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I. Introduction.

§1. In a previous paper® I have calculated, in conjunction with
Mr. M. Inanuma, the moment® of the fluid pressure acting on a flat
plate which is placed obliquely in a two-dimensional steady continuous
irrotational flow of an incompressible perfect fluid bounded by two
paralle]l plane walls. From the view-point of the application of the result
to practical problems, we have confined ourselves to a special case in
which the mid-point of the plate is on the centre line of the channel
aund  the ratio of the breadth of the plate o that of the channel is
faircly smaller than unity.

The result obtained was that the magnitude of the moment of the
fluid pressure for the plate in the channel is always greater than that

for a plate in an unlimited stream; in other words, the boundary walls

(1) S. TomoTIKA and M. INANUMA, On the Moment of the Force acting on a Flat
Plate placed in a Stream between Two Parallel Walls, Proc. Phys.-Math. Soc. Japan, [3]
14 (1932), 543—569.

(2) “The moment about the mid-point of the plate” will often be abbreviated as
‘“the moment” in this paper, as in the previous paper just cited,
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358 S. Tomotika.

of the channel have the effect of increasing the moment of the fluid

pressure exerting on the plate.

Although the problem has thus been solved quite rigorously, it
seems to me not meaningless to treat the problem again in a somewhat
different way. Thus, in the present paper I wish to investigate the
problem, applying the same method of analysis as that employed in

one of my previous papers.®

II. The Conformal Transformations.

§2. Although the conformal transformations necessary for the
present problem have been shown in detail in my previous paper cited
above, it may not be superfluous, for the sake of reference, to sketch
here the procedure of the said conformal transformations as briefly as
possible.

We take the plane of fluid motion, which is assumed to be two-
dimensional, as the z-plane and we consider a steady irrotational
continuous flow of a non-viscous fluid past a plate AA’ between two
parallel walls, the circulation round the plate being assumed to be zero.
A part of a particular stream line coincides with the surface of the plate.
Let this stream line be defined by «» =o0. The flow pattern in the 2-
plane may become as shown in Fig. 1, where the fluid at infinity is
considered to flow with the velocity U from left to right, i.c. in the
positive direction oi the w-axis, whicli is drawn parallel to the walls,

Let the value of 4 on the upper and lower boundaries be denoted

by 4 and —+r, respectively. Then we cvidently have

UD:‘P‘1+‘P‘2) (I)

D being the distance between the two parallel walls.

(1) S. Tomorika, The Forces on a Flat Plate placed in a Stream of Fluid Dbetween
Two Parallel Walls, Proc. Phys.-Math, Soc., Japan, [3] 14 (1932), 139—167,
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2

Fig. 1. z-plane.

Denoting the complex velocity potential for the irrotational
continuous flow under consideration by f= ¢ + iy, the f-plane is

shown in Fig. 2.

B CiC B

Fig. 2. f-plane.

By making a cut along CG G’ C’ as shown in the figure, we first
transform the f-plane on to the upper half of a ¢-plane by the well-

known ScuwArz-CHRISTOFFEL's method, as in my previous paper.®
Next, by introducing § function with periods 2w;, 2ws, where w; >0

and w3 /% >0, we transform conformally the upper half of the ¢-plane

into a rectangle of sides 2e; and w3 /% in a s-plane by the relation :

(1) S. Tomorika, The Forces on a Flat Plate placed in a Stream of Fluid between
Two Parallel Walls. . Proc, Phys.-Math. Scc., Japan, [3] 14 (1932), 148.
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360 S. Tomotita.
£ = §(s)—e; . (2)

Then, the transformation equation for the direct transformation

from the f-plane to the s-plane assumes the form :@

df _ Yty #'0) £(s) —2(w)
ds ™ 20)—P(u) £(s) — £()

= ‘ﬂ';_‘l’?[C(M'FV)‘C(M—V)—C(S—l-v)+C(8—'V)] ,  (3)

where the points s = u, —u, v, —v correspond to the points B, B, H,
H’ respectively. ‘
The s-plane is illustrated in Iig. 3, where the correspondence of

other points is also shown.

- W+ W= C’ B' 0 B C=wtw,

W= ! H' R H szl

Fig. 3. s-plane.

The differential equation (3) can be integrated immediately, and it
we choose the constant of integration such that f=o0 at s=p, we

get

Y ) T ) 1o S F D) )
f = et ) =) = —10g 2T (4)

(1) S. TomotikA, The Forces on a Flat Plate placed in a Stream of Fluid between
Two Parallel Walls, Proc, Phys.-Math. Soc., Japan, [3]114 (1932), 149.
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. Momient of Force acting on a Plate between Parallel Walls. 361

Since, however, we assume that the circulation round the plate is
zero, the function f has a period 2e;, and this condition gives a

relation between the constants as follows :

Lt )= (p—v) = 212 (5)

W]

Another relation is obtained from the condition that f differs by e at

§ = w; and § = w;+w;, so that we get
Jo—Jfa=1tn = Y%i\z {[C(/L—f- U)—C(/L—v)]&)3—2173u}, (6)

which, in conjunction with (5), gives

V2

V:mwl- (7)

Finally, the inside of the rectangle in the s-plane is transformed

conformally into a ring region in a Z-plane bounded by two concentric

circles of radii 1 and ¢ [: exp (%:’7”)<IJ by the relation :

S:w1+(03~?’1~lorrZ. (S)

o
1

Chie face of the fiat plate corresponds o Uie outer circle and those
of the two parallel walls to the inner circle, and the various points are

transformed as follows :
A=¢"; B=¢"; A= e B =0,
H= qe“%; H = qe'l:(Zﬂ’.—(‘g) .

