WELE

The Global Utilization Cycle of
Big Data

Turbo Data Lab.

Shinji FURUSHO
Turbo Data Laboratories, Inc.

http://turbo-data.co.jp/en/

rev. 3.1

March. 11th, 2019

http://turbo-data.co.jp/en/

Contents -1

* Introduction

Preface

Abstract (1/4)
Abstract (2/4)
Abstract (3/4)
Abstract (4/4)

The contrast between these 3 systems

How the Big Data’s Globally Connected Cycle Works

p-Over

Zap-Over: Zap Over Network
Zap-Over gives “mobility” to Big Data

For what the Big Data’s Browser is?
What is the Big Data’s Browser?
Demonstration (1/2)
Demonstration (2/2)

The power of the algorithm

Why is the Big Data’s Browser possible

Target Sort — 0
Target Sort — 1

Target Sort — 2
Multi-Value helps many kinds of Search

Other possible functions

2
This document is provided by JAXA.

Contents -2

e Zap-Over works with Zap-In

e Zap-Over: About Patents

* Zap-In

e Zap-ln:Zap In Memory

e The absence of acceleration methods can cover every field/subset/operation
e For What “Zap-In: Big Data’s Spreadsheet” is?
* How Zap-In solved said 5 legacy problems

e Benchmark against Pandas

e Zap-In: The Elements of the Data Structure

e Zap-In: Two conditions arbitrary cascading of algorithms meaningful

e An algorithm example: Parallel Sort

e An algorithm example: Parallel Sort - 0

e An algorithm example: Parallel Sort - 1

e An algorithm example: Parallel Sort - 2

e An algorithm example: Parallel Sort - 3

e Zap-In; What The Big Data’s Spreadsheet with Relational Algebra support, achieved

* Zap-Mass

e Zap-Mass: Zap Massive Parallel

e Zap-Mass: Why Preemptive Multi-Tasking?

3
This document is provided by JAXA.

Contents -3

* Zap-Mass: How Can We Make Preemptive Multi-Tasking
* Zap-Mass: Architecture (The Perfect Clusters’ Ring)

* Zap-Mass: Algorithms (Global L-Operation) (1/5)

* Zap-Mass: Algorithms (Global L-Operation) (2/5)

e Zap-Mass: Algorithms (Global L-Operation) (3/5)

e Zap-Mass: Algorithms (Global L-Operation) (4/5)

e Zap-Mass: Algorithms (Global L-Operation) (5/5)

* Zap-Mass: The Expected Usage

* Zap-Mass: Other Issues

e Zap-Mass: Patents

* Visit our home pages to see more

4
This document is provided by JAXA.

5
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Preface

To use Big Data is not easy.
To use free combinations of Big Data is impossible at all.
When they become easy,
1. Everyone enjoys Big Data as contents located all over the world.
2. Big Data Markets appear.
3. Services which mash up Big Data like advanced analytics™, forecasts "2, simulations™2 appear.
4. Technologies depending on Big Data like Al and optimizations improve to the next level.

What prevents to use of Big Data is
1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

| solved those problems 1 to 3 above by three technologies named Zap-Over, Zap-In, and Zap-Mass.
Moreover, | suggest solving the 4t problem through the combination of these three technologies.
These challenges started in 1995. I'm glad to introduce them here.

*1. Current analytics like Bl cannot refer or handle Big Data.
*2. Forecasts and simulations need to gather and combine many kinds of Big Data, but that is almost impossible.

6
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Abstract (1/4

What prevents to use Big Data is

1. No mobility.

2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.

4. The absence of methodology to make the global utilization cycle of Big Data.

The 1%t problem has solved by the technology named Zap-Over.

By Zap-Over, we can create a Big Data’s Browser can handle trillions of records across clouds.
1. It can make a virtual union table immediately from arbitrary picked up tables
having trillions of records, having different schemas, and located in many clouds.
2. It can browse that virtual union table both in record order view and sorted order view of any field.
3. It can make a search to the virtual union table by any field’s value quickly.

This Zap-Over comes possible by a new sorting technology named “Target Sort”.
It can make sort with about O(log(n)) steps, because it sorts only the required point.
Because of that, Zap-Over can handle trillions of records easily.

Because Zap-Over uses a sort, it works well to any combination of data unlike legacy technologies like B-Tree.
So, Zap-Over can handle arbitrary combination of tables.

Zap-Over’s first trial version is running since 2013 at Tokyo Regional Taxation Bureau for tracing worldwide money transactions.

7
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Abstract (2/4)

What prevents to use Big Data is

1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.

3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

The 2" problem has solved by the technology named Zap-In.

By Zap-In, we can create a Big Data’s Spreadsheet with Relational Algebra support.

It can handle usual tables and virtual join tables having up to 2 billion records.

With it, we can do every operation expected to Big Data’s Spreadsheet with Relational Algebra support,
edit/calculate/search/sort/tabulation/type conversion/set operations/categorization/matching/union/join/extract ...

That becomes possible by the data structure called Zap-In TR and many algorithms whose inputs/outputs are Zap-In TR.

Because Zap-In TR has dual functions:
1. It is data from one side,
2. It is a base of efficient algorithms from another side.
Then we can use Zap-In TR as data, and can use it as a base of so many algorithms which can every field, subset, and operation.

Zap-In has been used from 2002 in many sites aerospace, nuclear plant, credit card company, huge chemical industry, and others.

8
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Abstract (3/4)

What prevents to use Big Data is

1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.

3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

The 3" problem has solved by the technology named Zap-Mass.

By Zap-Mass, we can create a Big Data’s Massive Parallel RDB with preemptive multi-tasking.

To handle true Big Data, we have to use massive parallel system.

However, it was impossible to run jobs in massive parallel system over preemptive multi-tasking environment until now.
Then the system is unreliable, inefficient, and not easy to manage/use.

To enable preemptive multi-tasking over massive parallel system, we hope algorithms between nodes to have following features.

1. Universality:
2. Symmetry:
3. Independence from processing order:
4. Divisibility of communication packets:
When Zap-In runs inside each node, then inter-node algorithms have said four features.

Moreover, good inter-node architecture is necessary. Here | propose multi-ring architecture having following features.
1. Symmetry:
2. Two directions of communication paths:
3. Divisibility of communication paths:

9
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Abstract (4/4)

Zap-Over TR . .
(Tablee{epresentation) What prevents to use Big Data is

1. No mobility.

2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.

4. The absence of methodology to make the global utilization cycle of Big Data.

The 4™ problem has solved by the combination of Zap-Over/In/Mass.

Zap-Over*t

- Virtual Union || 1
- Browse and Search
- Simple Tabulation

Zap-In*2/Mass*3

*
- Format conversion v
" - Data management ||
- Data Processing

Zap-In/Mass TR

(Table Representatmn)

-EEE-

-~ E = 10
R
: — :

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

The contrast between these 3 systems

Zap-0ver is a technology for Big Data’s Browser can handle trillions of records across clouds.

