
Make

The Global Utilization Cycle of
Big Data

Shinji FURUSHO

Turbo Data Laboratories, Inc.

http://turbo-data.co.jp/en/

rev. 3.1

March. 11th, 2019

1
This document is provided by JAXA.

http://turbo-data.co.jp/en/

Contents -1
• Introduction

• Preface

• Abstract (1/4)

• Abstract (2/4)

• Abstract (3/4)

• Abstract (4/4)

• The contrast between these 3 systems

• How the Big Data’s Globally Connected Cycle Works

• Zap-Over
• Zap-Over: Zap Over Network

• Zap-Over gives “mobility” to Big Data

• For what the Big Data’s Browser is?

• What is the Big Data’s Browser?

• Demonstration (1/2)

• Demonstration (2/2)

• The power of the algorithm

• Why is the Big Data’s Browser possible

• Target Sort – 0

• Target Sort – 1

• Target Sort – 2

• Multi-Value helps many kinds of Search

• Other possible functions

2
This document is provided by JAXA.

Contents -2
• Zap-Over works with Zap-In

• Zap-Over: About Patents

• Zap-In
• Zap-In: Zap In Memory

• The absence of acceleration methods can cover every field/subset/operation

• For What “Zap-In: Big Data’s Spreadsheet” is?

• How Zap-In solved said 5 legacy problems

• Benchmark against Pandas

• Zap-In: The Elements of the Data Structure

• Zap-In: Two conditions arbitrary cascading of algorithms meaningful

• An algorithm example: Parallel Sort

• An algorithm example: Parallel Sort - 0

• An algorithm example: Parallel Sort - 1

• An algorithm example: Parallel Sort - 2

• An algorithm example: Parallel Sort - 3

• Zap-In; What The Big Data’s Spreadsheet with Relational Algebra support, achieved

• Zap-Mass
• Zap-Mass: Zap Massive Parallel

• Zap-Mass: Why Preemptive Multi-Tasking?

3
This document is provided by JAXA.

Contents -3
• Zap-Mass: How Can We Make Preemptive Multi-Tasking

• Zap-Mass: Architecture (The Perfect Clusters’ Ring)

• Zap-Mass: Algorithms (Global L-Operation) (1/5)

• Zap-Mass: Algorithms (Global L-Operation) (2/5)

• Zap-Mass: Algorithms (Global L-Operation) (3/5)

• Zap-Mass: Algorithms (Global L-Operation) (4/5)

• Zap-Mass: Algorithms (Global L-Operation) (5/5)

• Zap-Mass: The Expected Usage

• Zap-Mass: Other Issues

• Zap-Mass: Patents

• Visit our home pages to see more

4
This document is provided by JAXA.

5
This document is provided by JAXA.

To use Big Data is not easy.
To use free combinations of Big Data is impossible at all.
When they become easy,

1. Everyone enjoys Big Data as contents located all over the world.
2. Big Data Markets appear.
3. Services which mash up Big Data like advanced analytics*1, forecasts *2, simulations*2 appear.
4. Technologies depending on Big Data like AI and optimizations improve to the next level.

What prevents to use of Big Data is
1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

I solved those problems 1 to 3 above by three technologies named Zap-Over, Zap-In, and Zap-Mass.
Moreover, I suggest solving the 4th problem through the combination of these three technologies.
These challenges started in 1995. I’m glad to introduce them here.

*1. Current analytics like BI cannot refer or handle Big Data.
*2. Forecasts and simulations need to gather and combine many kinds of Big Data, but that is almost impossible.

6

Make The Global Utilization Cycle of Big Data;

Preface

This document is provided by JAXA.

7

Make The Global Utilization Cycle of Big Data;

Abstract (1/4)
What prevents to use Big Data is

1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

The 1st problem has solved by the technology named Zap-Over.

By Zap-Over, we can create a Big Data’s Browser can handle trillions of records across clouds.

1. It can make a virtual union table immediately from arbitrary picked up tables
having trillions of records, having different schemas, and located in many clouds.

2. It can browse that virtual union table both in record order view and sorted order view of any field.
3. It can make a search to the virtual union table by any field’s value quickly.

This Zap-Over comes possible by a new sorting technology named “Target Sort”.
It can make sort with about O(log(n)) steps, because it sorts only the required point.
Because of that, Zap-Over can handle trillions of records easily.

Because Zap-Over uses a sort, it works well to any combination of data unlike legacy technologies like B-Tree.
So, Zap-Over can handle arbitrary combination of tables.

Zap-Over’s first trial version is running since 2013 at Tokyo Regional Taxation Bureau for tracing worldwide money transactions.

This document is provided by JAXA.

8

Make The Global Utilization Cycle of Big Data;

Abstract (2/4)
What prevents to use Big Data is

1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

The 2nd problem has solved by the technology named Zap-In.

By Zap-In, we can create a Big Data’s Spreadsheet with Relational Algebra support.

It can handle usual tables and virtual join tables having up to 2 billion records.
With it, we can do every operation expected to Big Data’s Spreadsheet with Relational Algebra support,

edit/calculate/search/sort/tabulation/type conversion/set operations/categorization/matching/union/join/extract …

That becomes possible by the data structure called Zap-In TR and many algorithms whose inputs/outputs are Zap-In TR.
Because Zap-In TR has dual functions:

1. It is data from one side,
2. It is a base of efficient algorithms from another side.

Then we can use Zap-In TR as data, and can use it as a base of so many algorithms which can every field, subset, and operation.