If, further, we express u and p in terms of central angles in the Z-plane,

we have
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Fig. 4. Z-plane.

§ 3. The conjugate complex velocity at any point in the z-plane
is obtained simply by differentiating f with respect to z. If we denote

it by v;, we have

V= Vp— Wy = Af .

dz

Let jv;| be the absolute magnitude of the velocity of the tuid
element at any point and @ be the angle which the direction of velocity

at that point makes with the positive direction of the gz-axis.

Then, since v = |v| e, putting

2=0+ilog|nl, (10)

we have

3;? = ¢-iC, (1)
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The direction of the fluid velocity at every point on the plate as
well as on the two parallel walls being known, the real part of the
function @ is given from the beginning. Hence, in the Z-plane, the
real part of £, which is now considered to be expressed as a function
of Z, is defined for every point on the outer and inner circles of the
ring region.

Thus, our next problem is to find an analytic function £ (Z), which
is everywhere regular in the ring region and whose real part on the
bounding circles assumes the prescribed values.

According to H. VicraT,® an analytic function f(Z), which is
everywhere regular in the annular region in the Z-plane bounded by
two concentric circles of radii 1 and q[ = exp(%fvri)<1](2)and whose
real part on the outer circle, expressed as a function of the central
angle @ in the Z-plane, is given by @ () and that on the inner circle
by ¥(6), is expressed, in general, in the form:

27

12) = 20 [ @ 2 10g Z—210)do
AZ) 2 (;-\ir og gy

2%
e O g 7L ;
“ fw(e)cg(w log 7~ 6)d6+zC, (12)

0

where @ (@+27) = @(0) and ¥ (0+27) = ¥(F) and C is an arbitrary
real constant to be determined by some boundary condition in each

problem, and in addition we have as the condition for uniformity :

j‘n(l)(ﬁ)dﬁ = fmlﬁ((?)de . (13)

Thus, if we designate by ¢ () the angle which the direction of the

flow along the face of the plate makes with the positive direction of

(1) See, for example : IH. VILLAT, Lecons sur 'hydrodynamique. (1929), 12—20.
(2) We assume here also that w; >0 and w;/7> 0.
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the z-axis, expressed as a function of the central angle 6 in the Z-
plane, and by ¥ (9) the corresponding function for the two parallel

walls, we have, applying Vicrat’s formula just referred to,

27
QZ) = v ¢e(ﬂwgz—ﬁwd0
2) mjof()cwo. W)

oy fgy(g)@( 1 Jog Z — 21 H)dﬂ-i-’tc (14)

with the condition (13).

However, since the flow along the walls makes a zero angle with
the positive direction of the gz-axis, ¥ (@) is zero for all values of 9

and consequently we have from (13),

27
f¢@w=o,
0

or, remembering that if we denote by & the acute angle between the
plate and the y-axis, we have @(9)= —%w—{—B for 0,<0<6:,
ww%:;W%ﬂHﬂ<9<@,W@:~;w;8ﬁnHﬁm/:r*ﬂ
and @(0) = %-n-+ 8 for 27—6,< 0 < 27 + 64, as can readily be seen

irom gs. 1 oand 4, we get

0, 2x—0, 2n+404
J(~%+8>d9+f< +8)d0+f <~~, +8>d0+2[_0(1 ) =0,

from which we obtain

O+ 0y = m—28 = 28, (15)

where 8 is the angle of attack of the plate.
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In the next place, we get from (14),

27
oz) = f w(e)c(% log Z—%L6>d0+i0,
4

and taking account of the value of @(d) given above and carrying out

the integration, we arrive at the result that

1 T

o(ff’_l log Z— ! 94—2w.)

2Z) = iC—-1|slog
@

v

o—<—‘fi log Z —ﬂm)
w

2
{a'/ o1 1ogz-ﬂeg>} a(ﬁlogZ—ﬂ64)a(-,“£1ogz—ﬂe4~zw,>
o v T aT

ar 7 .
+—lo il tm

S a0 (s )

2

Putting

(16)

[
Sy = w1+w3—~—94 s
T

we express X as a function of s, with the aid of (8), and then we

simplify it by means of the formulae :

ol + 20,) = —e ) o) | (a=1, 2, 3) .

We thus have

2 — (e 2 — o) T 0(3“83)0(3—84)
e C xp[w(’hs 75 ;)(2 +8>+2?738] o) ols tp) (17)

C, being a constant. () is evidently connected with C, so that for the

present it is also arbitrary.
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Also, the expression for df/ds can be put in the form:

Af _ Aty ') (o) VPals+p)als—p) _
ds T #)— #(w) l a(p) J a(s+v) a(s—v)

(18)

Thus, we get finally, by combining (11), (17) and (18), the
expression for dz/ds, namely :

dz _ dz df eio_@

ds df ds ds

= —C exp [%(m S—1 wl)(fzi + 8) + 27 s] sz;-si)) c;((«‘;:i-i)) , (19)

where C’ is connected with C; as follows:

C/: _C‘!fl'*‘\h O'(ZV) .
! T oy +,u) a’(v—p)

(20)

§4. Next, we must integrate the expression for dz/ds. We put

ng = F(s), (21)
where
=T

The addition formulac for the periodic functions give
F(s+2w) = F(s),
} (23)

Fls+2w) = exp|2i(l=+8) [F)

and hence F'(s) is an elliptic function of the second kind with simple
poles at s = + . It can, therefore, be split up into simple elements by

introducing a function A (s) where

(1) Tt can easily be shown that this function has a simple pole at 8 = 0 and also has
exactly the same pericdicity property as the function F(s).
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o[s 2:1( . + 8)] ei.gL(%“La)S
o)

aq(o)i%[i—ﬁ]

2 wi T

=T : (24)

ol 2]

and as a result of this the function F(s) can be integrated.

