; in other words, z must be a one-valued function. This

condition requires that

9§dz=o, (}9)

where the integral is taken round a closed contour surrounding the plate.
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Since, however, such a closed contour corresponds to a contour X

in the ring region in the Z-plane surrounding the inner circle, (79) can

§(E)%-o
S

which further takes the following form, if we substitute the expression
for dz/ds given by (53),

be replaced by

f F(s)— =o0. (80)

To this integral, only a constant term in the LAURENT expansion of
the function F(s) makes a contribution, and since F(s) = Fy(s)—F%(s),
we have next to obtain the constant terms in the LAURENT expansions
of the functions Fy(s) and Fys):

Fi(s) = Co+ Ci1L(s) + CoL'(8) + Csl(s—so)
Fys) = Bi£10(s) + B2£1o(s) + Bao(s—s2) -

We have the expansion formula for ¢ function:

b 2n
C(u) = MU T ot T 4 2T q sin 7% (81)

()] 2w1 2wy W 11— q2” [}

Putting in this % =§ = w;+w;— —2-log Z and then remembering that
Xy ‘

lexp (%s))=lqz_1|<l, we get

£(s) = 1 ( o+ ws—-2L log Z)
1T

w1 20’1

+ (positive and negative integral powers of Z). (82)

Using this and taking account of the obvious relations:
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we get the expansion for {’(s) in the form:
¢'(s) = oy (positive and negative integral powers of Z) . (83)
1
Next, we put in (81) Uu=s— 8= ——l— — 2 JogZ. Then,
T i
remembering that |exp [Ql(s——sz)] = |ei:Z7| = |Z7|>1, we have
20}
C(S—Sz) — w; + ws———logZ S2 +-

+ (positive and negative integral powers of Z). (84)

Thus, the expansion for Fj(s) becomes:

Fy(s) = Cot+ (Ci+ Co) 2 w1+w3——— log Z)

()]

2T (C—Cy) + (Cz Css5)

2w

+ (positive and negative integral powers of Z),

or, since Ci+Cs =0,
Fi(s) = Co + i+ ™ —L(Co—Css2)
@] w1 -

+ (positive and negative integral powers of Z). (85)

We have next to expand the function Fy(s) in powers of Z. Foa
that purpose we shall expand the functions &(s), £1,(s) and £p(s—sy) in

powers of Z respectively.

Now, we have

Euolu) = — (0)02< )
201 g (0)19]( - )

(86)
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and this can be put in the following two forms, namely:

l% (0) 134( u ’“—Iir

Euolu) = —— o %2 -, (87)
2010 192(0)03( U _gﬁ)
2wy 2

and

;(0)34( U +I+'r)

Ep(u) = 2oy, 2 7, (88)
2wy u _I_i‘l‘
192(0)03( 2w + 2

In general, when a complex quantity v satisfies the inequality :

() <m(2)<a(;),

where 7 = w3/w; and R(z) means ‘‘the real part of z”, we have the

expansion formula®:

1 OB _ 1 Ny "
4m (0)h(v) 4 +n-1( 2 1+¢* cossmme. (89)

Therefore, if

- <Gl )< ().

we have, by (87) and (89),

I 2w
o) = 2011 u 1
@1 192(0)03( e, T)
1

(==

=_T +31.Z(—1)"%;cos2n'n—< u -—I+'r). (90)

2017 o1t T 2w 2

4+ 1IN

(1) J. TANNERY et J. MoLk, loc. cit., 4 (1902), 105.
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-+ In the present problem, when s varies from 0 to ws, the quantity

(__s____'r_) varies from —r/2 to 0, so that s satisfies the inequality :

-s(3) <52 <x).

which is the same as the above inequality satisfied by 4. Thus, we get

u(s) =

2w1‘b

+ (positive and negative integral powers of Z). (91)

By the aid of the obvious relations:

E{(,(S) —_ dElO — dsm dZ —_ dEIO

ds Az ds dZ’

it follows from (91) that the expansion in terms of Z for £(s) has no

constant term.

Also, when

—1(5) <= 2D < (5,

we have, by (88) and (89), the following expansion:

0{(0)04( U + I +'T>

?
Eo(u) = o j—
2w 192(0)193( 2u 41 : T)
0]
_ T 21,71' Z( cosZ'n7r( U +1+-r
2w1 nel 2wy 2

Since s; = #3+ w3, it will easily be seen that s—s, satisfies the inequality :

—1(y) < (i) <%,
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- and this is the same as the above inequality satisfied by u. Therefore,
we get

510(8—82) = tr

2w

+ (positive and negative integral powers of Z). (93)

Thus, we have

Fiys) = —"—(B,—By)

2(01'13

+ (positive and negative integral powers.of Z). (94)

Finally we have, by (85) and (94),

F(s) = Fy(s)— Fa(s)

=.Co+ﬁ03+ﬂ(cz"—casz)‘ a (Bi—Bs)

] w1 2(01?:

+ (positive and negative integral powers of Z), (95)

and, as mentioned already, only the constant term in this expansion
makes a contribution to the integral on the left-hand side of (80).
Therefore, the condition that z must be a one-valued function requires
that