Zap-In has been used from 2002 in many sites aerospace, nuclear plant, credit card company, huge chemical industry, and others.

This document is provided by JAXA.

9

Make The Global Utilization Cycle of Big Data;

Abstract (3/4)
What prevents to use Big Data is

1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

The 3rd problem has solved by the technology named Zap-Mass.

By Zap-Mass, we can create a Big Data’s Massive Parallel RDB with preemptive multi-tasking.

To handle true Big Data, we have to use massive parallel system.
However, it was impossible to run jobs in massive parallel system over preemptive multi-tasking environment until now.
Then the system is unreliable, inefficient, and not easy to manage/use.

To enable preemptive multi-tasking over massive parallel system, we hope algorithms between nodes to have following features.
1. Universality:
2. Symmetry:
3. Independence from processing order:
4. Divisibility of communication packets:

When Zap-In runs inside each node, then inter-node algorithms have said four features.

Moreover, good inter-node architecture is necessary. Here I propose multi-ring architecture having following features.
1. Symmetry:
2. Two directions of communication paths:
3. Divisibility of communication paths:

This document is provided by JAXA.

10

Make The Global Utilization Cycle of Big Data;

Abstract (4/4)
What prevents to use Big Data is

1. No mobility.
2. The absence of acceleration methods which can cover every field, subset, and operation.
3. The absence of preemptive multi-tasking technology of the massive parallel system.
4. The absence of methodology to make the global utilization cycle of Big Data.

The 4rd problem has solved by the combination of Zap-Over/In/Mass.

Zap-In/Mass TR
(Table Representation)

Zap-In*2/Mass*3

・Format conversion
・Data management
・Data Processing

Zap-Over*1

・Virtual Union
・Browse and Search
・Simple Tabulation

Zap-Over TR
(Table Representation)

*A *B

*C

*D
*E

*F

*G

*X *Y

*Z

*a *a

*a

*b *c

This document is provided by JAXA.

Technology name
(Data Structure Name)

Architect
ure

Enabled Application Theme Products/Achievements

Zap-Over
(Zap-Over TR)

On Disk Big Data’s Browser can make union
tables having trillions of records
distributed across clouds

To reduce sorting steps
down to about O(log(n))

Tokyo Regional Taxation Bureau

Zap-In
(Zap-In TR)

In
Memory

Big Data’s Spreadsheet with
Relational Algebra support

To enable free cascading of
any algorithm of any subset

• Sakura’s Analytics
• I licensed patents to

SAP/NEC/Fujitsu/…

Zap-Mass
(Zap-Mass TR)

Massive
Parallel

Big Data’s RDB everyone can use To enable preemptive multi-
tasking of massive parallel
system

-

Zap-Over is a technology for Big Data’s Browser can handle trillions of records across clouds.
It is enabled by the theme 1: reducing sorting steps down to about O(log(n)).
It can make a virtual union table from tables having trillions of records distributed across clouds.
It can browse and search the virtual union table smoothly and quickly.
It bases upon on-disk technology.

Zap-In is a technology for Big Data’s Spreadsheet with relational algebra support.
It is enabled by the theme 2: free cascading of arbitrary algorithms/subsets.
It can handle up to 2 billion records.
It bases upon in-memory technology.

Zap-Mass is a technology for Big Data’s RDB every one can use.
It is enabled by the theme 3: preemptive multitasking of massive parallel system.
It can handle tables having trillions of record.
It runs stably, reliably, efficiently, quickly, flexibly and it is easy to use.
It bases upon massive parallel technology.

11

Make The Global Utilization Cycle of Big Data;

The contrast between these 3 systems

This document is provided by JAXA.

LayoutingBatch

Big Data’s Spreadsheet with Relational Algebra support

Big Data’s Browser across clouds

Image
Processing

Quantum Computing

AI

Analytics

Scientific
Calculation

2. Zap-In
(Zap In Memory)

1. Zap-Over
(Zap Over Network)

3. Zap-Mass
(Massive Parallel) Big Data’s massive parallel RDB

with preemptive multi-tasking

12

The Big Data’s Spreadsheet
allows non-professional

users to process Big Data.

The Big Data’s Browser,
allows non-professional
users to fetch Big Data

across clouds.

The Big Data’s massive-
parallel RDB

with preemptive multi-task,
allows non-professional

users to process Big Data.

Scheduling

Make The Global Utilization Cycle of Big Data;

How the Big Data’s Globally Connected Cycle Works

This document is provided by JAXA.

13
This document is provided by JAXA.

14

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

Zap-Over: Zap Over Network

Come to our home page to see
Zap-Over demo.

http://turbo-data.co.jp/en/

This document is provided by JAXA.

15

“No Mobility” problem arises because
1. You cannot access it without a system dedicated for it.
2. You cannot download it.
3. You cannot combine arbitrary Big Data.