A(s) = —

The law for the decomposition of FY(s) is
Fg) = C,A(s—v)+C_, A(s+1), (25)

where C, and C_, are the residues of F'(s) at the poles +v and —p

respectively. We find, from (22), that

272 vzﬂ

o o fo@)P _ [7e
L2

i [94(0) ]20'(21)) ( Ot amdt

wl

b

Hq — 62) 04— 92)

(26)
e L@ e (e s ] |
. +C [‘94(0)]20(21.») 0\1)[277-2 (9 +65+ 470+ o >] |
. 6?""‘62 Os+ 0s
9( 29T ) ( 2qr >

Now, we have to determine the hitherto arbitrary constant C’ in
such a way that the function df/dz given by (11), together with (17)
and (20), may satisfy the conditions at infinity. Since we have assumed
that at infinity upstream H as well as at infinity downstream H’ the
fluid flows with the constant velocity U parallel to the channel walls,
i.e. parallel to the g-axis in the positive direction, the conditions at

infinity can be written in the forms:
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%)H: U, <g§)ﬁ'= U. (27)

Remembering that H corresponds to the point s =y in the s-plane
and also H’ to the point s = —yp, and carrying out some calculations,

we get, from the first condition in (27),

1

c

e 9[; 51) a](; exp [ﬁzl;“g(eswﬂ A4S+ 2”2;2)]

W]

% 194(93_—@> 194(@;92> , | (28)
27T

2T

while, from the second condition in (27) we have -

I T [0 (w2) TP [’71‘(01 (32 2732 ]
L= lolesd + G4 4O+
C D [0:0) Polzy) VLo \BTHTATOT =5 )
x &4(03-}- 62) 194(64 +€2> . (29)
2T 2T '

Thus, we have obtained the two expressions for the unique constant

C’ and consequently there must necessarily exist a relation:

94 (?3 :Qz) 194(@*_?_@) — 5, (63 + 92) &,(.94 + HQ) (30)

2T 2T 29T 2T

between the quantities @,, ¢5 and ¢,.

It is evident from the foregoing analysis that if we use the constant
C’ thus uniquely determined, all the boundary conditions of the problem

are fulfilled.

Combining (26) with (28) and (29), we have

Cv:“l“)", C—v: —2; (31)
T aT
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and by inserting these in (25), the function "F(s) can be put in the quite

simple form, namely:
_D
F(s)=""| A=) —A(s+4) | . (32)

Now, when a complex quantity v satisfies the relation:

a(z)<e9(2) <a (),

in which 7 = w3/w; and R (2) means ‘‘the real part of z’’, we have the

expansion formula:(®

31(0)I3(v +w)
4md3(v) 91 (w)

o5}

_ 1 +z( g ,, sin (2 nv +w) —q* sin w(2nv—w)
4sinmw 5o 1—2¢%" cos 2 wmw + q*"

(33)

Thus, if a complex quantity p satisfies the relation:

(<Gl z-TDaG) o

the function A(p) defined as:

)]
]

/ 2R
1 1(0) 192[ 20, ;]
ol 2]
2wy T

(1) J. TANNERY et J. MoLK, Eléments de Ja théorie des fonctions elliptiques. 4 (1902)

Ap) =

104.
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can be expanded in the following form:
J1(o z?[ lj——'—r——-l—< +8)] =
1 1(0) 32(»1 > - .(2+a)
B Er s K =]
2wy 2
2m ei(§+a)

1
1 |: 4 sin (1 + 8)
2

s (1)
n=l 1 —2¢* cos 2(1';-%- 8)—{— q™"
2

X {sin vr[z%(z%l—— ! j T)—i(% + 8)]
— ¢*"sin w[2n<21;l ! —;T) ( + 8)] ]

(35)

J

A(p) =

When s varies from 0 to ws,

S T .
—-—— ) varies from
2&)1 2

—7/2 to 0, so that s satisfies the relation:

)Gl D)

wihch is tic sdanie iclauon as  ithat tor p i (34). Theretorg, putting
p = (s—v) and p = (s+) in the expression for A(p) consecutively and
subtracting, we get

x . il om - NI
o) i(—1)"*1 @"sin
F(S) D 2'ﬂ'e<2 > W]
T W “~ 142¢*" cos 26+ ¢**

x|z + g e ) — Z e P+ e) |, (36)

where s has been transformed to Z by means of equation (8).
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We can now integrate the differential equation (21) and express z

as a function of Z. The result is

dz ds ) dz
2= [Lds= [F) &z = - RS Z

g+l g o T
= __2_297:(%+6) z, (Z0™¢sin @1
T = n(1+2¢*"cos 28+ q*")

x [Z"(‘e’"S +@* e+ Z (e + g™ e“)] +Co, (37)
where C, is an arbitrary constant of integration.