Cot+ ™ Cy+ (Co—Cos)) —T—(Bi—B) =a.  (96)

w1 w1 2m1’i

This equation can be transformed as follows. By (70), we have
Co = —C,C(s))—C¢/ (1) —Cl(s1—82)
and therefore since 8, = 21+ w3, S2 = L2t ws,

Co = — Ci{Cslmr) + ) — Cali() — Col (@1 —122) -

Inserting this in (96) and remembering that C; = —Cs, C3 = Bs, we have
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CiLa(r) + Callmy) + Cal@tr—m) — - Cot Mgy C — i B,

w1 2w

)
-+ Cgi(mw3~’73wl -—-—?l) = 0.
] 2

However, the well-known LEGENDRE's relation gives

tr
hwy3—Nwy —— = 0,

2

Thus, using again the relation C; = —(C;3, we get

C,[cg(xl) _ My ]+ Co [Cg(x,) _1]

@] w1

+ Ca[C(xr‘ 120) — (e — xz)] =B (o)
W] 2wy

89. For the sake of later use, we shall here summarize, in revised
forms, the values of the constants C;, Cz, C;3, By, Bz and B3 given by
(68), (69), (74) and (75). Using the obvious result that

510(81)—510(82) = —iV '61— €3 {523(%‘1) —‘523(372)} ’
which is purely imaginary, we have ,/

Cr = —(er—e)V er— e {En(@)) — ()} sin B,
Co = (e2—e3) cos B, (98)
Cs = (e2—es)V'er— s {En()) — Enl22) ) sin 85

By = —i(es—e0)Ve1— es{ () — Es(s)} cos B,
B; = —i(e;—es3) sin B, (99)
B; = (62—"63)1/(’»1 —es {523(331) - Ezs(xz)} sinf3 .
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Also, Cy becomes:

Co = (er— )V e1—es {6in(tr) — Ea() | { Col) — C(ar—2) + 7} sin 8

—(e2—e3)C3(%1) cos B . (100)

Substituting these values in (g97) and simplifying, we get

Viei—es {Eza(xl) - Eza(wz)} [{Ca(xl) i } — {C (xl—‘x—Z) "ﬂ(ﬂh— 902)}] sinf3

(01 @1

= Cé(:m) ""i“ Ll 1/-61 —é€3 {Eza(xl) - Eza(xz)}] cos 8. (IOI)

] 2w1

This can be expressed in terms of # functions in the following

M) "

manner. We have

Vei—es Ez;(xl) 5'23(1272)1 193(0)194(0) ;
l S 1
) o m)
(102)
and
(T )

Calxy) — W o 1 04( ;")

) w1 20 194< * )’
2ot } (103)

(=)
===
£ — xz)‘—i(xl—xz) = 21

w1 2wy 3 ( xl—xz>

2w1

Also, with the help of the formula®:

G = (ea—edEn@) | —er ,

(1) J. TANNERY et J. MoLK, loc. cit., 2 (1896), 281.
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. we have
B s X1 z
Cila M——fé&mm&wﬂ <jn>._:£+eg

Qo

()]
L ) 41 3 (0)
).

[ ]

-

8
-

F

= ”:% [9s0)840) |

g

. (104)

40} F(0)

T
2w

| 7

G
Therefore, substituting all these results in (101) we get

a2 (2] ) (TR
2w 2w) I 2w 2w1

J3(0)34(0) sin 8
Uom) M) 42)1%i3>
2|
= { [#(0240) | —223
)
. ) \
+I%®)0@M®6{MJ 2“>cmﬂ(w9

7? 5(0) x ( %
04( 2&11 4\ 2wy >'

Being the second equation, this determines, in conjunction with the first

equation (50), the values of the two constants x; and ;.

§ 10. Next, we shall obtain the expression for the breadth of the
plate, which will be denoted by 2a. We have evidently

(=
2p = 2ae'( z+°)

—2ae %, (106)
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Since, however, the points A’ and A in the z-plane correspond to

s = s, and s = s, respectively, we have by (78),

we a(se
Zpr— 2y = —%{Cg(sz—sl) + C log }L(Z%-!' Cz[C(Sz)~ C(Sl)]

— B log g:gg : ?::83 —Bz[Exo(Sz) — 510(81)]

—B; log %[0'2(81"-82) + 0'3(81—82)]} .
(107)

In the right-hand side of this equation we put s; = 71t ws, S2 = T2+ w3
and substitute the values of the constants Cp, C;, Ce, C3, By, Bz, Bs

given by (98), (99) and (100) and we perform various calculations. Then

we get

Zar—Rp = M[1/e1 —e3 {623(951) —_ Eza(xz)} sin ﬂ

m

x {(xx—xz)[Cs(xl)—C(wI —a) |—log % "

+ log %[oz(xr—ab) + aa(: ——xz)]}
+v e -*83{523(%)* Eza(xz)} cos B
x {'ca.'.n"l (1/;-733 €1 (1) ) —tan™! (1/61T63 En (22) )}