Zap-Over gives “mobility” to Big Data, it enables
The Big Data’s Browser can handle trillions of records across clouds

1. You can browse/search Big Data Tables only with a software: “The Big Data’s Browser.”
2. You can download Big Data Tables by selecting out where you need by the browser.
3. You can make a Big Data’s virtual union table from arbitrary Big Data tables across clouds

by the browser.
Moreover, you can browse/search the virtual union table with it.
Moreover, you can download the union table by selecting out where you need with it.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

This document is provided by JAXA.

16

For what the Big Data’s Browser is?

For User Side:
1. Hopping to another Big Data immediately→ fig 1
2. Browsing the Big Data smoothly → fig 2

Sort Views of each field / Record Order View
3. Searching the Big Data quickly → fig 3
4. Downloading a part of Big Data → fig 4

For Cloud Side:
1. You can provide Big Data service by just putting a file

fig. 1. Hopping combined Big Data Table

fig. 2. Two way browse:
Sort View/Record Order View

fig. 3. Searching of Big Data fig. 4. Downloading of Big Data
@2012

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

This document is provided by JAXA.

17

What is the Big Data’s Browser?

1. It can create a virtual union table from any Big Data table
• Having Trillions of records,
• Having different Schemas and
• Distributed across Clouds.

2. It gives a two-way view of that virtual union table
• Record order view,
• Sort view by any field

→ Sort view enables search

Record Order View Sort View Sort View

Original Table 0 (by Gender) (by Age)

0 F 8 RecNo RecNo

1 M 7 0 F 8 0 F 8 0 0 M 6 2

2 M 6 1 M 7 1 F 7 3 1 M 6 4

3 F 7 2 M 6 2 F 8 5 2 M 7 1

3 F 7 3 F 7 7 3 F 7 3

Original Table 1 4 M 6 4 M 7 1 4 F 7 7

0 M 6 5 F 8 5 M 6 2 5 F 8 0

1 F 8 6 M 8 6 M 6 4 6 F 8 5

2 M 8 7 F 7 7 M 8 6 7 M 8 6

3 F 7

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Big Data’s Browser across Clouds

This document is provided by JAXA.

18

Sample Data @2012
File number: 1 File number: 2

File name: Sc4billionx6.D5A File name: Sc2billionx6.D5A

File size: 842,000,113,664 bytes File size: 420,735,533,536 bytes

Number of rows: 4,000,000,000 Number of rows: 2,000,000,000

Number of fields: 6 Number of fields: 6

Field 1. Integer 64 bit Field 1. Integer 64 bit

 Name: int1K Name: int1K

 Cardinality: 1,000 Cardinality: 1,000

Field 2. Integer 64 bit Field 2. Integer 64 bit

 Name: int2G Name: int2G

 Cardinality: 2,000,000,000 Cardinality: 1,000,000,000

Field 3. Double Field 3. Double

 Name: Dbl1K Name: Dbl1K

 Cardinality: 1,000 Cardinality: 1,000

Field 4. Double Field 4. Double

 Name: Dbl2G Name: Dbl2G

 Cardinality: 2,000,000,000 Cardinality: 1,000,000,000

Field 5. String Field 5. String

 Name: Str1K Name: Str1K

 Cardinality: 1,000 Cardinality: 1,000

Field 6. String Field 6. String

 Name: Str2G Name: Str2G

 Cardinality: 2,000,000,000 Cardinality: 1,000,000,000

Make The Global Utilization Cycle of Big Data;

Zap-Over: Big Data’s Browser
Demonstration (1/3)

Record Order View Sort View

30B

Terminal

2B

2B

2B

4B

4B

4B
4B

4B

4B

This document is provided by JAXA.

19

Make The Global Utilization Cycle of Big Data;

Zap-Over: Big Data’s Browser
Demonstration (2/3)

1. It makes a virtual union table having 30B records.
2. Next, it shows scroll of that 30B in the record order view.
3. Next, it shows a sort view and operations (search, etc.) in it.

See the hit result having 9B is sorted and shown immediately.
See the sort view is linked to the record order view.

Come to our home page to see
Zap-Over demo.

http://turbo-data.co.jp/en/

This document is provided by JAXA.

20

Make The Global Utilization Cycle of Big Data;

Zap-Over: Big Data’s Browser
Demonstration (3/3)

This document is provided by JAXA.

21

The power of the algorithm
As a performance example, Zap-Over can sort with about
O(log(n)) steps where n is the count of records.

With it, we can browse and search any virtual union of Big Data,
which have trillions of records and distributed across clouds.

It has been used in the real system at Tokyo Regional Taxation
Bureau since 2013 to seek global money laundering: ‘4S
System’.

It could show only x1,000 total performance than a former
system made of SQL Server that took 15~20 minutes each
search; allowed 1~2 persons to use simultaneously.

However, it could have shown much more performance if it
didn’t need to compress HDD and it could use SSD.

Make The Global Utilization Cycle of Big Data;

Zap-Over: The power of the algorithm

This document is provided by JAXA.

22

Why is Big Data’s Browser possible?
I have developed “Target Sort,” that can sort trillions immediately.
Because of it, I can sort any union of one-dimensional arrays instantly.
When I can sort, I can browse/search at once.
So, Big Data’s Browser comes true.

Why is the sorting of trillions possible?

Think about the case you use a dictionary. Every article in the dictionary is in order.