If the breadth of the plate be denoted by 2a, we know that

Zar—2p = 2aez(%+a> , (38)

and since the points A’ and A in the Z-plane correspond to Z = ¢
and Z = ¢¥; respectively, putting Z = ¢"% and Z = €% in equation (37)

and then subtracting, we get

8D ~= Q" sin 1B sin %n(ﬁa—&)
v — [cos n— 18 —g" cose+ 8]

7 i n(1—2¢* cos 2B+q*")

(39)
where the angle of attack @ has been introduced by the relation
B= . m3.

Lastly, we see, by (37), that the co-ordinates of the mid-point of

the plate AA’ are given by

1
Zm = Z(ZA +24)

M <1 1
4D ei(%+5> © smnﬁgcos7n(6'3—64)

“~ p(1—2¢* cos2f+q*)

x | sin(n—1)8—¢* sin (n+1) B|+Co. (40)
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§5. So far we have discussed the problem in the most general
manner. From the practical standpoint, however, it is important to
consider a rather special case in which the mid-point lies on the central
line of the channel. Therefore, we shall hereafter confine ourselves to

such a special case.

When the mid-point of the plate lies on the central line of the

channel, 4 is equal to 4, and consequently we have, from (),
v="Lo. (41)
2

Putting this in (5), we get

C(,U«*‘%M)‘*C( —;—(m) =7,

and comparing this equation with the well-known relation ;4,473 =0

we easily obtain

I
Mmoo = ‘;(D]’*‘(D:} . (42)

Thus, by comparing (41) and (42) with (9) we have

6!: s

&)

(43)

Next, in the present special case the relation (30) takes the form:

,94(_93__L> 194(\@?,_;_‘_) = 194(_93_+L) 194(_‘??*+L> ,
27 4 2T 4 27 4 \2mr 4

and this relation is proved without difficulty to be satisfied by

Os—6s = . (44)
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[
N
(OS]

Thus, combining this with (15) we get the values of 6; and 6, as:

s = 23-{',3 , l ‘
) J (45)

Il

|

(3
+
ey

04

Now, since sin(—;n'zr) =0 when 7 is an even integer and also
cos (%nw) =0 if n is an odd integer, by putting (43) and (44) in (40)

we have
Zm = CO .

Hence, if we take the mid-point of the plate as the origin of the

co-ordinate axes (x, ), we have
C(] =0,

and the expression for z becomes:

w (—1)"'1g"sin (inW)
! 2

2D e"'(%*a) S

= —

s = n(1+2¢* cos 28 + ¢*)
* [ZTL(6¢5+(I2/’¢ e %) + 7oV + g eiS)J , (46)
_yntl amoo I
2D T (—1)**q sm( 2n7r>
z = ie™ e
o ot n(1—2¢* cos 28 + ¢*)

X [ Zn(e i — gt i) — Z(gi® — g2 G—iﬂ)] ’ (47)

where the angle of attack B of the plate has been introduced by the

relation ;—8 =£.
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. 1 .
Next, on putting Y1 =2, v = w1 and p = ,ij1+m3 in (18) and

(19) we get the expressions for df/ds and dz/ds in the following

if _ 2 JO/( ‘Ul> 0(221—) (8+g~+ w3>a-(s—ﬂl_w3)
o™ (=) (= )(~L+ws) s+“”)o(s %)

_UD V(%l‘)

. Jo(ﬁ;—l) _5{)<%+ w3> a(%—i— ma) ( m') (S ’

forms :

(48)
dz __ 2 T o (s—83) o (s—s8y)
2 = —C'exp [——(’118—’73 )| —+ 0 +2’733] , (49)
ds 7T < 2 > a‘(S—l-ﬂ)cr(S —f"—’>
2 2
where
S3 = (-2—_‘;\(01'*‘(03 s (%_§>wl+.w3 . (SO)

In the former, we have used the relation 2y = UD which is obtained
from (1) by putting Y = 4z, and in the latter, the value of C’ can be
found from (29), which now takes the form:

I _ ™ [0(w3”2 [’71(01 2 2 ] > ,3>
= A L (et — +-2 79 )

c D T940) Folw) P o7 (3 —4mi3+25) ( oo 4< 27
(51)
Lastly, the expression (39) for 2a assumes the following form:

20 = 8D i q* {cos (n—1)B—q™ cos(n+ I)B},

a ° n(1— 2¢** cos 28+ q*")

(52)

where 3, indicates that only the positive odd integral values of n are

to be included in the summation.
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III. Calculation of the Moment of the Force
~ about the Mid-point of the Plate.

§6. We shall now proceed to the calculation of the moment of
the fluid pressure acting on the flat plate about its mid-point, that is,
about the origin of the co-ordinate axes,® under the assumption that

the mid-point of the plate lies on the central line of the channel.

It is well-known that the moment about the origin of the co-
ordinate axes of the resultant fluid pressure acting on a cylindrical body

can be calculated, in general, by using Brasius’ formula, namely :

M=—1pn gﬁ <%>ﬂzdz ,

where M is the moment per unit length of the body and R means that
the real part of the value of the integral is taken.

In this formula, the integral must, of course, be taken round the
surface S of the body in the counter-clockwise sense as indicated above.
However, when the surface does not contain any singular point at
which the fluid vrelocity becomes infinitely large, the integral taken
round the surface can be replaced simply by that taken round any
closed contour C surrounding the body.

Further, it can be proved® without difficulty that in the calculation
of the moment of the fluid pressure acting on the body with the aid
of the above-mentioned Br.asius’ formula, we can replace the integral
taken round the surface of the body by that taken round any closed
contour surrounding it, even when the surface contains some singular

points as in the case of a flat plate with which we are dealing in the
present paper.