It is enabled by the theme 1: reducing sorting steps down to about O(log(n)).

It can make a virtual union table from tables having trillions of records distributed across clouds.
It can browse and search the virtual union table smoothly and quickly.

It bases upon on-disk technology.

Zap-In is a technology for Big Data’s Spreadsheet with relational algebra support.

It is enabled by the theme 2: free cascading of arbitrary algorithms/subsets.
It can handle up to 2 billion records.
It bases upon in-memory technology.

Zap-Mass is a technology for Big Data’s RDB every one can use.

Technology name Architect | Enabled Application Theme Products/Achievements
(Data Structure Name) ure

Zap-Over On Disk
(Zzap-Over TR) @

Zap-In In
(Zap-InTR) Memory

Zap-Mass Massive

(Zap-Mass TR) ﬁ Parallel

It is enabled by the theme 3: preemptive multitasking of massive parallel system.
It can handle tables having trillions of record.

It runs stably, reliably, efficiently, quickly, flexibly and it is easy to use.

It bases upon massive parallel technology.

Big Data’s Browser can make union To reduce sorting steps Tokyo Regional Taxation Bureau
tables having trillions of records down to about O(log(n))
distributed across clouds

Big Data’s Spreadsheet with To enable free cascading of ¢ Sakura’s Analytics
Relational Algebra support any algorithm of any subset * | licensed patents to
SAP/NEC/Fujitsu/...
Big Data’s RDB everyone can use To enable preemptive multi- -
tasking of massive parallel
system

11
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

How the Big Data’s Globally Connected Cycle Works

(Zap Over Network)

The Big Data’s Browser,

allows non-professional

users to fetch Big Data
across clouds.

(Zap In Memory)

The Big Data’s Spreadsheet
allows non-professional
users to process Big Data.

WESSIEREICUED)

The Big Data’s massive-
parallel RDB
with preemptive multi-task,
allows non-professional
users to process Big Data.

'& Analytics

g3 /’~
: . Scientific
Quantum Computing . Calculation

Big Data’s Spreadsheet with Relational Algebra support

Big Data’s massive parallel RDB
with preemptive multi-tasking

This document is provided by JAXA.

13
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

Zap-Over: Zap Over Network

Come to our home page to see
Zap-Over demo.

http://turbo-data.co.jp/en/

14
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

“No Mobility” problem arises because

1. You cannot access it without a system dedicated for it.
2. You cannot download it.
3. You cannot combine arbitrary Big Data.

Zap-Over gives “mobility” to Big Data, it enables
The Big Data’s Browser can handle trillions of records across clouds

1. You can browse/search Big Data Tables only with a software: “The Big Data’s Browser.”

2. You can download Big Data Tables by selecting out where you need by the browser.

3. You can make a Big Data’s virtual union table from arbitrary Big Data tables across clouds
by the browser.
Moreover, you can browse/search the virtual union table with it.
Moreover, you can download the union table by selecting out where you needq with it.

el

1
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

[}) [}
fig. 1. Hopping combined Big Data Table FOf What the Blg Data S Browser lS?
For User Side:
1. Hopping to another Big Data immediately = fig 1
2. Browsing the Big Data smoothly - fig 2
Sort Views of each field / Record Order View
3. Searching the Big Data quickly - fig 3
4. Downloading a part of Big Data - fig4
For Cloud Side:
fig. 2. Two way browse:
Sort View/Record Order View 1. You can provide Big Data service by just putting a file
@2012 Zap-Over fig. 3. Searching of Big Data fig. 4. Downloading of Big Data

terminal \

16
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

What is the Big Data’s Browser?

1. It can create a virtual union table from any Big Data table
e Having Trillions of records,
* Having different Schemas and
e Distributed across Clouds.

2. It gives a two-way view of that virtual union table
* Record order view,
e Sort view by any field
—> Sort view enables search

Record Order View Sort View Sort View

Original Table 0 (by Gender) (by Age)

0] F 8 RecNo RecNo

1 M 7 of F 8 0 F 8 0 0 M 6 2

2l M 6 1 M 7 1l F 7 3 1| M 6 4

31 F 7 2l M 6 2| F 8 5 2l M 7 1

3| F 7 31 F 7 7 3| F 7 3

Original Table 1 4 M 6 4 M 7 1 4 F 7 7

0 M 6 5/ F 8 5 M 6 2 5 F 8 0

1 F 8 6 M 8 6| M 6 4 6] F 8 5

2l M 8 7 F 7 71 M 8 6 7 M 8 6

31 F 7 17

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;
Zap-Over: Big Data’s Browser

Sample Data @2012

File number: 1

File number: 2

File name: Sc4billionx6.D5A
File size: 842,000,113,664 bytes
Number of rows: 4,000,000,000
Number of fields: 6
Field 1. Integer 64 bit

Name: intlK

Cardinality: 1,000
Field 2. Integer 64 bit

Name: int2G

Cardinality: 2,000,000,000
Field 3. Double

Name: Dbl1K

Cardinality: 1,000
Field 4. Double

Name: Dbl2G

Cardinality: 2,000,000,000
Field 5. String

Name: Str1K

Cardinality: 1,000
Field 6. String

Name: Str2G

Cardinality: 2,000,000,000

File name: Sc2billionx6.D5A
File size: 420,735,533,5636 bytes
Number of rows: 2,000,000,000
Number of fields: 6
Field 1. Integer 64 bit

Name: intlK

Cardinality: 1,000
Field 2. Integer 64 bit

Name: int2G

Cardinality: 1,000,000,000
Field 3. Double

Name: Dbl1K

Cardinality: 1,000
Field 4. Double

Name: Dbl2G

Cardinality: 1,000,000,000
Field 5. String

Name: Str1K

Cardinality: 1,000
Field 6. String

Name: Str2G

Cardinality: 1,000,000,000

2B

2B

4B

4B

4B

4B

4B

2B

4B

/Record Order View

Sort Vieh

v

N

/

Terminal

This document is provided by JAXA.

18

Make The Global Utilization Cycle of Big Data;
Zap-Over: Big Data’s Browser

1. It makes a virtual union table having 30B records.

2. Next, it shows scroll of that 30B in the record order view.

3. Next, it shows a sort view and operations (search, etc.) in it.
See the hit result having 9B is sorted and shown immediately.
See the sort view is linked to the record order view.