However, you don’t care articles are not in order, which you don’t use.

For example, if a dictionary has 1,000,000,000,000 articles inside, we use
log2(1,000,000,000,000) = 40 articles for one search. You don’t care other articles
are not sorted.

For another example, for a browser’s sort view, we need only 100 articles at most at
one time.

The target sort, unlike other sorts, outputs the pinpoint where you need. So, it can
return an answer immediately unlike others.

I show the target sort’s algorithm in the following pages.

Before 1st 2nd 3rd 4th

A A A A A

B B B B B

C C C C C

D D D D D

E E E E E

F F F F F

G G G G G

H H H H H Hit!

I I I I I

J J J J J

K K K K K

L L L L L

M M M M M

N N N N N

O O O O O

P P P P P

Q Q Q Q Q

R R R R R

S S S S S

T T T T T

U U U U U

V V V V V

W W W W W

X X X X X

Y Y Y Y Y

Z Z Z Z Z

Serach for "H"

You don’t care,
the gray parts

are not in order

Make The Global Utilization Cycle of Big Data;

Zap-Over: “Target Sort” Can Sort Trillions.

This document is provided by JAXA.

Zap-Over TR (Table Representation)

Original Data SVL Aggr INV

0->4 C 0 A 0 1 0 3->7

1->5 B 1 B 1 3 1 1->5

2->6 B 2 C 2 4 2 2->6

3->7 A 3 0->4

23

An algorithm example:

Target Sort – 0
Initial State

Cloud side:
In the figure, there is an original data array in each cloud. (See the terminology also)

The cloud side should make SVL/Aggr/INV arrays from the original data before providing
• SVL by extracting values included in each array.
• Aggr by counting up each value’s occurrences first and aggregation next.
• INV by sorting the original data array with its subscripts.

Then each element in Aggr means, how many values (records) appears less than or equal to the value in the
SVL put at the corresponding position. That is the crucial point enabling the target sort.

At last, the cloud side packs up Original Data/SVL/Aggr/INV into “one Big Data file” usually.

Terminal side:
The terminal in the figure selects arbitrary Big Data files across clouds and open them.

To show the record order view:
Just access the original data arrays adjusting their subscripts at reading out time.
(No need to rewrite/overwrite)

To show the sort view:
That is the target sort! See the following pages.

Terminology
SVL: Sorted Value List
Aggr: Aggregation of occurrences
INV: Inverted record number array

Fig 1. target sort

Zap-Over TR (Table Representation)

Original Data SVL Aggr INV

0 D 0 A 0 2 0 1

1 A 1 B 1 3 1 3

2 B 2 D 2 4 2 2

3 A 3 0

Record order view Sort View

0 D 0 A 1

1 A 1 A 3

2 B 2 A 7

3 A 3 B 2

4 C 4 B 5

5 B 5 B 6

6 B 6 C 4

7 A 7 D 0

Table-1

Table-0

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Target Sort’s algorithm

This document is provided by JAXA.

24

An algorithm example:

Target Sort – 1
Walk Through

1. Seek belonging value

2. Seek belonging table

3. Calculate the offset in
the Table

4. return INV value

1. Walking through
Try to identify sort view’s record #5 (Fig. 1)

The goal of target sort is to return the record order view’s record number
corresponding to the given sort view’s record number (this time it is #5).

We can know how many records are there having values less than or equal to any
value in SVL, by reading out the element in Aggr at the corresponding position of a
value in SVL.

(Following steps is for the case of just after a new record number #5 in the sort view
given. Note giving previous/next record number of the sort view, after you got one, is
far easier.)

(Sort view’s record number = 5)
Step 1. Seek belonging value → belonging value = “B”
Step 2. Seek belonging table → belonging table = Table-1
Step 3. Calculate the offset in the table → Offset = 1
Step 4. return INV value → record order view’s record number = 6

Record order view Sort View

0 D 0 A 1

1 A 1 A 3

2 B 2 A 7

3 A 3 B 2

4 C 4 B 5

5 B 5 B 6

6 B 6 C 4

7 A 7 D 0

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Target Sort’s algorithm

This document is provided by JAXA.

25

An algorithm example:

Target Sort – 2
Decide belonging value

1. Seek belonging value

2. Seek belonging table

4. return INV value

2. Each Step
Try to identify sort view’s record #5 (Fig. 1)

We can know how many records are there having values less than or equal to any
value in SVL, by reading out the element in Aggr at the corresponding position of a
value in SVL.

I show the steps to get the sort view’s record #5.
These step’s goal is to get the record order view’s record number corresponding to
the sort view’s record number #5. (See Fig. 1 at the above page.)
(Following steps is the case of when a new sort view’s record number #5 has given.)

Step 1. Seek belonging value → “B”
We can decide which value the sort view’s record number #5 belongs, by a similar
way of the bisection search, by upping/downing the reference value got from SVLs.
This case the belonging value is “B.”
Step 1 needs about log2(m0)+log2(m1) times trials. (m0/m1: size of SVL in Table 0/1)

Step 2. Seek belonging table → Table-1
We can know how many records exist having values less than “B” in all tables.
Moreover, we can know how many records exists having “B” in each table.
Then we can know to which table the sort view’s record number #5 belongs.

