宇宙開発事業団技術報告

K I S S \＆HOPブースター近未来実証モデル試案

1995 年3月

宇宙開発事業団技術報告

NASDA Technical Memorandum

K I S S \＆HOPブースター近未来実証モデル試案 KISS \＆HOP reusable booster near term draft

青木 宏
Aoki，Hiroshi

技術研究本部システム技術研究部未来宇宙システム研究室
Future Space Systems Laboratory，Systems Engineering Department， Office of Research and Development

宇 宙 開 発 事 業 団

National Space Development Agency of Japan

目 次

まえがき
将来宇宙輸送系の展望 1
再使用ブースタ近未来実証モデル 3
セールスポイント 13
検討に用いた前提条件 14
ブースタ用LE－7作動モードの検討 16
再使用ブースタ開発ステップの検討 19
技術開発要素 21
宇宙輸送系成長のシナリオ（案） 23
まとめ 29

まえがき

H－IIロケットの運用も軌道に乗りつつある現在，我が国宇宙輸送系の次ズ テップを検討すべき時期に至っている。あるいは生き残りの選択肢を真剣に検討する時期と言い直すべきかもしれない。
すべての宇宙活動にとつて，高い輸送費用は切実な制約となっており，これ をいかに低減できるかが最大の課題となる。輸送費用を現在の1／5に抑え ることができれば，新規の輸送需要が喚起されると言ったリポートも見られ るが，いきなりこの値を達成するには無理があり，達成に向かって踏み出す方向あるいは，シナリオを設定することが重要と考える。以上の観点から，再使用型輸送概念の一案を検討した。

将来宇宙輸送系の展望

宇宙活動からの要求に対し，輸送概念の絞り込みを行っていく過程の一例を以下に示した。

- 宇宙活動
- 輸送系が制約
\downarrow
- 制約が緩和されれば，•太陽発電ステーション
- 惑星探査
- 月資源採取
- 小惑星軌道変換 •地球衛星化
- 火星環境改造

とMISSIONは無限

今は，良くとられて空想。悪く取られて大風呂敷。
－最大の制約 ；地上 \rightarrow LEO（LOH EARTH ORBIT）
（EX．H－11静止36，000km MISSION
高度 200 km までに推進薬の 90% を消費）
；回収 \rightarrow HOPE で対応（どち．らかと言うとPAYLOAD）

- 地上 \downarrow LEO の
- 能率化
- 柔軟性 つまり様々なMISSION 要求（性能，コスト，打ち上げ時期） に対し，常に＂YES＂と言える
\downarrow
－・と忘れてならない技術的発展性（つまり，研究者 直面白いこと）
技術者
納税 者
\downarrow
－まず，低コスト化に焦点を当てると1）大量輸送
が考えられる方法 2）大量生産 3）再使用化
1）2）でわが国の即応は困難 それに何より技術的先進性に乏しい
－そこで，再使用化 ；再生•保守が手軽にでをれば，能率化•柔軟性も向上 また，将来性む大
米エンジン技術はSSME以降停滞していると考えられた。 ところが彼らは，保守の苦労の中，再使用設計のポイ ント・再使用可否の診断技術などを着々と習得して おり，LE－7で肉迫した技術格差が再び拡大している。
－安心して再使用するために信頼性•保全性向上必須＝重くて，かつ低性能再使用と高性能の二鬼を追ったのがスペースシャトル。 その結果，再生コスト高腾 \rightarrow 再使用のメリット生かせず
－従って，性能の感度が高い上段に再使用化を適用することは得策でない \downarrow
－打ち上げブースタ段の再使用化 \rightarrow 寿命切れ直前に使い捨てモードの運用可使い捨てMISSIONで偵却できれば，複数回 の再使用MISSIONのブースタの経費：0 \downarrow
- 再生•保守コストおよび時間：低減 がポイント \rightarrow 射場に直接帰逗
- 有翼飛翔体の水平帰還：困難（射場にRUNWAY 必要） \downarrow
－垂直軟着陸の可能性（EX．月着陸船・デルタクリッパ：DC－Xの着地精度 $\phi 12 \mathrm{~m}$ ） \downarrow
－再使用MISSIONの PAYLOAD を現状のLEO 10 ton 程度に固定既開発ハードゥェアを極力使用
\downarrow
－LOX／LH2 ブースタ 再使用のだめ80－9 O\％POWER で運用 （LE－7：苦労した分 技術的に枯れている） \downarrow
－LIFT－OFF推力要求から LE－7 最低 3 基必要 \downarrow
－垂直軟着陸のため，底面形状は三角形。制御上，辺を長くしたい。 \rightarrow 結合構造•剛性：問題 \downarrow
－帰還ママーバのため，揚力面を装備できないか（検討結果不要） \downarrow
－コア機体の配置：重心位置およびブースタ1基FAIL時のカバーを考慮して とりあえず，別紙の通り。
－要侵用ミッション
地球低乾道（LE0500Km）－投入能力 约 $9 \mathrm{t} \circ \mathrm{n}$