(1) As mentioned already, the mid-point of the plate is ‘taken as the origin of the
co-ordinate axes in the present paper.

(2) For the case of the flat plate, reference may be made to the following paper.
S. ToMOTIKA.and M. INANUMA, On the Moment of the Force acting on a Flat Plate placed

in a Stream between Two Parallel Walls. Proc. Phys.-Math. Soc., Jaran, [3], 14 (1932),
543—560.

This document is provided by JAXA.



370 ' S. Tomotika.

Thus, if we designate by C an arbitrary closed contour surrounding
the plate under consideration, the moment of the force exerting on it

can be calculated by the formula:

M= —%;:S)%f(-%)zzdz . | (53)

Now, we have in general

S e = [N o ean == GG

Consequently, since the procedure of encircling the plate in the z-plane
in the counter-clockwise sense is equivalent to that of encircling the

inner circle in the Z-plane in the clockwise sense, we have

M= Wf"[ ﬁ(ﬁg <dz> dzz]’ (54

where & is a closed curve in the ring region in the Z-plane, which

corresponds to the curve C in the z-plane.

In this way, we can calculate the required moment by the formula

(s4), if we evaluate the integral in it.

§7. Before proceeding to the cvaluation of the integral in (54),

we shall examine the property of the function (df [ ds)* (ds | dz)-

From (48) and (49) we have

( dfy ds _ o exp[—”; (1 s—ms wl)(%+3>-2’733]

\ds/ dz
[o(S + e L4 wa) (S —*%-wa)]z

2 (s9)

( s+ —2i) (s—» ) ols—s3) o (s —89)
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where we put

o e (UDyf o) A )
K o) oo Loz rm)

for the sake of simplicity.

(56)

This new constant C’’ can however be written in another simple
form, if we substitute the value for C’ given by (50) and then simplify

with the aid of the various well-known formulae for elliptic functions
such as:

D) — ) = _ou+v)olu—ov)

[c@)o@)
olzu) = ='W o) ]*.

The result is

UZD ‘T(wl) ex [7710)1/- 2. ] { 8 \
o = 11 2. 02 Sl -
T [ l94(0) ]2 [ oo+ w3) JZ P 2 772 (3 —4mB+ 2f) (277) 4

(57)
Next, if we put

G(s) = C” cxp[ '—r\(mb—’?xw;)( + 8)—07735]

T

|7(s + L G il
* - (58)
o8 + (‘;‘) 0'( —{l) a(s—s3) a(s—sy)

we have

(L)L — 6. (59)

The function G (s) thus defined has simple poles at the four points

$=wi/2, —w/2, 83 and s, and it can readily be shown that
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G(s+ 2w;) = G(s),
} (60)

Gs+2w8) = exp| — 2i(57+8) |G(S) .

Therefore, G(s) is an elliptic function of the second kind, and if

we introduce a function B(s) defined as:

[S + 2_(0[(2 + 8)] 2/}‘ T s

()]

which has a simple pole at s = 0 and has exactly the same periodicity

B(s) =

,  (61)

property as the function G (s), we can decompose G (s) in the form:
G(s) = (s—v>+ R: (s+— +Rs Bs—s9) + R B(s—s)) , (62)

in which R, Rs, Rs and R, denote the residues of G (s) at its simple

poles /2, —af2, 83 and s, respectively.

After some tedious calculations, the values of these residues are

found to be as follows:

Rl = U*D ’
i (63)
t=-2E,
UD [29 <§W ) ‘92(#)]
N X O EX N 63)

ol ()T

= [ 93(0) 94(0) 1 -
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Thus we have
Ry = —R,, Rs= —Ry,

and equation (62) becomes:

G)= Fa| B(s— )~ B(s + 2 )| + Ra{ Bls—s9)— Bls—s)|. (69

§8. We are now able to evaluate the integral in the formula (54).

(L&) =aon

has, in the contour T3, only one simple pole at 7 = 0 and if we denote

The integrand:

by IRy the residue of this function at the said simple pole, we have,

by Cauchy’s theorem,

2) Cas a7 e (65)
and substituting this in (54) we get

M= —porR[Re]. (66)

1L 1 casly  seen, however, that ffy 1> equai to the constant teri

in the expansion of the function G(s) z in a power series of Z.

The expansion for z being already known, we have now to expand

G(s) in a power series of Z.

When a complex quantity p satisfies the relation:

Sz D) @
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in which + = w3/ w; as before, the function B(p), namely :

[p+2—wl< +8)] 5)79
=]

1 z9{(o)19,[ 27:“ +i<f—+ 8>]
ol 2o L(Z )]

can be expanded, with the aid of the formula (33), in the form:

79;(0)03[ p__ 1T 1( +8>]

I 2 w1

a2 )
2wy 2 mN\2

B(p) =

B(p) =

_2m e wlir
@1 4sin<1+8>
2

+ o (_I)'nqn
= 1+ 2¢" cos26+q

41

(

! r 7 I} HE N : —— N
X s 77[2)&&' e )7 k -4 o)]
l 2m1 . 2 N2

" sinar [2’)@( P _I_DLJ,)_,L(T + 5)]]] .
2wy 2 T\ 2 I

(68)

We see easily that when s varies from O to w3, s—w;/2 and S+ w,/2

satisfy the inequalities:
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() hen().