Step 3. Calculate offset → Offset = 1
Table-1’s “B” starts from sort view’s record #4, then the offset = #5 - #4 = 1.

Step 4. return INV value → record order view’s record number = 6
Look up Table-1, “B” starts at 1 in INV.
Because the offset is 1, the position in INV becomes 1 + 1 = 2.
We get INV[2] = 2; Then adding total record count before Table-1: 4 to it.
The answer is 2 + 4 = 6;

Make The Global Utilization Cycle of Big Data;

Zap-Over: The Target Sort’s algorithm

3. Calculate the offset in
the Table

This document is provided by JAXA.

26

Multi-Value helps many kinds of Search

For full text search → Table 1

For complex condition search → Table 2

Name Multi Value

Beth B,E,T,H,BE,ET,TH,BET,ETH,BETH

Ann A,N,AN,NN,ANN

Tom T,O,M,TO,OM,TOM

Condition Encoding

“F” and 8 → A

“F” and 9 → B

“M” and 8 → C

“M” and 9 → D

A or B → X

B or C → Y

C or D → Z

Gender Age Multi Value

F 9 B,X,Y

M 8 C,Y,Z

M 9 D,Z

F 8 A,X

Table 1. “Name” and Multi-Value Table 2. “Name” and Multi-Value

Make The Global Utilization Cycle of Big Data;

Zap-Over: “Multi-Value” helps many kinds of Search

This document is provided by JAXA.

27

Tabulation
Gender Age Gender Sum(Age)

F 9 F 17

M 8 M 17

M 9

F 8

Gender Age Gender Sum(Age)

F 10 F 19

F 9 M 14

M 6

M 8

Gender Age Gender Sum(Age)

F 9 F 36

M 8 M 31

M 9

F 8

F 10

F 9

M 6

M 8

Unit Conversion

g cm

1234 123

2345 234

kg m

3.141 3.141

2.718 2.718

g cm

1234 123

2345 234

3141 314.1

2718 271.8

Make The Global Utilization Cycle of Big Data;

Zap-Over: Other possible functions

This document is provided by JAXA.

28

Zap-Over and Zap-In works together

Zap-Over for Zap-In:
Gathering Big Data across clouds for Zap-In → fig 1

Zap-In for Zap-Over:
Making Zap-Over’s Big Data File → fig 2

fig. 1. Zap-Over for Zap-In

Zap-In Zap-In Zap-Over
File

fig. 2. Zap-In for Zap-Over

Zap-Over
File

Make The Global Utilization Cycle of Big Data;

Zap-Over works with Zap-In

This document is provided by JAXA.

29

Several
Patents are

Pending

Make The Global Utilization Cycle of Big Data;

Zap-Over: About Patents

This document is provided by JAXA.

30
This document is provided by JAXA.

31

Zap-In: Zap In Memory

Make The Global Utilization Cycle of Big Data;

Zap-In: The Big Data’s Spreadsheet with
Relational Algebra Support

Come to our home page to see
Zap-In demo.

http://turbo-data.co.jp/en/

This document is provided by JAXA.

32

“The absence of acceleration methods can cover every field/subset/operation”
is caused by 5 reasons.

1. Indexes such as hash and B-Tree are not attached to every field.
2. Indexes such as hash and B-Tree are not valid to subsets.
3. Indexes such as hash and B-Tree are available only for search.
4. Indexes such as hash and B-Tree use CPU time to create/maintain themselves.
5. Indexes such as hash and B-Tree use memory/storage.

Zap-In solved above 5 problems, and it enables
The Big Data’s Spreadsheet with Relational Algebra support.

1. It can handle usual tables; virtual join tables having up to 2 billion records.
2. It can do every operation expected to Big Data’s Spreadsheet with Relational Algebra support,

edit/calculate/search/sort/tabulation/type conversion/
set operations/categorization/matching/union/join/extract …

Make The Global Utilization Cycle of Big Data;

Zap-In: What enables Big Data’s Spreadsheet
with Relational Algebra support

This document is provided by JAXA.

33

Zap-In
(In Memory)
Big Data’s

Spreadsheet with
relational algebra

Zap-In TR
(Table Representation)

..

..

..

.. ..

..

..

Make The Global Utilization Cycle of Big Data;

For What “Zap-In: Big Data’s Spreadsheet” is?

For embedding into a system.*A (the right figure)
1. It imports Zap-Over/In/Mass TR or CSV.
2. It does checking/transformation/calculation/matching/so on,

to the imported data looking up local DW.
If necessary, it saves this data in its local DW.

3. It exports process results; data extracted from its local DW,
within the format of Zap-Over/In/Mass TR or CSV.

For Interactive Batch Processing.
1. Interactive Analytics of Big Data.
2. Interactive Data Cleansing / Data Transformation / Data Validation (inspection) …
3. Batch (including created ones as keyboard macro) BOM/MRP/…

*A. The fields Zap-In has been used are

aerospace/nuclear/university/medical_research/
chemical_plant/compute_factory/communication_industry/
financial/marketing/traffic/… fields. (See the figure left)

This document is provided by JAXA.