+cos B { — (e1—x2)C5 (1) — Ca() + Ca(xl)}] . (108)

Thus, combining this with (106), we get the expression for 2q in the

form:
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20 = — 241 [1/61 —€3 {fza(xj) - E%(f”?)} sin 8

x {(xl_ &2) [Cs(xl)— (@ —xz)]— log o3(@) +1

a3 (2)

+log %[0'2(-’231 — 1) + o3(21 —%'2)]}

+ v/ e —e {€u(@) — ()} cos B
x {tan‘l (1/ &1 —esén (21) )— tan‘1<Va:?3501(x2) )}

+ cosB {—(xl—mz)C§(x1)—Ca($2) + Ca(xl)}] . (109)

This expression can however be simplified to some extent, by eliminating
Ci(xy) by the aid of the relation:

— (21— x2) C3(2;) cos B = Vie—e; {Ezs(xl) — Ez«(xz)} sin 8
x { — (1 —2) | o) —C (@—) |+ Z—‘lxz(xl —032)}

— (#1—x2) cos B[ My T €1—es {Eza(xl) — &aa(2) f ]

w1 2w1

which follows immediately from (101). We have

20 = ——ﬂ%a,’—l—liva —e3 {523(371) — Ezs(xz)},sin B

™

x {1 + gy — 22) — log T2\%) o3(21)
®i o3(2)

+17 e, —e {523(96‘1) — 52;;(%2)} cos 3

+ log — [ag(xl—xz) + 03(%"‘532)]]

x {tan" ( 1/61 —63501 (xl))—tan*(v/e‘ —esén ({I)g)) -7 (xl—xz)}

2w1

+ cos B { [Ca(xl) .—%xl]— [Ca(xz) ~—;7”sz]} ] . (110)

Now, let D be the distance at infinity upstream between the stream
line ¢ = 0 and the free surface. It will easily be seen that this quantity
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. may be taken as a measure of the distance of the mid-point of the plate
from the free surface in its undisturbed condition. Then, we have -

Yo = UD . (111)

Substituting this in (110), we get

20 _ —3&[1/61 —e3 {523(1;1) — 523(552)} sin 8

D T
x {1 + gty — ) —log LGV log —I—[mz(x;—xz) +o3(@ —wz):l}
w1 2102 2
+V e —es [En(m)) — Eza(xz)} cos B
x {tan‘l (Ver—estu(zy)) — tan™(Ver —esta (@) — 2':: (wr—xz)}
1
4 cos B { [Ca(xl) ——%:xl]—[é(xz) —_ Z—llsz } ] . (112)

Further, by making use of (102), (103) and 'similar formulae, this
can be expressed in terms of ¢ functions. -We have

193( ;j, ) 03( 2921 )

22 = 5(0)34(0) -

194( T2 ) 194( & )
' 2w 2w]
19'4( 1 5) 193(“‘1 ] )
I 2wy | 2w1 i ,8

4(0) J3(0)

1| Fs(0) 01( ?fjl)

+dtan™ — ta
$4(0) ,92( 9 ) P4(0) 192( 2 )
2w1 2w 7/ °
A2) Az
__W_(xl—xz) cos 8 +L 201 7 201 COSB.
lhz) o)
2w; 2w1

(113)
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IV. Calculation of the Lift.

§11. We shall proceed to the calculation of the resultant fluid
pressure acting on the plate.

Although the singular point at the trallmg edge of the plate can be
removed by adopting the value given by (20) for the circulation «, yet
the leading edge remains still as the singular point of the flow and
the fluid velocity there is infinite. If, however, we do not take this
circumstance into consideration, as usually done in the force calculation
in several aerodynamical problems relating to flat plates, where at least
one edge of each plate is always a singular point, we can calculate the
components (Pz, P,) of the resultant fluid pressure exerting on the plate

under consideration with the aid of the well-known Brasius’s formula :
,
P.—iP, = Lip (ﬂ_) dz, (114)
2 d dz

where p is the density of the fluid concerned and C is any closed contour
surrounding the plate. The integral is taken round C in the counter-
clockwise sense, as indicated in the formula. Adopting this procedure
we shall calculate the components of the force experienced by the plate,
in the following lines.

For convenience in the evaluation of the integral in (114) we transform
the integrand in such a way that the integration takes place in the

Z-plane. We have in general

[ (e f ()8 - =i 5 o

Thus, on taking account of the fact that the process of going round
the contour C in the z-plane in the counter-clockwise sense is equivalent
to that of going round the corresponding contour X surrounding the
inner circle -in the Z-plane in the clockwise sense, we have

P, = — 1 o iy 47
P,—iP, = ;pwége s 7 _ (Ivl6)
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since dy/dz = ¢7°.