)= D e )

respectively and since these relations are exactly the same as that for
p given in {67), both functions B(s———%) and B(s +i2’L) can be
expanded with the aid of (68) and if we transform s to Z by means of
(8) and introduce the angle of attack B by the relation %—-8 =B, we

have

B(s ~£’L) —B(s +ﬂ)
2 2

= (—1)"sin (*;*'nvr‘)qnf

=_£’T_eiﬁz

w1 i 1—2¢* cos 2B+ ¢*

Z'n(eiﬁ___q?ne-iﬁ)_*_Z—n(e—i."_q?nei{‘)} .
(69)

In the next place, when p satisfies the relation:

—R (_) <2 (- %[27; + T )< (7) , (70)

the function B (p) can be expanded in the form:

91(0)Ss [ Do ITs (‘__ + B>J

B(p) — _14 2w)

SEEa o
2w 2 T N2
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27 (?4— a)i ) I
“1 [4 sin (1 + 5)
2

ad (_ I)nqn
4 14 2¢*™ cos 28+ ¢*"

x {sin 77-[271, 2?:’1—!- ! —Z T) ( +3>]

—q* sin'n'[2n :%1 I,i?’) <_+ 8)]}] ,.

(71)

+

and since s—s3 and s—s4 satisfy the relations:

x() < (it <n(s).

and

= ()< T en(s).

respectively, which are the same relations as that for p in (7o), putting
p = s—s3 and p = s—s; in the expression (71) for B(p) consecutively

and subtracting, wo gt

B(s—sj)—B(s—s4)

—inm (L+ £
1717:(2 +“)

. ’L7r ot {1—(—1)"} q" [Zn( i n ,—ib
= e —qre e
,Zf‘ 1—2¢% cos 28+ ¢** | ¢ 1 )

__Z_"(qne"iﬁ__qfineiﬁ)einﬁ (%_} 7:1) } ,

(72)

This document is provided by JAXA.



Moment of Force acting on a Plate between Parallel Walls. 383

where s has been transformed to Z with the aid of (8) as before and

also (50) has been taken into account.

§ 9. In the preceding paragraph we have obtained the series for

{B(S—%)—B(S’*‘(;)—l)} and {B(s—83)-B(s—s4)}

and they are given by (69) and (72) respectively. Hence, by inserting
them in the right-hand side of (64) we get a series expanded in integral

powers of Z for the function G(s). The result is:

< (—1)"sin (%')’m‘)q"
Gl) = —RZT oS,
w1 5 1—2¢* cos 2B+

x {Zn(e'i.’i__ane~iB) _*_Z-n(e—iﬂ_aneiﬂ)}

. oo
T e 1—(—1D)*) g™
+R3 € if‘Z . 215 )Jq in
w1 = 1—2q" cos2B+q

. 1 ®
—-mnmm (-2—+:)

x {Z"(q“”e”‘—q"e‘i“)e
. . inm (L+ 2
—Z ™(g"e " —g*"e?)e () } ) (73)

where the values of R; and R; are given by (63) and (63’) respectively.

Then, multiplying the power series for G(s) just obtained by that
for z given in (47) and inserting the values for R, and Ry given by

(63) and (63’) respectively, we get, after some reductions,
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.o 1 onf. __ dn

- sUtDE o 51n<2nm->q (1—q*)
G(s)z = “=—= sin 288 E 5 oy
T, = n(1—2¢*" cos 28+ ¢*")

L 2UD? [’91 (f;)‘y (2 ]2 -

(A

w1 [ 193(0)&4(0) ]2

. I
{1—(—1)" sm(;nm—)q%

x D1 -
,,,,Z:;* n(1—2¢%* cos 23+ ¢*")?
~inn (L’+L)

% {(q-'neﬁﬁ_zq'n_}_q&ne—?iﬂ)e

. . Ly dnm (L 2
+ (qne—Zzﬁ_zqdn + q5ne‘21.') e ( 9 + ,x) }
+ (positive and negative integral powers of Z). (74)

The constant term in this series is the required residue Ry, as mentioned
already, and if we simplify the various terms by using the obvious
results that sin?(nmz/2)= 1 for all odd integral values of n and
sin(nw/2) =0, 1—(—1)» =0 for all even intcgral values of n, we

have the result that

272 >, 2n(« __ An
RongDsinZBZ ¢ (1—q™)
Ty 1° n(1—2¢* cos 28+ ¢*")?
_ , -
(L) 3)]
L AU l ! o ) N\ o
IO Lr f’(’;/,(( )} 1i’4(\)) ’}'7
x qa"

o n(1—29*cos 2B+ q*")?
X {[—q‘” sin (m—1)B+q" {2sin(n+1)8— sin(n—3)8 }
+q3;‘ {2sin(n-—1)B8— sin(n+3)B8 ) —q""sin (n+ I)B] _

+ (a purely imaginary constant)} , (73)
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where S, indicates, as before, that only the positive odd integral values
of n are to be included in the summation, and taking the real part of

this quantity we obtain

SU ?n(I q4n)
RR] = 2
1[ [] o) Sln B ZJO n(l_')qszOS 28+q4n)2

()]

7w [ J:(0) J4(0) TP

o0
2n
x Z g 4 )z
[} n\<

o ’}’L(I —ZQ‘” cos2B+q

x[’ “msin(n—1)B+¢" (2 sin(n+1)— sin (n—3)3}

+ @ {2 sin (n—1)8— sin (n+3)8) —¢™ sin (n +Y1)B] :
(76)

Finally, putting this in (66) we get the expression for the required
moment M of the fluid pressure acting on the plate under consideration.