ブースタ回収（秀直乾着陸）
－娔い拾てミッション
同上投入能力 約 $15 \mathrm{t} \circ \mathrm{n}$

	豆傎用	住い垥てモード
LEO500Kの投入能力全俑重量 プースタ措力（at SEA）	$\begin{aligned} & \text { 約 } 9 \mathrm{t} \circ \mathrm{n} \\ & 227 \mathrm{t} \circ \mathrm{n} \\ & 75 \operatorname{tonf} \quad * 3 \underline{\#} \end{aligned}$	$\begin{aligned} & \text { 約 } 15 \mathrm{t} \circ \mathrm{n} \\ & 265 \mathrm{t} \circ \mathrm{n} \\ & 86 \operatorname{ton} \mathrm{f} \end{aligned} \mathrm{*} \text { 3甘基 }$

$\mathrm{H}-\Delta$ 再使用ブースタ

－軟着陸重量 27 ton以下
推進學重量～0（保安距離：短）
－LE－7expanderモードまたは， SCアイドルモードで降下
推力要求 $0 \sim 15$ tonf 可変

- 伸展降着装置
- 低速•低高度から帰還

特殊な空力整形•熱防御不要
－再使用ミッションでは，
タンク70\％充填
LE－7：85\％推力
－使い捨てミッションでは， タンク100\％充填
LE－7：100\％推力
 10 m

コスト：AVIO含み，180億円以下

SRB2本で30億円 \rightarrow 再使用6回でコストバランス寿命切れ直前に使い捨てミッション（ $~$ V V I O ，降着装置削除）

$A V-8 B$（垂直離着陸機）
$8.6 \operatorname{ton}$（VTOL時）
14.1 ton（STOL時） エンジン推力 9．8tonf＊1基

高使用ブースタ飛行機念

$H-1 I$ ROCKET + BOOSTER:3 ALT $=300 \mathrm{KH}$
$T H=75: 3 \mathrm{KON} P / L=9000.0 \mathrm{KG}$

$\mathrm{H}-\Delta$ 使い捨てモード

ただし，プースタ分離直前の
加速度が4Gと高く，エンジン
スロットリングの必要あり。

1）垂直軟着陸：現射場利用の可能性

当面，洋上•浮きドッグ安全性を実証，後 射場軟着

2）再使用技術の萑得技術的発展性•S STO（SINGLE STAGE TO ORBIT）

3）再使用モード／使い捨てモード 兼用 \rightarrow 再使用モードで LE0 約 10 ton使い捨てモードで LEO 約 15ton ブースタ本数増で成長性大

4）低コスト：再使用MISSION6回で 現H－IIとコストバランス

5）現有バードゥェアを極力利用

開発要素 LE－7再使用化・スロットル帰還•垂直軟着陸誘導制御着地点安全管理 他

6 ）開発の確実さ：当面，使い捨てブースタとして開発使い捨てMISSIONでブースタの洋上垂直軟着水を実証再使用運用を開始

狙い

－年間 $2 \sim 3$ 機の実用衛星打ち上げ（設計•製作）受注おょび年間1機の技術試験衛星開発•打ち上げを確保

- 2～3年で再使用ブースタを償却
- 再使用と生産機数増の効果により，さらにコストダゥン \rightarrow 受注増
- 工場生産•打ち上げ作業 年平均化•安定綷持可能
：資金余裕を新規開発に振り向ける
（1）要求ペィロードは当面，H－II程度とする。ただし，成長性があり， HOPE搭載可能なこと。また，コストメリットが明かな場合には，これ を下回ることも許容する。
（2）既存技術およびハードゥェアを極力応用して，システムをまとめる。
（3）生産設備：工場は，現状規模とする。（タンク直径は4m以内等）
（4）射場は 種子島現射場改修の䡉囲内，回収位置は種子島周辺，最終的に は射点近傍と仮定する。ただし，打ち上げ期間に制約はないものとする。
（5）当面，保安距離は考慮しない。
（6）飛行安全については，今後調整。
（7）打ち上ば機コストが，アリアンIVの90億円程度になれば受注が見込ま れる方のと考え，これをコスト目標とする。

1）再使用 MISSION

メンテナンス最小で再使用を図るため，離昇時にも80－90\％POWER
（海面上推力•約 75 tonf）で使うことを前提とする。

- その結果，全離昇推力は（ $75 * 3+86$ ）＝ 311 tonf となる。
- さらに離昇加速度を0．3G以上とした場合，
- 離昇時全備重量は（311／1．3）＝ $239 \mathrm{ton以下}$ 以抑えねばならない。
- 従って，ブースタの許容重量は約 110ton
- 帰還用推薬，構造重量他を除き，離昇推進薬充埴率を 0.65 と仮定し，
- 離昇用推進薬重量 71.5 tonを得る。
- エンジン $\mathrm{l} \mathrm{sp}=445 \mathrm{sec}$ ，真空中推力 95 tonf とすると，
- エンジン燃焼秒時は（445＊71．5／3／95）＝約110秒となる。