Now, we have from (41),

% = ezji o [Em(s +381) +En(s+ 31)] [Ezo(s —8y) +Euls— Sz)]

and combining this with (22),

e_iQ dx —_ 2‘4/‘0(1)1 Ueiﬁ
ds m(e2—e.)
a'(s — &) [oods+ Sl)+ oy(s+ 8)] [oa(s—89) + asls— 82)] (117)
o'(s — &) [0(81) 0‘(3)]2
We put
e 0x — _2¥w Ue” Ue? G(s), (118)
ds (62— €3)
where
G(s a(s — 81) [oe(s+81) +a'3(s+81)] [oas—s2) + as(s— 32)] 1
() = o(s — 85) [o(sp ()] (119)
Then, it will be seen that
G(s) = Fi(s)+ Fu(s) , (120)
where Fi(s) and Fy(s) are the functions given by (55).
Also, we have
tB .
p—ip, = P¥eile’ f o
i iU 56 OR (121)

To this integral, however, only the constant term in the LAURENT
expansion of the function G(s) makes a contribution.

Since the expansions in powers of Z have been obtained for the
functions Fy(s) and Fys), we can easily obtain the expansion for G(s).

The result is
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G(s) = Cot ™ Cyt- T (Co— Cis) +—T—(By—By)

w1 w1 2w1?
+ (positive and negative integral powers of Z), (122)

.or, since

Cot 7 Cot M (Cy—Casp) = —"—(Bi—By),

w1 ] 2(01’1:

which follows from (g6),

G(s) = —"—(B:—Bj)

w11

+ (positive and negative integral powers of Z). (123)

| Therefore,

66 % = 2" (BB, (124)
¢ Z w1 )
and
p,—ip, = —2P¥WUee” p_ py. (125)
€2—e3

From (99) we have
Bi—B; = — i(e;—e3)1 e1 —es {Eza(xl) —_ Eza(xz)} (cos B—1 sin )
= —i(ez—es) Ve, —es {Ezz(xl) — Ezs(xz)}e_“ .
Putting this in the right-hand side of (125) we get
P.—iP, = i2pyo Uwy1 e1—es {Ezs(xl) — 523(952)} ; (126)
or, when expressed in terms of # functions with the aid of (102),

o) {2
2w 2w1

P,—1iP, = 1mwpyro Uds(0) 34(0) — . (127)

() )
2wy 2wy
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Separating real and imaginary parts on both sides of this equation,

we have

P.=o0,

193( 2 ) ( 1 ) (128)
2w 2w1

(=) o)

4( 2w) ( 2w

Thus, if we denote by L the lift on the plate under consideration, L

8
P, = 7 pyrs Us(0) 34(0) —
J4

is equal to P,. Hence we have

& ) X
L = apyro Ud3(0) 34(0) 193( 2;;1 >— 193( 2;21 ) , (129)
) )
or, since ¥ = UD, ]
‘ s x
L = 'n'PU2Dl93(O)z94(O)[ 193( 2(51 >_ 09( 2&11) . (130)

o) )
21 2wy

Now, it will be expected that when the distance D becomes infinitely
large, i.e., when the bounding free surface removes to infinity, the
expression (130) degenerates into the well-known expression for the lift
acting on a flat plate placed in an unbounded stream.

When D becomes very large, 2a/D becomes very small, and it will

easily be seen that ¢ becomes also very small. From (113) we have

approximately

= 8q. (131)

Also, it follows from the two equations (50) and (105) which determine

x; and z,, that
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T _(11'_ + B)a
w1 2

()

(132)

as q—o0.

Further, using these limiting values of #i/w; and 7y/w; we have

W) M)

33(0)34(0) — = 8¢sinB,  (133)

) o)
2w 2wy

when ¢ is sufficiently small®,

approximately

Thus, if we write

limL = Lo, . (134)

D>
we get, by (130), (131) and (133),
Lo = 2maU?psin 8. (135)

This is the well-known expression for the lift experienced by a flat plate
with the breadth 2¢ when it is immersed in an unbounded stream of an
incompressible perfect fluid of density p, its angle of attack and the
fluid velocity at infinity being equal to 8 and U respectively.

Finally, dividing L by L, we have

D 193( 2331 ) 193( :;;1 )

L I

M= L S840 — . 6
Lo 2@ sin B +(0)34(0) 194( X2 ) 194( ) ) (136)
2w1 2w;

(1) For these results, reference should be made to the approximate calculations developed

on later pages.
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When the values of #; and z, can be determined by solving the two
equations (50) and (105), the value of the ratio 2q/D will be obtained
by the formula (113), and then the value of L/L, will be calculated
numerically by the above formula (136).

V. Approximai:e Formulae.

§12. Before proceeding to the numerical discussions of the values
of 2a/D and L/Ly by using the exact formulae (113) and (136), it will
be of interest to obtain the approximate formulae for these quantities.

Now, it is convenient to collect here all those relations beatween
various quantities that are going to be of use in the following lines.
First come two equations which must be satisfied by the two quantities

xy and zp simultaneously. They are given by (50) and (105), namely :

) W2
an-! &s(0) 201 /[ o1 Js(0) 201

34(0) 192(;931_) J4(0) 192(;902_> +8=o0, (137)
) w1

and

o2) A2, ) e
193(0)34(0) 2wy - 2w L 2w _ 2w1 sin,B

194( X1 ) 194( HP) ) T _’94( Ha ) 191 xl-—xZ)
2w; 2w) 2w 2wy

(2]
2w

= {[3x0)3:00) | 04( le ) +}I3 gé’( S)
w1
T X2
—J3(0)4(0) 193( 2:1 )— &’E 2:2] ) cosB. (138)
o 2-) o =)

This document is provided by JAXA.