Minimum CPU Cost;
No Memory/Storage

Legacy (Indexes are attached to a few)

Zap-In’s case
(every field has acceleration mechanism)

34

The features of the algorithms of Zap-In are very favorable.
1. Homogeneity of fields; subsets: Every algorithm runs on any field with any subset in the same way.
2. Connectivity of algorithms: Possible to cascade almost every algorithm freely.

Because the inputs/outputs of these algorithms are always Zap-In TR.
3. Minimum CPU Cost: Almost all algorithms don’t use CPU to create and maintain acceleration mechanism.
4. No memory/storage: All algorithms don’t require memory/storage to keep the acceleration mechanism.
5. Affinity for parallel processing: Affinity for parallel processing.

Legacy (Indexes are attached to a few)

Homogeneity of
fields; subsets

Connectivity
of algorithms

Zap-In’s case
(every field has acceleration mechanism)

Zap-In TR/
Zap-Mass TR

Algorithm A

Algorithm B

Algorithm Z

…

Make The Global Utilization Cycle of Big Data;

How Zap-In solved said 5 legacy problems

Without
Index

With
Index

Homo-
geneity

This document is provided by JAXA.

We will
revenge

35

x 2.85
x 1.80
x 1.74
x 3.09

I/O processing

x 15.1
x 2.50
x 63.1
x160.0
x280.1
x529.1

Main processing

x 12.8
x 0.51
x 1.26
x 48.1
x 0.06 x 18

x 3

Misc. processing

*1

*2

Make The Global Utilization Cycle of Big Data;

Benchmark against Pandas

*1. Inadequate implementation of the calculation algorithm caused this. We will fix it expecting to raise the performance x3 than the Pandas.
*2. Miss-selection and combination of APIs caused this. If the measurement had done choosing the correct API, x18 times faster than Pandas.

Measured by
other company.

(Esperant
System)

This document is provided by JAXA.

36

The Essential Elements of the Data Structures

Zap-In’s Data Structure: Zap-In TR (Table Representation) has some elements.
The essential ones are ‘Ordered Set’ and ‘Sorted Value List.’

The Dual Nature of the Data Structures

The figure below shows Zap-In TR, the data structure of Zap-In.
If you access it from the OrdSet side, like “SVL[VNo[OrdSet[i]]],” that is equivalent to the Original Data.
If you access it from other ways, it becomes an Acceleration Mechanism.

With this dual nature yields many favorable features of algorithms. I discuss it on the next page.

Original Data Zap-In TR (Table Representation)

Gender Age

Gender Age OrdSet VNo SVL VNo SVL

0 F 10 i 0 0 0 0 0 F 0 1 0 9

1 M 9 1 1 1 1 1 M 1 0 1 10

2 M 10 2 2 2 1 2 1

3 F 9 3 3 3 0 3 0

Data(i) = SVL[VNo[OrdSet[i]]]

Ord Set: Ordered Set (Record Number List)

VNo: Value Number

SVL: Sorted Value List

=

1. Data

2. Acceleration
Mechanism

Zap-In TR has Dual Nature:
1. Data;
2. Base of the Acceleration Mechanism.

Make The Global Utilization Cycle of Big Data;

Zap-In: The Elements of the Data Structure

This document is provided by JAXA.

37

Zap-In can cascade every algorithm
because every algorithm takes Zap-
In TR as inputs/outputs.

Moreover, the stability of sort and
others Make cascades meaningful.

Then, we can accelerate every
combination of operations, that
was impossible when we used
index technologies.

Then Zap-In can create the Big
Data’s spreadsheet with relational
algebra support.

Original Data Zap-In TR (Table Representation)

Gender Age

Gender Age OrdSet VNo SVL VNo SVL

0 F 10 0 0 0 0 0 F 0 1 0 9

1 M 9 1 1 1 1 1 M 1 0 1 10

2 M 10 2 2 2 1 2 1

3 F 9 3 3 3 0 3 0

Gender Age

Gender Age OrdSet VNo SVL VNo SVL

0 F 10 0 0 0 0 0 F 0 1 0 9

1 F 9 1 3 1 1 1 M 1 0 1 10

2 M 9 2 1 2 1 2 1

3 M 10 3 2 3 0 3 0

Gender Age

Gender Age OrdSet VNo SVL VNo SVL

0 F 10 0 0 0 0 0 F 0 1 0 9

1 M 10 1 2 1 1 1 M 1 0 1 10

2 1 2 1

3 0 3 0

=

=

Sort by Gender

=

Search "Age = 10"

Zap-In can cascade every algorithm
because its inputs/outputs are always Zap-In TR.
Moreover, the stability of sort and others makes cascades meaningful.

Make The Global Utilization Cycle of Big Data;

Zap-In: Two conditions arbitrary cascading of algorithms
meaningful

This document is provided by JAXA.

C A B A C D A B D C

A good sort accelerates
tabulation/joining/distinct/… also

38

An algorithm example:

Parallel Sort

CPU CPU CPU CPU

Make The Global Utilization Cycle of Big Data;

Zap-In’s algorithm example: Parallel Sort

This document is provided by JAXA.

39

An algorithm example:

Parallel Sort – 0
Initial State

Zap-In’s sorting algorithm has the following features.

1. Can use multi-core easily mainly because the OrdSet is dividable.
2. Can be applied to any subset because the OrdSet is the subset.
3. Cascade-ability enabled by stability in sorting.