分離時には，ブースタェンジンプリバーナの停止あるいは低温燃焼モード でアイ・ドル作動とするが，再着火のリスクを避けるべく，エンジン停止は行わない。

帰還時には，アイドル作動で姿勢を整え，逆噴射により垂直軟着陸する。着陸時には，推進薬はほぼ使い果たしており（TOUCH\＆GO．KISS\＆HOP）は取りあえ高考慮しない）着陸重量は 25－30tonとなる。
垂直軟着陸の実績データはないが，エンジン1基当たり15tonf の海面上推力が必要となり，かつ 0－15tanf のフルスロットル能力が要求される。

2）再使用MISSION におけるエンジンFAIL
LIFT－0FF後，50秒でエンジン1基の推力に相当亩る70tonの推薬を消：費 するため， 50 秒一分離までにブースタエンジン1基の機能が失われて方 MISSIONは達成できる。必要に応じ，推力を $75 \rightarrow 86$ tonf として対応する。 ただし，この時 推進薬タンク間のCROSS－FEED が必要となり，また再使用ブースタは損失する。

3）使い捨てMISSION
エンジン推力を $75 \rightarrow 86$ tonf として対応する。再使用MISSION と同じ前提で（ただし，降着装置•搭載電子機器他を削除できることを考慮し，推進葉充塤率を 0.85 と仮定）燃焼秒時は，約155秒となる。

4）寿命要求

6 回の再使用MISSION 十寿命切れの使い捨てMISSION を考えた場合，寿命要求＞7回の作動•（110＊6＋155）＝815秒（帰遠時の低推力作動秒時 を含まずすくなり驚くような数字にはならない。ただし，最小の保全で再使用すべく，現エンジンの設計見直しが必要となる。

第1段階：米 デルタクリッパ DC－X 実証試験（BUNNY－HOP•1993 SPRING）の成否をじっくり観察。

第2段階：サブスケールモデルを用いた実証試験（NAL角田検討中）

- 要索長寿命化試験
- スロットリング機構検討
- 垂直軟着陸制御則検討
- 分離機構検討・フレーム防御検討
- 高迎え角時の構造強度検討。
- 帰還経路検討
- 着地点安全計画検討

第3段階：H－II増強型として開発，使い捨てMISSIONを実証•運用並行してLE－7エンジン設計見直し・スロットリング実証試験 および素命実証試験

第4段階：H－I IPAYLOADに余裕がある折りを見計らって 分離後ブースタ軟着水制御実証（あるいは 浮きドッグに軟着）

第5段階：再使用 MISSION 運用開始
LEO 投入性能

技術開発要素

今後，検討及び実証を要する技術開発項目を以下に示す。
（1）推進系技術
再使用化に関し，•80－90\％オフデザイン作動の検討

- 設計マージンの見直し
- 回転機械クリアランス，リーク量の見直し
- 性能低下•重量増の評価

スロトリングに関し，•噴射圧損調整機構

- 推力調整バルブ設計検討
- E／G制御電子機器検討
- ノズル剝離安定化
- ノズル分離機構
- ノズル冷却方法
- 長秒時アイドル作動の可能性
- アイデル作動安定化
- 軟着推力～15tonf 作動モードの検討
（2）ブースタ分離技術
- 結合•分離機構
- 分離／反転モータ及び姿勢制御系の検討
- 分離時荷重評価
- 液面制御方法の検討
- コアノブースタ間クロスフィードの可能性（メリット小か？）
（3）帰還－乾着陸制御技術
- 帰還経路最適化
- 誘導制御方法•軟着陸ポインティング誤差解析
- 空力加熱•推進薬への影響•要すれば断熱手段
- 伸展降着装置 荷重評価 \rightarrow 綬衙機構

重量推定
使い捨てミッション時の取り外し機構
（4）推力／重心オフセットの検討

- 打ち上げ時，オフセット許容範囲，ジンバル損失の評価
- 軟着陸時，

同 上
－アボートモードる含め，ブースタ配置の最適化
（5）アボートモードの検討
－打ち上げ時，
エンジン1基 FAll 時
ミッション達成条件（プースタ損失他） ブースタ間クロスフィードの可能性必要ジンバル性能
－帰還／軟着時，

KISS \＆HOP（＝TOUCH \＆GO）
エンジン 1 基 FAIL 時
ジンバリングによるアボート小型固体モータによるアボート ブースタ間クロスフィードの可能性