Come to our home page to see
Zap-Over demo.

http://turbo-data.co.jp/en/

19
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Da

Zap-Over: Big Data’s Browser

| (71 J:\D5A Files\Sc2billionx6 .DSA

= | jumpTo: | Show Results | cmd srch |
2,000,000,000 |[#] RecNo [k [in2G |58 ok |58 obi2G (BB sern
0 0 695 28,082,581 811.000 837,520,396.000 A00O!
1 1 283 433,427,461 521.000 119,733,431.000 A00O!
2 2 840 912,797,901 285.000 774,565,755.000 A00O! :
3 3 891 113,956,587 743.000 400,442,430.000 A00O!
4 4 915 374,954,034 816.000 415,972,508.000 A00O(
5 5 850 384,187,559 720.000 690,329,666.000 A00O(
6 6 560 301,107,844 489.000 721,072,406.000 A00O(:
7 7 591 89,159,984 381.000 399,076,696.000 A00O!
8 8 53 356,491,273 276.000 998,886,684.000 A00O(
9 9 284 145,465,743 905.000 670,484,495.000 A00O(:
10 10 682 671,595,819 521.000 697,737,875.000 A00O(
11 11 726 298,634,251 77.000 942,104,799.000 A00O!(
12 12 389 861,764,811 1A2 ANAL 30 ASE 44 AN ANAN 2
13 13 879 127,588,018 | M B = [
14 14 501 520,418,518 L #E RKER
15 15 512 561,793,528 T wa JSA)IE- =
16 16 647 576,537,052 LE J_' [Y- khy RORYITY @ - X -i]
17 17 650 426,732,436 JAv9 PHEA 8- BEUAH BEEL I-% HB BEH
18 18 161 157,026,093 % TYmY T T 0nE
19 19 773 783,318,067 Yy TR 5w 2549 £
s o 20 BERe e & v 4 > PC > HDW-PDU3 () > D5A Files
21 21 991 76,882,231 R
22 22 9 471,740,273 m Desktop o IS UEDe B AR EE
&2 e ool IO i g (] aozora.D5A 5791760 KB 1/20/15 19:35 DSA 774)b
= = S logs || Chemical.D5A 392 KB 10/23/11 17:53 D5A 774
= .] IO 5 MicrosoftEdgeBackups || Sc2billionx6.D5A 410,874,564 KB 4/29/11 20:30 D5A 774)b
A0S OneDrive [] Scabillionx6.D5A 822,265,736 KB 4/28/11 11:43 D5A 774)b
Table View | log - FRLRIE] ScYNo.D5A 65992 KB 4/5/11 15:54 D5A 771)b
2/14/19 16:37:21 ..Succeeded, GroupNo: 0, GroupName[] | T U] wiki (1).FLAT 28,592 KB 3/22/15 12:22 FLAT 774 20

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The power of the algorithm

The power of the algorithm

As a performance example, Zap-Over can sort with about
O(log(n)) steps where n is the count of records.

With it, we can browse and search any virtual union of Big Data,
which have trillions of records and distributed across clouds.

It has been used in the real system at Tokyo Regional Taxation
Bureau since 2013 to seek global money laundering: ‘4S
System’.

It could show only x1,000 total performance than a former
system made of SQL Server that took 15~20 minutes each
search; allowed 1~2 persons to use simultaneously.

However, it could have shown much more performance if it
didn’t need to compress HDD and it could use SSD.

21
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: “ “Can Sort Trillions.

Before

-
@

a
N
3

o
@
o
&
=
=

>

Why is Big Data’s Browser possible?

| have developed “Target Sort,” that can sort trillions immediately. Serach for "H"
Because of it, | can sort any union of one-dimensional arrays instantly.
When | can sort, | can browse/search at once.

So, Big Data’s Browser comes true.

Hit!

Why is the sorting of trillions possible?

Think about the case you use a dictionary. Every article in the dictionary is in order.

However, you don’t care articles are not in order, which you don’t use.

Nl<|x|sS|<|lc|d|w|x|jo|D|jo|Z2|Z|r|X|~|—|T|® MmO |wm| >

N|l<|x|sS|<|lc|d|w|x|jo|D|jo|Z2|Z|r|X|~|—|T|® MmO |wm| >

Nl<|x|sS|<|lc|ld|w|x|jo|D|jo|Z2|Z|r | X|—|— [T MmO |wm| >

N|i<|x|sS|<|lc|d|w|xm|jo|D|jo|Z2|Z|r|X|—|— [T MmO |wm|>

N <[S| <|c|d|lw|=x|jo|v|lo|Z2|Z|(r|x|—-|—|T|®|mM|mO|[o|m

For example, if a dictionary has 1,000,000,000,000 articles inside, we use
log2(1,000,000,000,000) = 40 articles for one search. You don’t care other articles

are not sorted.

_ _ You don’t care,
For another example, for a browser’s sort view, we need only 100 articles at most at

one time.

the gray parts
are not in order

The target sort, unlike other sorts, outputs the pinpoint where you need. So, it can
return an answer immediately unlike others.

| show the target sort’s algorithm in the following pages.

22
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The S algorithm

An algorithm example:

Target Sort — O

Zap-Over TR (Table Representation)

#Original Data SVL Aggr INV

of D 4 A U 2 i 1

Terminology i "B B

) t 2] B 2[8) 2! 2[

s, 0 SVL: Sorted Value List N S
nltla tate Aggr: Aggregation of occurrences

INV: Inverted record number array

Zap-Over TR (Table Representation)

Cloud side: Original Data SVL Aggr INV

: :0->4f C)] A O
In the figure, there is an original data array in each cloud. (See the terminology also) toiles B 1 18
Lile>6| B N e 2
The cloud side should make SVL/Aggr/INV arrays from the original data before providing LT A
* SVL by extracting values included in each array.
« Aggr by counting up each value’s occurrences first and aggregation next. -)
* INV by sorting the original data array with its subscripts. e e,
Record order view Sort View
Then each element in Aggr means, how many values (records) appears less than or equal to the value in the ol D o AT 1
SVL put at the corresponding position. That is the crucial point enabling the target sort. 1| A 11 Al 3
2| B 2l A 7
At last, the cloud side packs up Original Data/SVL/Aggr/INV into “one Big Data file” usually. 3 A 3B 2
4 c 4 B | 5
Terminal side: >l a4CEN[C)
The terminal in the figure selects arbitrary Big Data files across clouds and open them. v S s A5 T

To show the record order view: _

Just access the original data arrays adjusting their subscripts at reading out time. Fig 1. target sort
(No need to rewrite/overwrite)
To show the sort view:

That is the target sort! See the following pages. 23
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The

S algorithm

An algorithm example:

Target Sort — 1
Walk Through

1. Seek belonging value

2. Seek belonging table

3. Calculate the offset in
the Table

4. return INV value

1. Walking through

Try to identify sort view’s record #5 (Fig. 1)

The goal of target sort is to return the record order view’s record number
corresponding to the given sort view’s record number (this time it is #5).

We can know how many records are there having values less than or equal to any
value in SVL, by reading out the element in Aggr at the corresponding position of a
value in SVL.

(Following steps is for the case of just after a new record number #5 in the sort view
given. Note giving previous/next record number of the sort view, after you got one, is
far easier.)