Then we can resolve multi-field sort of field-A and field-B,
into two sorts: sorting field-B at first and sorting field-A at last.

Confirm them by the explanation in pages after.

Zap-In TR

Original Table OrdSet VNo SVL

0 C 0 0 0 2 0 A

1 A 1 1 1 0 1 B

2 B 2 2 2 1 2 C

3 A 3 3 3 0 3 D

4 C 4 4 4 2

5 D 5 5 5 3

6 A 6 6 6 0

7 B 7 7 7 1

=

Make The Global Utilization Cycle of Big Data;

Zap-In’s algorithm example: Parallel Sort

This document is provided by JAXA.

40

An algorithm example:

Parallel Sort – 1
Count up phase

The first step of the sorting is
counting up.

(Not limited to sorting, to divide OrdSet is easy. Then
using multi-core becomes easy.)

At this phase, each core counts up, to know
how many time each VNo value appears
within each core’s range in OrdSet.

Core-0:
for (i = 0; i <= 3; i ++)

Count[0][VNo[OrdSet[i]]] ++;

Confirm that this phase is done entirely in
parallel.

Zap-In TR

OrdSet VNo Count[0] Count[1] SVL

0 0 0 2 0 0 0 0 0 A

1 1 1 0 1 0 1 0 1 B

2 2 2 1 2 0->1 2 0->1 2 C

3 3 3 0 3 0 3 0 3 D

4 4 4 2

5 5 5 3

6 6 6 0

7 7 7 1

Zap-In TR

OrdSet VNo Count[0] Count[1] SVL

0 0 0 2 0 2 0 1 0 A

1 1 1 0 1 1 1 1 1 B

2 2 2 1 2 1 2 1 2 C

3 3 3 0 3 0 3 1 3 D

4 4 4 2

5 5 5 3

6 6 6 0

7 7 7 1

Core-0

Core-1

Core-0 Core-1

Core-0

Core-1

Core-0 Core-1

Make The Global Utilization Cycle of Big Data;

Zap-In’s algorithm example: Parallel Sort

This document is provided by JAXA.

41

An algorithm example:

Parallel Sort – 2
Aggregation phase

The 2nd step of the sorting is aggregation.

By aggregation, we can calculate out each group’s
start position in the after sort OrdSet.

That group is defined primarily by position in SVL and
secondarily by core number.

k = 0;
for (row = 0; row <= 3; row++)

for (col = 0; col <= 1; col++) {
m = Aggr[col][row];
Aggr[col][row] = k;
k += m;

}

See, why the stability in sort is kept.

Zap-In TR

OrdSet VNo Aggr[0] Aggr[1] SVL

0 0 0 2 Count[0] Count[1] 0 A

1 1 1 0 0 2 0 1 1 B

2 2 2 1 1 1 1 1 2 C

3 3 3 0 2 1 2 1 3 D

4 4 4 2 3 0 3 1

5 5 5 3

6 6 6 0

7 7 7 1

Zap-In TR

OrdSet VNo Aggr[0] Aggr[1] SVL

0 0 0 2 0 0 0 2 0 A

1 1 1 0 1 3 1 4 1 B

2 2 2 1 2 5 2 6 2 C

3 3 3 0 3 7 3 7 3 D

4 4 4 2

5 5 5 3

6 6 6 0

7 7 7 1

Core-0

Core-1

Core-0 Core-1

Core-0

Core-1

Core-0 Core-1

Make The Global Utilization Cycle of Big Data;

Zap-In’s algorithm example: Parallel Sort

This document is provided by JAXA.

42

An algorithm example:

Parallel Sort – 3
Transfer phase

The 3rd(final) step of sorting is transferring
from the old to the new OrdSet.

Core-0:
for (i = 0; i <= 3; i++) {

k = Aggr[0][VNo[OrdSet[i]]] ++;
NewOrdSet[k] = OrdSet[i];

}

Core-1:
for (i = 4; i <= 7; i++) {

k = Aggr[1][VNo[OrdSet[i]]] ++;
NewOrdSet[k] = OrdSet[i];

}

Confirm that this phase is done entirely in parallel.

Zap-In TR

OrdSet VNo Aggr[0] Aggr[1] New Ord Set SVL

0 0 0 2 0 0 0 2 0 0 A

1 1 1 0 1 3 1 4 1 1 B

2 2 2 1 2 5->6 2 6->7 2 2 C

3 3 3 0 3 7 3 7 3 3 D

4 4 4 2 4

5 5 5 3 5 -> 0

6 6 6 0 6 ->4

7 7 7 1

Zap-In TR

OrdSet VNo Aggr[0] Aggr[1] New Ord Set SVL

0 0 0 2 0 2 0 3 0 1 0 A

1 1 1 0 1 4 1 5 1 3 1 B

2 2 2 1 2 6 2 7 2 6 2 C

3 3 3 0 3 7 3 8 3 2 3 D

4 4 4 2 4 7

5 5 5 3 5 0

6 6 6 0 6 4

7 7 7 1

Core-0

Core-1

Core-0 Core-1

Core-0

Core-1

Core-0 Core-1

Make The Global Utilization Cycle of Big Data;

Zap-In’s algorithm example: Parallel Sort

This document is provided by JAXA.