The result is as follows:

2n _4n
M:_SPUD2 °PZ - (i—q*)

T sin ]?(I . ) 5 4/3+ 4IL)2
™ =1 2q7Ucos q

U ['9‘ (B) ﬁz([i ﬂz

= [ 93(0) 84(0) T

o
— 2n
x Z T
o 9%

~ 7/1,(1 __2q-n cos 26 + q4u);:

x [-_ "sin (n—1)B+¢" {2 sin (n+ 1)8—sin (n—3)8}

+¢*{2sin (n—1)B—sin (n+3)B) —¢" sin (n+ I)B] ,

(77)
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which is exactly the same expression as that obtained for the moment

in the previous paper, as we should have expected.

We see readily from this result that the moment is always negative
and this shows, as we should naturally expect, that the fluid pressure
acting on the plate has the effect of rotating it in the clockwise sense;
in other words, the fluid pressure tends to set the plate broadside on

to the stream.

§10. Now, it is expected that the limiting form of the expression
for M given by (77) when the breadth D of the channel becomes
infinitely large would give the well-known expression for the moment
about the mid-point of the fluid pressure acting on a flat plate in an
unbounded stream. In the present paragraph, we shall calculate the
said limiting form.

We see from (52) that, when D tends to infinity,

20 3q (

L — =
3

78)

-]

™

and by making use of the g-expansion formulae for various elliptic

functions we find that as ) —oo

y

spUD?

M— —=te = gfsin 283 . (79)
w
Thus, i we v

limM = M, , (80)

D>

we get finally

M, = — Lapa?U?sin 283 . (81)

2

This is the well-known expression for the moment about the mid-point

of a plate of the fluid pressure exerting on that plate, which is placed
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in an unbounded stream of an incompressible perfect fluid, and in this
way we can verify that our expression (77) for the moment of the force
acting on the plate in the channel gives the correct limiting value when

the walls of the channel remove to infinity.

In order to see clearly how the walls of the channel affect the
moment of the force acting on the plate, it is convenient to discuss the

magnitude of the ratio M/M,.

We have, from (77) and (81),

M _ 64 ( D )Zi* g (1—q'")

M, 7 \2a/ =° n(1 —2¢*" cos 28+ q*")?

g )

2 sin2B [ J3(0) J4(0) I

T 2a

18

qQ'rL
= ° n(1—2q% cos 28+ ¢*")*

x

x [—q'” sin(n—1)B+q" {2 sin (n+ 1)8— sin (n—3)A3)}

+¢*{2sin (n—1)B— sin (n+ 3)B) —¢*"sin (n+ 1),8] ,
(82)

and using this together with (52) we can calculate the values of M/M,

for varwous values ol 2a/l and G to any required degree o accuracy.

IV. Approximate Expressions for the Moment.
Numerical Discussions.

§11. Although the values of M/M, for various values of 2a/D
and B can be calculated, as mentioned just in the above, by making

use of (52) and (82) to any required degree of accuracy, it may not be
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useless to derive here approximate expressions for M/M, in terms of
2a/D and 8. Without entering into the detailed tedious calculations,

we shall now write down the results only.

When the ratio 2a/D is less than unity and especially when it is
smaller than 1/2, as in the practically important cases,? the ratio MM,
can be expressed as a power series of 2¢/D, and if we neglect powers

of 2a/D greater than the sixth, the approximate expression for M/M,

becomes:
2 2
Mo_ T (142 sinzﬁ)(—zg’-)
Mo 48 D
4 4
— T (11—106 sin2,6’——66sin4,8)(39->. (83)
23040 D

Also, if we retain the sixth power of 2a/D but neglect powers

of it greater than the eighth, we get

M a . 5 (2@)2
=1+ T (1+2sin2 ) 2L
1 (I sin ) D

M, 48
'7T4 . . - 4 20, 4
— (11— 106 sin® B—66 sin? B) (——)
23040 D
75 - ) . 6 2a \°
+- ——— - (327—3078sin’ B+ 10800 sin’ £+ 3504 sin B)(—— >
15482880 D

(84)

Now, when ¢ is equal to 0-2 we have 2q/D = 0-5 nearly and also
when ¢ = 0-3 the ratio 2a/D becomes equal to 0-75 approximately in

the case where 8 = 45°, as shown in the table given later. Thus, if

(1) TIn acoustical experiments with a RAYLEIGH disc, the ratio of the diameter (2a) of
the disc to that (D) of a tube, in which the disc is suspended, is usually smaller than 1/2.
This remark is due to Dr. K. SATS.
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we confine ourselves to the practically important cases in which 2q/D

is fairly smaller than unity, the ratio M/M, can be expressed in a rapidly

convergent power series of ¢ in the form:

M _ I +i(1 + 2 sin? B)q2+i(9+ 106 sin® B— 14 sin* B) ¢*
M, 3 45

+~3?(64o+42816 sin? 8+ 8832 sin? B+ 4006 sin® B) ¢F + - -+ - ,
94

(8s)

and it is not difficult to see from this result that in cases under

consideration the ratio M/M, is not less than unity, that is,

M, (86)

=

Thus, we can say that in the practically important cases mentioned
above, there is always more or less increase in the moment of the
force acting on the plate in the channel due to the presence of the
channel walls, whatever the value of the angle of attack of the plate 8
may be.