(Sort view’s record number = 5)

Step 1. Seek belonging value - belonging value = “B”
Step 2. Seek belonging table - belonging table = Table-1
Step 3. Calculate the offset in the table - Offset=1
Step 4. return INV value -> record order view’s record number =6
Record order view Sort View
o D o] A 1
1l A 1f A 3
2[B 2] A 7
3 A 3] B 2
4 ¢ 4 B | 5
sl 8| mpls B [(OF
_:‘»6 B 6| C | 4 |F
N fesggeees

AT, ...

Make The Global Utilization Cycle of Big Data;

Zap-Over: The

S algorithm

An algorithm example:

Target Sort — 2

Decide belonging value

1. Seek belonging value

2. Seek belonging table

3. Calculate the offset in
the Table

4. return INV value

2. Each Step

Try to identify sort view’s record #5 (Fig. 1)

We can know how many records are there having values less than or equal to any
value in SVL, by reading out the element in Aggr at the corresponding position of a
value in SVL.

| show the steps to get the sort view’s record #5.

These step’s goal is to get the record order view’s record number corresponding to
the sort view’s record number #5. (See Fig. 1 at the above page.)

(Following steps is the case of when a new sort view’s record number #5 has given.)

Step 1. Seek belonging value - “B”
We can decide which value the sort view’s record number #5 belongs, by a similar
way of the bisection search, by upping/downing the reference value got from SVLs.
This case the belonging value is “B.”
Step 1 needs about log2(m0)+log2(m1) times trials. (m0/m1: size of SVL in Table 0/1)
Step 2. Seek belonging table - Table-1
We can know how many records exist having values less than “B” in all tables.
Moreover, we can know how many records exists having “B” in each table.
Then we can know to which table the sort view’s record number #5 belongs.

Step 3. Calculate offset - Offset=1
Table-1’s “B” starts from sort view’s record #4, then the offset = #5 - #4 = 1.
Step 4. return INV value - record order view’s record number =6

Look up Table-1, “B” startsat 1 in INV.

Because the offset is 1, the positionin INV becomes 1+ 1 = 2.

We get INV[2] = 2; Then adding total record count before Table-1: 4 to it.
The answeris 2 + 4 = 6;

This document is provided by JAXRS

Make The Global Utilization Cycle of Big Data;

Zap-Over: “Multi-Value” helps many kinds of Search

Multi-Value helps many kinds of Search
For full text search - Table1

For complex condition search - Table 2

Table 1. “Name” and Multi-Value Table 2. “Name” and Multi-Value
m Multi Value m Multi Value
Beth B,ETH,BE,ETTH,BET.ETH,BETH “Frand8 > A
F 9 B,X,Y
“E” and 9 > B
Ann A,N,AN,NN,ANN
M 8 (OAWA “M” and 8 > C
Tom T,0,M,TO,0M,TOM M and 9 S 5
M 9 D,Z
AorB—-> X
F 8 AX BorC-> Y
CorD=> VA

26
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: Other possible functions

Tabulation

Unit Conversion

- ol= A : a (e
F 9 “ F 17
M| 8 17
M| 9
—~ 7" 8 +
a 0 e A : a a
F |10 “ F 19
F 9 14
M| 6
BVRE

n

Gender Age Gender Sum(Age

F 9 F 36

s T

M 9 1234 123

= 3 2345 234

= 10 3141 314.1

= 9 2718 271.8

M 6 / \
8

27
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over works with Zap-In

fig. 1. Zap-Over for Zap-In fig. 2. Zap-In for Zap-Over

Zap-In Zap-Over

™

Zap-Over and Zap-In works together

Zap-Over for Zap-In:
Gathering Big Data across clouds for Zap-In -2 fig 1

Zap-In for Zap-Over:
Making Zap-Over’s Big Data File - fig 2

28
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Over: About Patents

Several
Patents are
Pending

30
This document is provided by JAXA.

Zap-In: The Big Data’s Spreadsheet with
Relational Algebra Support

Zap-In: Zap In Memory

Come to our home page to see
Zap-In demo.

http://turbo-data.co.jp/en/

31
This document is provided by JAXA.

Make The Global Utilization Cycle o

Zap-In: What enables Big Data’s Spreadsheet

with Relational Algebra support

“The absence of acceleration methods can cover every field/subset/operation”

is caused by 5 reasons.
1. Indexes such as hash and B-Tree are not attached to every field.
2. Indexes such as hash and B-Tree are not valid to subsets.
3. Indexes such as hash and B-Tree are available only for search.
4. Indexes such as hash and B-Tree use CPU time to create/maintain themselves.
5. Indexes such as hash and B-Tree use memory/storage.

Zap-In solved above 5 problems, and it enables
The Big Data’s Spreadsheet with Relational Algebra support.

1. It can handle usual tables; virtual join tables having up to 2 billion records.

2. It can do every operation expected to Big Data’s Spreadsheet with Relational Algebra support,
edit/calculate/search/sort/tabulation/type conversion/
set operations/categorization/matching/union/join/extract ...

3
This document is provided by JAXA.

For Interactive Batch Processing.
1. Interactive Analytics of Big Data.

3. Batch (including created ones as keyboard macro) BOM/MRP/...
e |
e i ‘A (the right f) (zepn)
For embedding into a system.™® (the right figure) —_ (G lemo)
— Spreadsheet with

1. It imports Zap-Over/In/Mass TR or CSV.

relational algebra
- J J

2. It does checking/transformation/calculation/matching/so on,
to the imported data looking up local DW.
If necessary, it saves this data in its local DW.

3. It exports process results; data extracted from its local DW,
within the format of Zap-Over/In/Mass TR or CSV.

v %

Zap-In TR

(Table Representation)

M 3 3
Zap-In Zap-In Zap-l
e TR TR
___J ___J

TR
[—1 |1—] |—]
Zap-In Zap-In Zap-l
L] TR TR
__J __J __J
L L
L L

*A. The fields Zap-In has been used are
aerospace/nuclear/university/medical_research/
chemical_plant/compute_factory/communication_industry/
financial/marketing/traffic/... fields.

2. Interactive Data Cleansing / Data Transformation / Data Validation (inspection) ...

ZpU

-
Zap-In
TR

ZpM
TR

(See the figure left)

33

This document is provided by JAXA.

Make The Global Utilization Cycle o

How Zap-In solved said 5 legacy problems

The features of the algorithms of Zap-In are very favorable.
1. Homogeneity of fields; subsets: Every algorithm runs on any field with any subset in the same way.

2. Connectivity of algorithms: Possible to cascade almost every algorithm freely.

Because the inputs/outputs of these algorithms are always Zap-In TR.
3. Minimum CPU Cost: Almost all algorithms don’t use CPU to create and maintain acceleration mechanism.
4. No memory/storage: All algorithms don’t require memory/storage to keep the acceleration mechanism.