－前提どした宇宙活動

長期的には，各衛星•惑星に地球生物が進出し，生産活動を行う。 これに伴い，惑星上で消費活動•環境整備が行われる。
米ゴールドラッシュに見られるように，希少資源を産する僻地，坬島を イメージするものである。
往復する人的資源の他，往側では生産設備•機械，輸送機械，生命•環境維持装置，食料等が大量に輸送されるが，環境整備にともない自給自足可能な経済圏•生活圈か形成される。また，復側では，希少資源あるいは，一次加工品が地上向け搬出されることになるが，長期的には，一極集中を避け，地球外生産品（エネルギを含む）は地球外で消費することが原則と なるべきである。
以上，新大陸の歴史をイメージするものである。
宇宙ステーションは，地球近傍中継港として，人的教育•訓練の場である と同時に，物資の中継貿易港 かつ市場としで機能する。
また，軌道間輸送機 組立•整備•保守また推進薬を備蓄•充塤する機能 －設備が整備されなはればならない。
整備工場付きガソリンスタンドをイメージするものである。

－宇宙輸送系の展望

以上を仮定すると，地上ノステーション間の物資の移動は，通常惑星間輸送物資に準するほか，特に往側で軌道間輸送機材•保守部品•推進薬が占 めることになる。

これに対応する輸送采として，一形態で全てに対応できる概念は考えにく く，移動区間また移動物資によってそれぞれ最適化が図られる。現在，• 1－2ミッション／1打ち上けが主流であるが，今後マルチミッション ノマルチフライトに多様化していく。
例えば，専用フライトで軌道上に推進薬が安価に備蓄してあれば，あらゆ る外軌道ミッション用に推進薬の再充塤が可能となり，著しくミッション性能を向上できる。また，結果として 上段は乾道上再使用が可能となり，地上に回収する理由は失われる。従って S S T O の実現を指向すること は必須では有り得ない。

以上から，軌道に投入•将来的には再使用され得る上段の回収を避け，旧来 海没•損失していたブースタ・1段機体の地上回収•再使用を指向す ることを提案するものである。S S TOに至る極めて高度な技術は必要と せず，信頼性の確保•保守コストの低減に大きく寄与できる。 また，ステーションを経由しで地上に向かう人員及び希少物資の回収には，打ち上げ機を兼用する複雑を避け，回収専用機（例えば，小型HOPE） によることが効率的と考える。
宇宙輸送係（地上＞低軌道）成長のシナリオ

 $\frac{\text { 陛米烝 }}{150 \mathrm{Lon}}$
$\frac{\text { 近来米淂 }}{2 J 0 \text { Lon }}$

－1段エンジン停止後，反転，上段分離

－1段機体

高度 約 250 Km
速度 約 $4,000 \mathrm{~m} / \mathrm{s}$ より再突入•帰還
－南鳥島周辺で垂宣敦着陸•畐使用

LOX／LH2エンジン
$\begin{array}{rrr}\text { 海面上推力 } & 150 \text { tonf } * 4 \text { 基 } \\ \text { または } & \text { LE－7 } & * 8 \text { 基 }\end{array}$

- 全備量量 約 450 ton
- 地球低朝道（LE0500Km）投入能力 約 10 ton
- 使い拾て部：上段機体 約55億円（将来，乾道上で同使用）

全 㴜 重 量
*均

まとめ
将来の宇宙活動ユーザの多様な要求に応えうる宇宙輸送系のあるべき姿を考察した。地球低軌道に到達する手段の効率向上，低コスト化，運用の柔軟化 が鍵となる。これらを実現すべく，「再使用化」を目標に，我が国宇宙輸送系発展シナリオの一案を示した。重量增の性能に対する感度が比較的に低い打ち上げ機下段に「無人•自動化技術」を適用して「回収•再使用化」を図 り，段階的にその範囲を拡大していくことが合理的と考える。このシナリオ に基づき，既開発 H－IIロケットの構成品を応用した再使用ブースタ概念の一例を示した。
この例に拘わらず，今後我が国宇宙輸送系が生き残っていくためには，独自 の技術開発分野を見出し，この部分に開発努力および開発資源を集中してい くこと，よって国際間で競争関係ノ補完関係ノ多様性の維持を図ることが，唯一の方向であると考えている。

なお，本研究に際して，株式会社AES中島久幸氏には飛行解析の面でご支援を受けた。謝意を表します。

発 行 日 1995年3月31日
編集•発行 宇宙開発事業団
〒 $105-60$
東京都港区浜松町2丁目4番1号
世界貿易センタービル 22 階
TEL 03－5470－4111（代表）
（C） 1995 NASDA
無断複写，転載を禁ずる
＜本資料に関するお問い合わせ先〉
宇宙開発事業団調査国際部技術情報課
TEL 03－5470－4276～4279