Effect of Surface of Sea on the Lift of a Seaplane.

e
[
i

Then comes the expression for 2a/D which is given by (113). We have

28 _ 5y(0)4(0) e >_ ’9(72?>

7 M) )

() [0, " )]
x l—logﬁl—)+log%[ z‘},jo)l 19:(:;))’ sin B

J3(0) 01( 2521> —tan—1| 20 01( zxcjl)
34(0) 02< @ ) 34(0) 192( ﬁ)

2wi

1KGS ( =)
— 20)1 2w1 c
2mw1 mw 04( T2 T )

I

— T (#1—3) | cos B |+ osf3. ‘
2(01 2w) : |
(139)
Lastly, the expression for L/Lg is
D 03( ” ) '93( - )
L _ 9(0) Su(0)] —221 201 (140)

IO-_ZCLIB 4(2;> 0(2(01)

-To solve the two equations (137) and (138) approximately, we

assume

T8 = qot g+ 0P+ asg+
w1
: (141)
T2 = b0+b1q+b2q2+baq3 U
W]
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_ Putting these in (137) and (138) and performing lengthy and tedious
calculations the values of the coefficients aq, by, a1, b1, etc. have been
found. The results are

do = —(l + B) ,
2
(142)
b _—_<_"£_ ;
o > B)
a; = 2cosf, }
' (143)
by = —2cosfB;
d; = 4sin 28, }
(144)
b:=o0;
a3 = 5 cos B—ﬁ cos 38,
3
(145)
b; = 3cos B—L cos 38.
3
Thus,
Lok A L .
= —<-~ + ,8>+2(JCOSB+4qzsm 2
w1 2 .
( —23 )
+q3\5 cos B 3 cos 38 )+ , (146)
T = (1— ,8)-—2(] cos B +q3(3 cos B—-- cos 3B>+ ceee,
wi 2 3 J

- Next, on substituting these g¢-expansion formulae for =x;/w; and
mx:/wy in (139) we get the approximate expression for 2q/D in the form

of a power series of ¢, namely:

2% — 8g—32¢% sin B+ ¢ (64—48 cos? B)

D
E;_'q‘ sin B8(7 cos? B—2)+ - «- - . (147)
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From this equation we can obtain ¢ as a power series of 2a/D.. The

result is -

¢=L(2)+ Lsing ) <64 256" >(%>3

30 4t gV sing(22Y 4. ...
+( 268 768 cos ,8) smB( i ) + . (148)

In a similar manner, we have, with the help of (146),

o) M)
W) o)

= sin B{8¢g—16¢® cos? B—64q  cosE BsinB + -+ ¢ ,
A

$3(0)34(0)

and therefore, substituting this in (140),

I{J— = —Q{Sq——l6q cos? B—64q" cos? Bsin B+ - } (149)
0 20

Then, if, in the right-hand side of this equation, we substitute for
g the corresponding eéxpansion formula given by (148), we get ultimately

the expression for L/Ly as a power series of 2a/D:
2
% = 1- é sin B8 <3Da'—)+ %6(6—7 cos? ,8)(%)
0

R 23 sing( 2% Y 4 ....
+96(3I 47 cos B)smB(D>+ , (150)

or,

0

—%- =1 +—;— sin,8<_25’_>+;16(7 sin? B8— I)(%)Z

+-—§I—6—(47sin2,3—16)5in:8 %>3+“” : (151).
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From this formula we can calculate the approximate values for L//,,
and by comparing these approximate values with the accurate ones which
would be obtained from the exact formula (140) we can find out the

range in which the above approximate formula can be applied.

VI. Numerical Discussions.

§13. In order to calculate the exact values of 2a/D and L/L, by
the respective exact formulae (139) and (140), we have to find the exact
values of x; and z; by solving the two equations (137) and (138)
simultaneously. However, these equations are so complicated that it is
not possible to solve them straightforward with respect to the two
quantities x; and z;.

But, the values of x; and x; can be calculated approximately by
their respective approximate expressions given in (146), which have
been obtained from (137) and (138), and the approximation is especially
good for small values of q. Therefore, starting from those approximate
values we can obtain the exact values in the following manner.

Taking those approximate values as the first approximation we denote

them by x? and xJ respectively. Then, the exact values z;, x; will be

given by

X = xg+8] ’
(152)

Xy = xg+82.