5. Affinity for parallel processing: Affinity for parallel processing.

Homogeneity of Minimum CPU Cost;

Connectivity

No Memory/Storage
of algorithms

fields; subsets

Legacy (Indexes are attached to a few) Legacy (Indexes are attached to a few)

Table 1: Salt Concentration and Light Transmittance Table 1: Salt Concentration and Light Transmittance

Salt Transmittance (%T) Wlthout Salt Transmittance (%T)
G { R Concentration

(%] man | e | s | wa [ws | Index A I go rl t h m A % Tel#l | Tl | Tale | Tl | T
0 nn 7450 5488 527 5466 0 nn 7450 6458 72 46
3 523 528 7881 8071 579 3 523 028 71 6071 519
5 8830 10005 136 8651 85 With A I g or i t h m B § 839 10005 7366 6651 6154
9 8071 10005 5829 5491 5296 Index 9 8071 10005 682 6491 5296
2 8266 17.18 o 5691 4635 2 8266 1718 nn 5691 1635
15 nss 11540 8572 5603 5538 15 755 11540 672 660 5538

Zap-In’s case . Zap-In’s case
(every field has acceleration mechanism) Homo- Algo rit h m Z (every field has acceleration mechanism)

Table 1: Salt Concentration and I;iMTranmmnu geneity Table 1: Salt Concentration and I‘.hMTransumm
Salt) Transmittance (¥T) Salt) Transmittance (%T)
: (%) Trial #1 Trial #2 Trial #3 Trial #4. Trial #5 ¢ (%) Trial #1 Trial #2 Trial #3 Trial #4 Trial #5
o na 7450 5488 75.27 54.66 o 723 74.50 64.88 75.27 54.66
3 8523 9282 7891 60.71 57.96 Za p = I n T R/ 3 85.23 92.82 7891 60.71 57.96
6 8839 100.05 73.66 66.51 64.54 6 8833 100.05 7366 66.51 64.54
9 B0.71 100.05 68.29 6491 5296 Za p - M a S s T R 9 80.71 100.05 68.29 64.91 52.96
1n BL66 117.18 7101 56.91 46.95 12 82.66 1718 7101 56.91 46.95
15 55 115.40 8572 66.03 55.38 15 7255 115.40 6572 66.03 5538 3 4

This document is provided by JAXA.

Make The Global Utilization Cycle o

Benchmark against Pandas

5. Benchl0O0OM Lines (sec)

122.202 - X 2.85
N s87.279
Y O I 156.105 < x1.80 |]
T X 1.74 /O processing
Native format Save N 239,659 x 3.09

CSV import

N e — 155355 4 x15.1 |
UNION 2-33.8168 x 2.50
Search(Numeric) & 39 181 x63.1 Mai . Measured by
) ! daln processin
Search(String) % 64.784 X16OO p g Other C0m pa ny-
Sort(Numeric) % 5 X280.1 (Espe ra nt
Sort(String) 0.878 _

X529 = 1 464.542
Tabulation | t:][gz?] X 1 2 . 8 R .
Calculation l ;;2; 4 X 0.5u4 X 3 | %k 1
Extraction of 1 column l2aad _ o .
iz < %126 ol Misc. processing
Categorize | 2.695 X 48. 1

I 13.860

0.880 4 x 0.06 H x 18 | *2

Hzapin ®pandas

. System)

Getting Value List

*1. Inadequate implementation of the calculation algorithm caused this. We will fix it expecting to raise the performance x3 than the Pandas.
*2. Miss-selection and combination of APIs caused this. If the measurement had done choosing the correct API, x18 times faster than Pandas.

35
This document is provided by JAXA.

Make The Global Utilization Cycle o

Zap-In: The Elements of the Data Structure

The Essential Elements of the Data Structures

Zap-In’s Data Structure: Zap-In TR (Table Representation) has some elements.
The essential ones are ‘Ordered Set’ and ‘Sorted Value List.’

The Dual Nature of the Data Structures

The figure below shows Zap-In TR, the data structure of Zap-In.
If you access it from the OrdSet side, like “SVL[VNo[OrdSet[i]]],” thatis equivalent to the Original Data.
If you access it from other ways, it becomes an Acceleration Mechanism.

With this dual nature vields many favorable features of algorithms. | discuss it on the next page.

Zap-In TR has Dual Nature:

1. Data;
Original Data Zap-In TR (Table Representation) 2. Base of the Acceleration Mechanism.
Gender Age
Gender Age OrdSet VNo SVL VNo SVL
of F 10 i mmp0| (0)1 o (ool (F) of 1]of 9
1l M 9 1 1 1 1 1| M 1 0 1| 10
2 M 10 2 2 2 1 2 1
3 F | 9 3l 3 3] 0 3| 0
2. Acceleration ;
Mechanism Data(i) = SVL[VNo[OrdSet[i]]]
Ord Set: Ordered Set (Record Number List)
VNo: Value Number
SVL: Sorted Value List 36

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-In: Two conditions arbitrary cascading of algorithms
meaningful

Zap-In can cascade every algorithm
because its inputs/outputs are always Zap-In TR.
Moreover, the stability of sort and others makes cascades meaningful.

Original Data Zap-In TR (Table Representation)

Gonder v Zap-In can cascade every algorithm
Gender Age OrdSet | VNo SVL WNo SVl because every algorithm takes Zap-
ol F 10 o O o O 0| F 0 1 o 9 .
T 1 1w o1 1o In TR as inputs/outputs.
2l m | 10 = 2| 2 2l 1 2 1
3] F 9 3] 3 3] O 3] 0 ope
Moreover, the stability of sort and
Sort by Gen others Make cascades meaningful.
Gender Age
Gender Age OrdSet VNo SVL VNo SVL Then’ we can accelerate every
o F 10 0o O o O 0 F 0 1 of 9 . . .
| F o 1 3 1 1 1 ™ 1 0 |1 10 combination of operations, that
a M2 — i I 2.1 was impossible when we used
3] M 10 3] 2 3] O 3] 0 . .
index technologies.
Gender Age Then Zap-In can create the Big
Gender Age OrdSet VNo SVL VNo SVL) H .
T N7 | oo F 1 o s Data’s spreadsheet with relational
1l M | 10 = 1| 2 i 1 |1 ™ 1l o |1 10 algebra support.
2 1 2 1
3 O 31 0 37

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-In’s algorithm example: Parallel Sort

An algorithm example:

Parallel Sort

A good sort accelerates
tabulation/joining/distinct/... also

$ ¢

-

A lalale el ol ol | [
This d

ocument is provided by JAXA

Make The Global Utilization Cycle o

Zap-In’s algorithm example: Parallel Sort

Zap-In TR
. Original Table OrdSe VNo SVL
An algo*rzthm example: og CT of o t of 2 of A
1| A 1| 1 1| o 1| B
Parallel Sort — 0 &) 2] | | e
= >
. al " c al 4 al 2
Initial State S i I
6| A 6| 6 6| o
71 8 7l 7 711

Zap-In’s sorting algorithm has the following features.

1. Can use multi-core easily mainly because the OrdSet is dividable.
2. Can be applied to any subset because the OrdSet is the subset.
3. Cascade-ability enabled by stability in sorting.