To show this more clearly, we shall here calculate numerically the
values of M/M, for various values of 2a/D in the case in which 8 = 45°,
since the result for this case may possibly be applied, with some
modifications, to the RavLeigi disc problem. In this case, we have,
from (83),

Mo_ +772(2a>2+ ;,1,31",,(,2@)"
M, 24\ D 5120\ D

2 4
= 140-41 123(—‘%“—) +o-24733<2—g~> , 87)

when we neglect powers of 2a/D greater than the sixth, while if we

retain the sixth power of 2a/D, we have, from (84),
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+ f@.?f.(ﬁ)“
860160 D

6 :
= 1+o-41123<‘;) ) + o 24733(D ) +o- 11959(?). (88)

390

g 2 - 4 4
m——-w——(ﬁ 4 137 3&)
My  24\D/ g5120\D

The numerical values of M/M, for the case when B = 45° are
tabulated in the annexed table. In this table, the values of 2a/D shown
in the second column have been calculated by (52), and the third column
gives the values of M/M, calculated by means of the exact expression
(82), putting B = 45° Also, the fourth column with the heading
(M|M,); gives the values of M|M, calculated by the approx1mate
formula (87),
those calculated by the approximate formula (88).

"while the last column with the headmg (M/Mo)u gives

We see from this
table that even the first formula (87) gives a fairly good approximation,
especially when 2a/D = 0-5. ‘

TaBLe. (8 = 45°)
2q M ¢ M N

9 D Fo ( M, )1 ( M, )II
00035 0-012732 1-000067 1-000067 1-000067
0-050 0-12732 1-00673 1-00673 1-00673
0-075 0-19098 1-01533 1-01533 1-01533
0100 0-25462 1-02773 1-02770 1-02773
0-150 0-38174 1-06558 1-06518 1-05555
0:200 0-50832 1-12516 1-12277 1-12433
0-300 | 0-75659 1-34841 1-31044 1-33885

e

We see also that in the present case the value of M/M, is greater

than unity, as in the more general case. Fig. 5 shows the approximate

curve of M/M, drawn against the ratio 2a/D, when B = 45°.

It is usual that in acoustical experiments with a RAYLEIGH disc,
the disc is suspended in a tube with circular section in such a way

that its centre lies on the axis of the tube and its angle of attack is 45°.
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Fig. 5. (B = 45°)

The flow past the RavLEIGH disc is,

y

of course, not two-dimensional,
and in reality the compressibility as well as the viscosity of the air,
both of which have been neglected in this paper, may perhaps have
appreciable effects upon the moment of the force acting on the RavLEIGH
disc, especially when the diameter of the disc is comparable with that

of the tube, in which the disc is suspended.

Therefore, it may not be appropriate to apply the results obtained
in the present paper directly to the RavLEIGH disc problem. However,
we may anticipate from our results that the tendency of variation of
the moment of the force acting on the RavLEiGH disc with respect to
the ratio of its diameter to that of the tube will be similar to that for
the plate in the two-dimensional flow, which has been discussed in this
paper, and consequently there will be more or less increase of the
moment of the force acting on the disc due to the presence of the
wall of the tube.
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This anticipation can only be ascertained by experiments, and we
hope such experiments will be undertaken by some one in the near
future.®

Further, we can calculate, in a similar manner, the values of
the ratio M/M, for various cases in which the angle of attack g
takes different values. We shall here show, as an addendum, only
approximate curves for the said ratio M/M, drawn against the ratio
2a/D in five cases where B is equal to 10°, 20°, 30°, 45°, and 60°

respectively (Fig. 6).

M
Mo
150
/ FFGd
140
/g=45°
130
/
120 L p=30°
p=3d
=/0°
2a
100! D
o 02 04 06 08
Yig. €.

We see from this figure that the larger the value of @ is, the

greater is the rate of increase of the ratio M/M, with 2a/D.

(1) It appears that Dr. K. SAT6 in this Institute has the intention of performing

experiments on such lines in the near future.
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V. Summary.

§12. In the present paper, we have calculated again, by using the
well-known Brasws’ formula, the moment M of the force acting on a
flat plate about its mid-point, which is placed obliquely in a steady
irrotational continuous flow of an incompressible perfect fiuid bounded
by two parallel plane walls, under the supposition that the mid-point
of the plate lies on the central line of the channel. The method of
analysis used in this paper was slightly different from that employed
in my previous paper, but the result obtained was, of course, the same.

Considering only the practically important cases in which the ratio
of the breadth 2q of the plate to the width D of the channel is fairly
smaller than unity, we have arrived at the result that there is always
an increase of the moment of the force due to the presence of the
channel walls.

Approximate expressions for the moment have been given as power
series of 2a@/D, retaining however only the first two or three important
terms. Numerical calculations of the values of M/M; have been carried
out for the case in which 8 is equal to 45°, where M, is the moment
of the force acting on a flat plate with the same breadth 2q placed in
an unlimited stream, and the approximate curve for M/M, was drawn
against the ratio 2a/D.

Then, basing upon our results, we have anticipated the tendency
of variation of the moment of the force exerting on a RavLEiGH disc
with the ratio of its diameter to that of a tube, in which the disc is
suspended obliquely in such a way that its angle of attack is equal
to 45°.

Lastly, as an addendum, approximate curves for M/M, drawn
against 2a/D were shown for the cases in which g8 is equal to 10°, 20°,

30°, 45° and 60° respectively.
January, 1933.
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