We put these in the equations (137) and (138), and then assuming that
both §; and §; are small, we expand various functions in power series
of 8§ and & . Then, if we retain only the first powers of § and &, and
neglect their second and higher powers, we get two simultaneous linear
equations having §;, §; as variables. Calculating the values of & and &,
from those linear equations and adding them to x? and gz respectively,
we can obtain, by (152), the more accurate values for #; and x,, which

will be taken as the second approximation.
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Next, starting from those second approximate values, we can obtain,

by a similar process, the third approximate values.
Repeating similar calculations two or three times we can obtain the
exact values of x; and z, which satisfy the two equations (137) and (138)
* simultaneously. The formulae necessary for those calculations will be

described in the Appendix.
The exact values of x; and x, determined in this way for cases in
which the angle of attack 8 is equal to 29, 5°, 10° and 15° respectively

are tabulated in the following tables.

TaBLE 1.
(B =2°
Ly Mo
7 w0y wy
0-05 —86° 15/ 12/ 82° 17/ 38/
0-10 —80° 32/ 39/ 76° 41/ 44/
0:20 —69° 37/ 28/ 66° 8/ 18/
0-30 —59° 38/ 507 56° 34 42/
0-40 —50° 32/ 447/ 47° 52/ 14/
TasrLE II.
B =s°)
s ML
q _— —_—
Ll)l (x)l
0-05 —89° 12/ 43/ 70° 18/ 42/
o-10 —83° 2v/ 8/ 73° 44’ 12/
0-20 —71° 56/ 27/ 63° 15/ 37/
0-30 —61° 26/ 447 53° 50/ 50/
0:40 —351° 54/ 54/ 45° 20 11/
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TasLe III.
(8 = 10°)
Ly Lo
g Ty 2
Wy wy
0-05 —94° 10/ 41/ 74> 22/ 38/
0-10 —88° ¢/ 307 68° g2/ 25/
0-20 —v5° 51/ 38/ 580 36/ 2/
0-30 —64° 28/ 21/ 49° 29/ 47/
0-40 —54° 12/ 10/ 41° 22/ 15/
TasrLe IV.
(8= 15%
ey TLq
7 wy wy
0-05 —99° 1V 21/ 69° 29/ g/
o-10 —92° 54’ 50/ 64° 5/ a5/
0-20 —79° 52/ 23/ 54° 6 11/
0-30 —67° 33/ 21/ 45° 22/ 32/
0-40 —56° 30/ 56/ 37° 4 17/

Next, using these values for x; and x; we have calculated the values

of 2a/D and L/Lo by the aid of the respective exact formulae (139) and

(140).

The results are shown in the following tables.

TaBLE V.
(B = 2°)
2q L
1 D Lo
0-05 0:3992 0-9970
0-10 0-8052 0-9756
0:20 1-6887 0-8987
0-30 2.7586 0-8134
0-40 4-1506 0-7428
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TasLE VI.
B=75°
2a L
d D Lo
0-05 0-3951 1.0073
o 10 0-7893 0-9950
0-20 1.6306 0-9293
0-30 2:6373 0-8483
0:40 3-9423 0:7791
TasLE VII.
(B = 10°)
2a L
7 D Lo
0-05 0-3884 1-0249
0-10 0-7635 1-0285
0-20 1-5377 0-9834
0-30 2-4479 0-9101
0-40 3.6219 0-8433
TasLe VIII.
(8= 15°)
2a L
7 D Lo
0-05 0-3818 1.0425
o-10 0-7387 10631
0:20 1-4507 1-0410
0:30 2-2736 0-9765
0-40 3-3317 0-9124

-t
-t
~r
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The manner of variation of L/L, with respect to 2a/D is shown

graphically in Fig. 7 by four curves corresponding to 8= 2°, 5°, 10°
and 15° respectively.

L,

1
Z \ 3
D
10} ™

\ﬁ=lso

09 ~ " <
\X\_w
o8 e

Fig. 7.

§ 14. Next, in order to find out the range in which the approximate
formula (151) for L/L, can be used, the values of L/L, have been

calculated by using the said approximate formula, which is given by,
to the third power of 2a4/D,

% =1+ sin '8(_21%) +]—‘6(7 sin? B— 1)(%)2

2

+ .916_(47 sin® ﬁ-—— 16) sin B(%)S- (153)
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- Thus, when B is equal to 29, 5°, 10° and 15° respectively, we have,

in turn,
—II;J; =1 +0-01745(%)— o-o6197(%">2— 0-00580(% 3, (154)
LAO =14 0-04358(%)—0-0591{%1)2._ 0-01420(%)3, (155)
TI;— =1 +o-08682(2—1‘;'—)— 0-0493 1(%)2— 0-02638( i‘; )3, (156)
and
7% =1 +o-12941(%)— o-o3319<%>2—— 0-03465(% . (157)

The approximate values of L/L, calculated by these formulae usihg
the values of 2aq/D given in Tables V—VIII are shown in the third
column with the heading (L/L¢)appr. in each of the following four tables,
- where the exact values of L/L, have been ‘reproduced for comparison
in the fourth column with the heading L/L,.