Then we can resolve multi-field sort of field-A and field-B,

into two sorts: sorting field-B at first and sorting field-A at last.

Confirm them by the explanation in pages after.

39
This document is provided by JAXA.

An algorithm example:

Parallel Sort — 1

Count up phase

The first step of the sorting is
counting up.

(Not limited to sorting, to divide OrdSet is easy. Then
using multi-core becomes easy.)

At this phase, each core counts up, to know
how many time each VNo value appears
within each core’s range in OrdSet.

Core-0:
for(i=0;i<=3;i++)
Count[0][VNo[OrdSet[i]]] ++;

Confirm that this phase is done entirely in
parallel.

|

~N O O B~ W N = O

\ [

[

0

!
/

ount[0] ount[1]

0 0
0 0
0->1 0->1
0 0

|

~N O O B W N = O

1 [

~NOoOiCihIWINIEPO
~N O O B~ W N = O
RPiIiOIWINIOIRLRIOIN

[

ount[0] ount[1]

0
1
2
3

2

1

1
1
0

w N = O

1
1
1

This document is provided by JAXA.

w N PO
O 0O w:>

w N PO
O 0O W >

Make The Global Utilization Cycle o

Zap-In’s algorithm example: Parallel Sort

An algorithm example: ordser o Reerlo) Neerll S
o o of 2 o A
P ll l S Z C°’e'° Jaf 1 1 o 1 B
Cl'r(l e OTt = 2 2 2 1 2| C
3| 3 3l o 3l D
A ' h 4|1 a2
ggregation pnase | 12
76l 6 6| 0
. . . 71 7 71 1 R
The 2" step of the sorting is aggregation. - —
By aggregation, we can calculate out each group’s
start position in the after sort OrdSet.
That group is defined primarily by position in SVL and Zap-In TR
H A
secondarily by core number. Ordset NG Xeerlo] Neerll] UL
k=0; o o of 2 o o o 2 of A
for (row = 0; row <= 3; row++) __ n1 no 1.3 1 4 1B
for (col = 0; col <=1; col++) { 2| 2 2| 1 2l 5 2l 6 2| C
m = Aggr[col][row]; 3] 3 31 0 31 7 31 7 3] D
Aggr[col][row] = k; T4l 4 4 2
} 76| 6 6| 0
71 7 71 1
See, why the stability in sort is kept. -
41

This document is provided by JAXA.

An algorithm example:

Parallel Sort — 3

Transfer phase

The 37(final) step of sorting is transferring
from the old to the new OrdSet.

Core-0:
for (i=0;i<=3; i++){
k = Aggr[O][VNo[OrdSet[i]]] ++;
NewOrdSet[k] = OrdSet[i];
}
Core-1:

for(i=4;i<=7;i++){
k = Aggr[1][VNo[OrdSet[i]]] ++;
NewOrdSet[k] = OrdSet[i];

}

Confirm that this phase is done entirely in parallel.

Core-0

Core-1

[

------ NG Aggr0] - Aggrll] New Ord Set
()] o o 2 | of A
1l o 1| 3 4 1 1| B
1 \42[5- 6>7| 2| - 2| ¢
0 //f‘ kN 3 3l D
©); 4
3 5| -
0 6
LA S —_—.
VNo Aggr[0] Aggr[1] New Ord Set
o o o 2 o 2 o 3 o 1 of A
111 1l o 1| 4 1| 5 1| 3 1| B
2| 2 2| 1 2| 6 2 7 2| 6 2l C
3 3 3l 0 3l 7 3 s 3l 2 3l D
4| 4 4 2 4 7
5 5 5 3 50 0
6 6 6 0 6| 4
717 71 1

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;
Zap-In; What The Big Data’s Spreadsheet with Relational

Algebra support, achieved

It has been working since 2002 at
Space, Nuclear, Financial, Manufacturing, Medical, Marketing,
Telecommunication and Other Fields more than 200 sites.

— Comparison using Fujitsu's BOM development
processing

As Huge Batch
Processing System,

504 times
DayDaLaboo 6.9 s

RDBMS

As Multi-Functional
Big Data’s DW

Data
Import

Zap-In
- Format conversion
- Data management
- Data Processing

J
v 1

~, Necessary data,

for a Computer
Manufacturer

58 min. (3480 sec.)

in necessary format
>

— Comparison using Fujitsu’s procureme
processing

DayDa Laboo 2.7 sec

RDBMS

DayDa.Laboo test environment

LFM
il 1GHz x 1 CPU p—

nt provision — P- —
1 GB memory |
Parts are not collected at each
level oo

711 times |
| RDBMS test environm: ent

RDBMS
32 min. (1920 sec.)

Zap-In TR

(Table Representation)

80000
80000
B0000o

Features :
- Ultra fast in handling huge data
(Data Mart is unnecessary)
- Ultra fast in complicated processing
(Flexible and Rich in functions)

=)
"4’[(E_‘\\Q

Chemical ,
Industory

Medical
Research

This document is provided by JAXA.

fig. 1. Zap-In for Zap-Over

Zap-In

Zap-Over
File

-

Zap-In and Zap-Over works together

»

Zap-In for Zap-Over:
|t Makes Zap-Over’s Big Data File - figl

Zap-Over for Zap-In:
It Gathers Big Data across clouds for Zap-In - fig 2

44
This document is provided by JAXA.

Make The Global Utilization Cycle o

Zap-In’s Patents in U.S.A

Patents

Category Innere code Patent #
Searching/Tabulation/Sorting A1-6US US RE41,901 E1
JOINING B1-2US US6,721,751 B1
OLTP B2-2US US6,973,467 B1
Building Data Structure B4-2US US7,225,198 B2
Improved Joining B5-2US US7,184,996 B2
Joins to tree B6-2US US7,467,130 B2
Scope B7-2US US7,882,114 B2
Parallel Sort L1-2US US7,801,903 B2
Parallel Sort 2 L1-2DUS US8,065,337 B2
Parallel Merge/Matching L2-2US US7,890,705 B2

These patents have been licensed to SAP, NEC, Fujitsu, etc.

45
This document is provided by JAXA.

46
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Big Data’s Massive Parallel RDB with
Preemptive Multi-Tasking support

Zap-Mass: Zap Massive Parallel

47
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Why Preemptive Multi-Tasking ?

* With Preemptive Multitasking for Massive Parallel, We Have

1. Reliability: We can detect and swap defect nodes easily and immediately,

2. Efficiency: We can fill tasks to the idle nodes,

3. Easiness to use: We can start a task at any time,
can watch tasks’ status easily,
can change tasks’ status easily: priority, resources’ mapping, others,
can stop tasks immediately.

48
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: How Can We Make Preemptive Multi-Tasking

We have to invent “the Application + the Architecture + the Algorithms” at one time.

1. The application is Big Data’s RDB.
2. The inside-node architecture should be any architecture which can deploy Zap-In.

3. The inter-node architecture should be like following.
1. Symmetry: Symmetric architecture makes system management easy.
2. Two directions of communication paths:
To run many kinds of tasks at one time, we need to assign each task resources and priorities.
We hope we can mix “high performance but expensive” and “low performance but cheap” at various levels.
The vertical direction is high performance, and ring-wise direction is low cost.
3. Divisibility: We have to handle middle or small data sometimes. So, the architecture should be divisible.

—> Architecture named “The Perfect Cluster’s Ring” satisfies these features above. (See fig.1 left below)

4. The inside-node algorithms we use is Zap-In.

5. The inter-node algorithms we need should be like following.
1. Universality: Algorithms for it should cover enough kinds of processing.
Symmetry: Symmetric algorithms between nodes help to manage multi-tasking.
Independence from processing order: This also helps to manage multi-tasking.
Divisibility of communication packets:
This feature helps to reduce the granularity of tasks because the tasks of each node
cannot be switched while it is receiving a packet.*A

-2 Algorithms named “Global L Operations” satisfy these features above.

HwN

*A. About a few microseconds, the architecture and algorithms allow different tasks to run in different nodes.
Fig. 1. The Perfect Cluster’s Ring Moreover, different segments(node groups) can deploy different tasks at the same time.

49
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Architecture (The Perfect Clusters” Ring)

ring 1 -
ni0 7 S —

P23

ring2 G
n20 T
data

n21 data

Fig. A. Whole Structure

(Reprint)

What is “The Perfect Clusters’ Ring”? (See Fig. A)

Every node belonging to one vertical group like (n02, n12, n22) has a direct path to send and
receive packets to each other.

I named this architecture “Perfect Connection.” It has the best performance but expensive
when the number of nodes becomes huge.

(ring-vise) On the other hand, a ring-wise path is one directional. It has low performance but low cost.

: data passed to next

A CGntor ringwise) The perfect clusters’ ring includes the combination of “perfect connection” and “rig-wise

i :data not passed to next ” P . .
path,” which is suitable to keep tasks having various size of data/priorities with balancing
performance and cost.

The inter-node architecture should be like following.

1. Symmetry:

Symmetric architecture makes system management easy.

2. Two directions of communication paths:

3. Divisibility:

To run many kinds of tasks at one time, we need to assign each task resources and priorities.

We hope we can mix “high performance but expensive” and “low performance but cheap” at various levels.
The vertical direction is high performance, and ring-wise direction is low cost.

We have to handle middle or small data sometimes. So, the architecture should be divisible.

n
| % — tni2
ring 1 d H
ni0 % —s :nli —r

o

P v FNEC S C
ring 2 X ring
20 ———2 AN

n21

Fig. B. Division by Ring-wise

DR Divisibility in two directions. (See Fig. B, C)
sl It is evident that the perfect clusters’ ring is divisible in ring-wise and layer-
ving 1%3 — mi2 wise. Moreover, each divided part can be divided again.
L I D It still keeps the following three features:
: O E22
B RN 1. Symmetry,
’ 2t 2. Two Directions,
Fig. C. Division by Layer-wise 3. Divisibility again after division. 50

This document is provided by JAXA.

Make The Global Utilization Cycle o

Zap-Mass: Algorithms (Global L-Operation) (1/5)

How shall we give addresses to each record within many servers?

When we sort/search/etc. to the table, we change its record order. Swapping records takes vast cost because it moves records.

Then another option: swapping record number array is useful for a single computer system (“RecNo” array in the figure below).
However, that is not possible to the case of records are distributed to many servers.

Here | propose to separate that “RecNo” into two parts: 15 is record number in local (“RecNo”), 2" is record order in global (“GOrd”).

The features of “GOrd”.

Age Gend. Adrs

) R The “GOrd” has the following features.
node-0 1 s M |East 1. Always in ascending order. Then searching out a designated value is easy.
2 9 F [North 2. Always unique through all nodes.
3 4 M |South 3. lItsvalueis from 0 to (N-1), where N is the total count of records through all nodes.
Age Gend. Adrs L/ H 7”7
o oo Then, what is “sorting”?
node-1 1 9] M |East “Sorting” is to make “GOrd” and “RecNo” in each node.
2 8 F [West (LOCAL operation). At first, “RecNo” should be built in each node.
3 5 F_[North (GLOBAL operation). At next, “GOrd” should be built across nodes.

add
"GOrd"+"RecNo"

Then, what is “Global L Operation”?

GOrd ~ RecNo Age Gend. Adrs GOrd ~ RecNo Age Gend. Adrs Eyery|ocal operation is done by Zap-In efficiently.

oL o9 99 B P [West o990 30 8 F|West Then the global operation has limited variations only because that
il 11 11 5] M |[East il 11 11 5] M [East handles about the int q t |

o 2l 2 2/ 2 9 F [North ol 42 o2 o F [North andies about the inter-node matters only. - _

3 3l 3l 3l 3 2 M Isouth 3 ol 3 2| 3 2 ™M ISouth (Almost all part has done at the local operation, at first.)

Sort by Age
GOrd ~ RecNo Age Gend. Adrsqord RecNo Age Gend. Adrs “Global L(Ladder) Operation” is the name of those global

0 4 0 0| 0 6/ M [South 0 2| 0 31 0 6/ M |South operations.

1 5 1 111 9] M |[East 1 3 1 0] 1 9] M |East

2 6| 2 2| 2 8| F [West 2 5| 2 2| 2 8| F |West 51
3 70 3 3] 3 5/ F [North 3 70 3 1 3 5/ F [North

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (2/5)

Initial State

15t Step

node 0 GOrd RecNo Gender Age
o o0 0 0| F 8 Original Image
1 1 1 1 M 6
A 2 2l M 6 /Gender Age\
3 3 3 3 F 8 o] F 8
1 M 6
2l M 6
nodel GOrd RecNo Gender Age 3| F 8
o 4 0 0| M 7 4 M 7
1l 5 1 1l M 6 5/ M 6
2| 6 2 2| F 7 6| F 7
31 7 3 3l M 8 7 M 8
8| F 8
9| F 7
node2 GOrd RecNo Gender Age 10| F 7
0] 8 0 o] F 8 111 ™M 8
11 9 1 1 F 7
2| 10 2 2| F 7 \
3] 11 3 3] M 8
node 0 GOrd RecNo Gender Age
o - 0 o F 8
1 3 1| M 6
2 1 2l M 6
3 2 3| F 8
nodel GOrd RecNo Gender Age
0 2 0 M 7
1 0 1l M 6
2 1 2| F 7
3 3 3l M 8
node2 GOrd RecNo Gender Age
o - 0 0| F 8
1 1 1 F 7
2 2 2l F 7
3 3 3l M 8

The case of the sort by “Gender”.

| explain the sort by “Gender” that starts from the initial state.

Original Image of the table in the top figure is divided into three parts and
puttonodeO, 1, 2.