TaBLE IX.
(B = 2°)
q 2a ( L ) L
D Lo appr. Lo
0-05 0-3992 0-9967 0-9970
0-10 0-8052 0-9708 0-9756
TasLeE X.
(B =5°)
I 2q ( L ) L
1i 7 D Ly / appr. L,
|
0-05 0:3951 1-0071 1-0073
o-10 0-7893 0-9905 0-9950
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TasLe XI.
(B = 10°)

7 D Ly apor. L,
0-05 0-3884 1-0247 1-0249
o-10 0-7635 1 0258 1-0285

TasLe XII.
(B =15°)
q 2e ( L ) L
D Ly / appr. Lo
0-05 0-3818 1-0426 1.0425
0-10 0-7387 1.0635 " 1-0631

From these tables it will be seen that when 2a/D<0-7 th‘e.
approximate formula (153) gives for L/Lov good éﬁproximéte values which
are sufficient for practical purposes, and also it seems that the larger
the angle of attack 8, the better is the approximation,

Thus, using the above approximate formula, the values of L/L, have
been calculated for various values of 2a/D less than o0-7, the results of
which are shown graphically in Fig. 8, where some of the previous

accurate results for larger values of ¢ are also taken into account.

§15. From Figs. 7 and 8 it will be seen that the lift of a plate is
considerably affected by the presence of a free surface which bounds
the stream on the lower side of the plate. Thus, for small values of
the angle of attack such as 2° or 5° the lift is somewhat increased when
the distance D of the plate from the undisturbed free surface is large
so that 2g¢/D is small, but the lift is rather decreased more and more
due to the influence of the free surface as the plate approaches to the

surface.
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Fig. 8.

However, when the angle of attack takes a value such as 10° or
15° in the practically important range of values the lift is increased till
the distance D becomes comparable with the breadth 2q of the plate,
For instance, when B = 10° and 2a/D = 0-6, the increase in lift is about
3 per cent of the lift of the plate in an unbounded stream, and also
when 8 = 15° and 2a/D = 0-9, the said increase is about 6.5 per cent.
But, even when the angle of attack assumes practically important values
such as 10° or 15°, the lift of the plate is rather decreased, as in the
case of small values of the angle of attack, due to the effect of the free

surface when the plate approaches sufficiently near to the surface.

Now, the result for a flat plate may be applied without serious error
to the case of a thin aerofoil and therefore nearly the same conclusions

may be given as to the effect of a free surface upon the lift of a thin
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aerofoil when it is placed in a semi-infinite stream bounded by the free
surface on the lower side of the aerofoil.

It is known however that for ordinary aerofoils the maximum lift
occurs when the angle of attack is nearly equal to 15°. Thus, applying
our theoretical results to the case of a thin aerofoil, it may be concluded
that the increase in maximum lift of the aerofoil due to the influence
of a bounding free surface, which is on the lower side of the aerofoil,
is about 6 per cent when the distance of the aerofoil from the free surface
is nearly equal to its breadth.

As mentioned already in the Introduction, the boundary surface
between the sea water and the air over it may be considered as a free
surface, if the sea water is assumed to be at rest and the gravity is
neglected, because the fluid pressure in the sea water is then everywhere
constant so that it is constant also along the boundary surface. Thus,
the results of our present theory may be applied to the important practical
problem concerning the interference effect of the surface of the sea upon
the lift of a seaplane flying over it, and therefore it may be expected
that the maximum lift of a seaplane is increased by about 6 per cent
due to the interference effect of the surface of the sea when the seaplane
is taxi-ing over the surface so that the distance of the wing of the
seaplane from the sea surface is comparable with the breadth of the
wing.

This theoretical result may be compared with the result of full scale
tests carried out at Felixstowe, England, which shows that the maximum
lift of a seaplane is increased by about 10 per cent due to the interference
effect of the sea surface®, The agreement between the results of our
theory and of full scale experiments is fairly satisfactory, in spite of the
difference in the two cases that the flow is two-dimensional in our

theoretical problem, while it is three-dimensional in full scale experiments.

(1) Report for the year 1933, National Physical Laboratory. 202.
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VII. Summary.

§16. It is known that an appreciable interference effect occurs on
the lift of a seaplane when it is flying near the surface of the sea. Full
+ scale experiments carried out at Felixstowe, England, have shown that
the maximum lift of a seaplane is increased by about 10 per cent due

to the interference of the sea surface.

In view of the practical importance of the phenomenon it is of great
interest to develop, if possible, a theory which could explain the pheno-
menon satisfactorily. It seems however that the ordinary vortex theory
is incapable of explaining the said interference effect satisfactorily.

In the present paper, a rigorous mathematical analysis is developed
for a hydrodynamical problem of calculating the lift on a flat plate placed
in a two-dimensional continuous stream of fluid which is bounded by a
free surface on the lower side of the plate. By carrying out long and
tedious numerical calculations, the interference effect of the free surface
upon the lift is discussed in detail, assuming various values for the angle
of attack of the plate as well as for the distance of the plate from the
free surface. It is shown that for practically important values of angle
of attack such as 10° or 15° the lift is increased by a few per cent due
to the presence of the free surface when the distance of the plate from
the surface is of the same order of magnitude as the breadth of the plate.