Then initially, “GOrd” and “RecNo” should set as shown in the figure.

The 1%t step: Local sort

The first step starts from Local sort.
You can see the result in the figure “15t Step.”
At this moment “GOrd” is cleared.

52
This document is provided by JAXA.

2nd Step

3rd Step

Right

node 0 GOrd RecNo Gender Age
o - 0 o F 8
1 3 1 M 6
2 1 2l M 6
3 2 3] F 8

nodel GOrd RecNo Gender Age
0 2 0 M 7
1 0 1 M 6
2 1 2l F 7
3 3 3] M 8

node2 GOrd RecNo Gender Age
0 0 o F 8
1 1 1 F 7
2 2 2l F 7
3 3 3l M 8

Right

Right

Left

Right

Left

Right

Left

— key —

Gender node# Occur.

F

0

2

M

0

2

F

0

0

— key —
Gender node# Occur.

F

1

1

M

1

3

F

1

1

— key —
Gender node# Occur.

F

2

3

M

2

1

F

2

2

Right

The 2n9 step: Tabulation in each node

The second step is tabulation in each node.
As shown in the left upper figure, each node makes the structure shown in
the figure. (I named these structures as “Right/Left L-Structure”).

The L-Structures has “key field” and “occurrence” field.
The “key field” includes “sort key’s value” and “node number.”
The “key field” is in ascending order always.

The Right L-Structure’s Occurrence field keeps occurrence count in its node.
The Left L-Structure’s Occurrence field is cleared at this moment.

Until this step, everything has done in each node. (= Local Operation)

The 3 step: Send out of “Right L-Structures”

From this third step, the Global Operation begins.
Each node sends out its Right L-Structure to every node including itself.

53
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (4/5)

4% Step The 4t step: L-Operation (explained in node-1’s case)
node-1 node-0 The 4t step: L-Operation has 3 sub-steps.
Left Oceur. Right Oceur. (note that node-1 has 3 copies of Left L-Structures at most.)
‘1) '\FA 1 Zi - (1’ ,\F/l 8 ; (This number: 3 is perfect cluster’s size.)
< key — — key — Sub-step 1:
node-1 node-1 Receive Right L-Structure from node-0, node-1, node-2.
Left Oceur Right Oceur Each Left L-Structure side works as follows.
(1) ,\FA 1 _21 - (1) ,\FA 1 i 1. Pick Right key from top to bottom one by one and
P P find out the Left key which is minimum and exceeds the Right Key.
node-1 node-2 2. Add Right L-Structure’s Occurrence to Left L-Structure’s found out
Left Occur. Right Oceur. record’s Occurrence.
opF | 1]0 - oF |23 3. Wait every Left L-Structure updated.
1| M 1 ->3 1| M 2 1
— key = — key — Sub-step 2:
+) Sum up every Left L-Structure into one.
node-1 node-1 SUb-Step 3:
Left Oceur. Left Occur. Aggregate Left L-Structure’s Occurrence.
o F | 1]2 ‘)0 Fl 1]2 This Left L-Structure’s Occurrence means:
UM | oy M| 1] 8 “GOrd” in node-0 having value: “F” starts from 0,
ke o ke “GOrd” in node-0 having value: “M” starts from 6.
“GOrd” in node-1 having value: “F” starts from 2,
node-0 Left Oceur. “GOrd” in node-1 having value: “M” starts from 8.
o0 Flojo “GOrd” in node-2 having value: “F” starts from 3,
Y M 6 “GOrd” in node-2 having value: “M” starts from 11.
node-1 Left Occur.
0] F 1 2
ymijtrg]e Note:
node-2 Left Oceur. L-Operation efficiently runs because it is a comparison between two ascending order keys.
of F T 27 3
v T2z T L-Operation succeeds independently from the order of receiving Right L-Structures. 54

This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (5/5)

The 5% step: End up of Global L-Operation.

Each node has Right L-Structure which keeps how many times each “Gender” value exists. (In the Figure, blue arrow)
Each node has Left L-Structure which keeps GOrd’s start value corresponding to each “Gender” value. (In the Figure, red arrow)

5th Ste node 0 GOrd RecNo Gender Age — key —
p
(F)o ->@10\ 4—E 8 | | Gender node# Occur.
P EEE——
M1 ->1] 3 [JTo—m] 6 Right 0o F o)
(M) 2 _>@ ~ M. 5 1l 0 @
M3 ->7] 2 3F——3__|
—
T Tert—a| _F (0
1 ®
nodel GOrd RecNo Gender Age — key —
(F)o —>@-q2\ H‘M——L\ Gender node# Occur.
) 1] ~(®fe0_ [T 6 Right o F T 1t
M) 2] ->9 1 L=k 7 M] @
(M)3[->10] 3 3l M 8 T
Left RO
il ™ T
node2 GOrd RecNo Gender Age — key —
o Beo || of F | s Gender node# Occur.
M1 >4 1 ~e | 7 ioht 0l _F 2 3
(F)2| ->5 2 2| F 7T 1l M 2 1
.
(M) 3] ->[(D3]] 8
it o F | 7+0
1| M 2@

Global L-Operation satisfy following.
1. Universality (not proven in this document)
2. Symmetry (obvious by this document)
3. Independence from processing order
(obvious by this document)

4. Divisibility of communication packets
(not proven in this document)

Global L-Operation Contributes to
Making Preemptive Multi-Tasking of
Massive Parallel RDB System.

55
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: The Expected Usage

S B (zovss |EEEE The expected usage of Zap-Mass
—p] (12RO IEN) e (|ts functions are similar to Zap-In except for the size of Big

Big Data'’s

— massive parallel, f—— L o
Za.:-]R-In @ kpreemptwe multitasking RDBJ Za1|-:|R-In @ Data. many trI”IOhS VS. 2 b||||on)

L L/
v 2 1. Itimports Zap-In/Over/Mass TR or CSV.
Zap-Mass TR 2. It does checking/transformation/calculation/matching/... to the imported.
(Table Representation) If necessary, it uses local DW.
If necessary, it saves these results in its local DW.
' * 3. It exports process results or extracted data from its local DW, in the format of
Zap-In/Over/Mass TR or CSV.

56
This document is provided by JAXA.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Other Issues

| mentioned about the Application / Architecture / Algorithms of Zap-Mass.
However, to design a real preemptive multi-tasking massive parallel RDB system,
many other issues should be discussed.

For examples,
1. Other Global L-Operations.
. How to switch these tasks.
. How to check the results.
. How to re-map resources.
. How to manage the system.
. How to recover from malfunctions.
. Expected performances of Zap-Mass.

N o b WWN

| make the chances to discuss them.

57
This document is provided by JAXA.

Zap-Mass: Patents

Several
Patents are
Pending

This document is provided by JAXA.

59
This document is provided by JAXA.

Visit our home pages
to see more!

http://turbo-data.co.jp/en/

https://WwWWw.ess-g.com/

http://turbo-data.co.jp/en/