Now, the boundary surface between the sea water and the air may
be considered as a free surface along which the pressure is constant,
if the sea water is assumed to be at rest and the gravity is neglected
so that the fluid pressure is everywhere constant in the sea. Therefore,
our problem has a close connection with the practical problem concerning
the interference effect of the surface of the sea upon the lift of a
seaplane while its taxi-ing over the sea surface, and the results of our
theory may be applied to the practical case.

Thus, remembering that for ordinary aerofoil the maximum lift occurs

when the angle of attack is nearly equal to 15°, it may be expected

This document is provided by JAXA.



L C Trnintir s
124 S. Tomotika and

. from our theory that the maximum lift of a seaplane is increased by
about 6 per cent due to the interference effect of the surface of the sea
when the aircraft is taxi-ing over the surface so that the distance of
its wing from the surface is of the same order of magnitude as the
‘breadth of the wing.

This theoretical result should be compared with the result of full
scale tests mentioned above, and it will be seen that the agreement

between the theory and experiments is satisfactory.

December, 1936. Physical Institute,
Faculty of Science,

Imperial University of Osaka.
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Appendix
Note on the Calculation of x; and x;.

The two equations for determining the two real quantities x; and
.2z defined by (46) are given by (50) and (105). Expressing the first

equation in a somewhat different form, we have

Wowr), W
930) |\ 2a i 201
o) o
02( 2w; 2&)1)
o(2)
193(0)] (2(01) ! 2w1
ool 2ol )
2w1
and the second equation is
o) o) [A2) A=)
33(0)34(0) 2;’1 — 2;" % 2;’1 — xz“"x sin 8
EE (= =
4 2w1) 4( 2w1> 04 2&)1) 191( 2w1
3 -2 ) 2
< 2wy + B 39%’(0)

194( _2_371_) 7 3(0)

]
o) Hw)
2w . 2w
o) )
2wy 2w)

To calculate the rocts x; and x; of these simultaneous equations for

+tan B 1— [

L1

2w1

[#:0)840) |

—793(0)(94(0) [ofo}] ,8 .

given values of q and B, the angle of attack of the plate, the following
procedure has been adopted in the present paper. First, we calculate
the approximate values of x; and x; by using their respective approximate

g-expansion formulae given in (146), namely :
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T

= —(£+ B)+2qcos,8+4qgsin2/3 )
2

w1

+q3(5 cos,B—%:icos 3,8)+ seee,

™ (E——B>—2qcos[3+q3(3 cosB—Lcos 3B)+-- R
3

w] 2 J

We denote these first approximate values by 2§ and x respectively.

Then, the roots x; and xp will be expressed as:

xry = 27?4‘8] ,

T = xg+82 ’

where §; and §; are naturally small quantities in comparison with 2 and «3.

Putting x; and z, in the above two equations, we expand various
functions in power series of & and 8. Thus, retaining only the first
powers of § and &, we get the simultaneous linear equations for

determining the two quantities §; and d;, namely:

701

da; + a2 = a3,
2w1 2w] :

702 l

A R R J

2w 2wl

from which we have

78 __ Gybi—asb;
- ’
2wy (lgb] — a1 bz
7T82 _ (labx — a1b3
2w1 a2b1 — a1b2

In these formulae, a;, az, as, bi, bz, b3 are the quantities defined as

follows:

This document is provided by JAXA.




wAd f Corsef s o Con nar 2hoe To2Fft AF ~ Conslaze
v \JI/LIJ uee (/'/ ELL UL (ile L4€/L {/_/ o \_)t’uflbulﬂf.

2 03( 2‘2)1 >&4( 2§1> 1 — $3(0) 01(2—:”“’3’_) tan BW ) \
0\ T2 2
CESRECEE

)
N

tan B

{ (o) < 2w1 >0( 201 ) __%4(0)
d4(0) 02( =L )&2( ;::] ) %(0)
_ﬂ(;)ﬂ(ﬁ)‘

o)

b1=AB1+A1B+CCOtB }

/

b, = AB;+A:B,
bs = AB—(B1+By) cot B,

)

. where

[ -2

A = 95(0) 34(0)

o))
(2]
)2
[

A= —83(0) 84(0)| %(0) ||

As = 95(0) 34(0)[ 3:(0) ]
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B, = [193(0) ?5‘4(0)]2

e N,
S S
N

8 8

N — D

g ||

=R

N D

2 Hy(0)

(
192(95_(1)_'_‘”_(2)> 2+L .
(%7)

01( Zt()l]l >192( 2a(f1 >ﬂ3( 2&;31 )
0 3 :
| ()]

If we add the values of & and §; calculated in this way to 2% and 23

C=— 2[192(0)&3(0)194(0)]2

respectively we get the second approximation for the values of 2; and a5.

In a similar manner we can get the third and higher approximations,
and finally the exact values of the roots x; and x, of the original
equations can be obtained. However, it has been found from our
calculations that for values of g less than o-1, the second approximation
gives the exact values for x; and x, and no further approximation is
necessary, and that even for larger values of ¢ the exact values of x;
and x; can be obtained by repeating the above procedure twice or at

most three times.
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