43

As Multi-Functional
Big Data’s DW

As Huge Batch
Processing System,

for a Computer
Manufacturer

It has been working since 2002 at
Space, Nuclear, Financial, Manufacturing, Medical, Marketing,
Telecommunication and Other Fields more than 200 sites.

Medical
Research

at
university

Financial

Chemical
Industory

Space

Nuclear

Make The Global Utilization Cycle of Big Data;

Zap-In; What The Big Data’s Spreadsheet with Relational
Algebra support, achieved

This document is provided by JAXA.

44

Zap-In and Zap-Over works together

Zap-In for Zap-Over:
It Makes Zap-Over’s Big Data File → fig 1

Zap-Over for Zap-In:
It Gathers Big Data across clouds for Zap-In → fig 2

Zap-In Zap-Over
File

fig. 1. Zap-In for Zap-Over fig. 2. Zap-Over for Zap-In

Zap-In

Zap-Over
File

Make The Global Utilization Cycle of Big Data;

Zap-In works with Zap-Over

This document is provided by JAXA.

45

Category Innere code Patent #

Searching/Tabulation/Sorting A1-6US US RE41,901 E1

JOINING B1-2US US6,721,751 B1

OLTP B2-2US US6,973,467 B1

Building Data Structure B4-2US US7,225,198 B2

Improved Joining B5-2US US7,184,996 B2

Joins to tree B6-2US US7,467,130 B2

Scope B7-2US US7,882,114 B2

Parallel Sort L1-2US US7,801,903 B2

Parallel Sort 2 L1-2DUS US8,065,337 B2

Parallel Merge/Matching L2-2US US7,890,705 B2

These patents have been licensed to SAP, NEC, Fujitsu, etc.

Patents

Make The Global Utilization Cycle of Big Data;

Zap-In’s Patents in U.S.A

This document is provided by JAXA.

46
This document is provided by JAXA.

47

Zap-Mass: Zap Massive Parallel

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Big Data’s Massive Parallel RDB with
Preemptive Multi-Tasking support

This document is provided by JAXA.

48

• With Preemptive Multitasking for Massive Parallel, We Have
1. Reliability: We can detect and swap defect nodes easily and immediately,
2. Efficiency: We can fill tasks to the idle nodes,
3. Easiness to use: We can start a task at any time,

can watch tasks’ status easily,
can change tasks’ status easily: priority, resources’ mapping, others,
can stop tasks immediately.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Why Preemptive Multi-Tasking?

This document is provided by JAXA.

49

Make The Global Utilization Cycle of Big Data;

Zap-Mass: How Can We Make Preemptive Multi-Tasking

We have to invent “the Application + the Architecture + the Algorithms” at one time.
1. The application is Big Data’s RDB.
2. The inside-node architecture should be any architecture which can deploy Zap-In.
3. The inter-node architecture should be like following.

1. Symmetry: Symmetric architecture makes system management easy.
2. Two directions of communication paths:

To run many kinds of tasks at one time, we need to assign each task resources and priorities.
We hope we can mix “high performance but expensive” and “low performance but cheap” at various levels.
The vertical direction is high performance, and ring-wise direction is low cost.

3. Divisibility: We have to handle middle or small data sometimes. So, the architecture should be divisible.

→ Architecture named “The Perfect Cluster’s Ring” satisfies these features above. (See fig.1 left below)

0: Zap-In

1: Zap-In

2: Zap-In

3: Zap-In

4: Zap-In

4. The inside-node algorithms we use is Zap-In.
5. The inter-node algorithms we need should be like following.

1. Universality: Algorithms for it should cover enough kinds of processing.
2. Symmetry: Symmetric algorithms between nodes help to manage multi-tasking.
3. Independence from processing order: This also helps to manage multi-tasking.
4. Divisibility of communication packets:

This feature helps to reduce the granularity of tasks because the tasks of each node
cannot be switched while it is receiving a packet.*A

→ Algorithms named “Global L Operations” satisfy these features above.

Fig. 1. The Perfect Cluster’s Ring
*A. About a few microseconds, the architecture and algorithms allow different tasks to run in different nodes.

Moreover, different segments(node groups) can deploy different tasks at the same time.

This document is provided by JAXA.

50

n03
ring 0 n02 n02

data data
n00 n01

 n13 n12
 n12

ring 1
n10 n11

n22
 n23

 n22

ring 2

n20 (ring-wise)
data n21 data : data passed to next

 (inter ring-wise)
: data not passed to next

n03

ring 0 n02

n00 n01

 n13
 n12

ring 1 n10

 n11

 n23
 n22

ring 2
n20

n21

n03

ring 0 n02

n00 n01

 n13
 n12

ring 1
n10 n11

 n23
 n22

ring 2
n20

n21

Fig. A. Whole Structure

Fig. B. Division by Ring-wise Fig. C. Division by Layer-wise

What is “The Perfect Clusters’ Ring”? (See Fig. A)
Every node belonging to one vertical group like (n02, n12, n22) has a direct path to send and
receive packets to each other.
I named this architecture “Perfect Connection.” It has the best performance but expensive
when the number of nodes becomes huge.

On the other hand, a ring-wise path is one directional. It has low performance but low cost.

The perfect clusters’ ring includes the combination of “perfect connection” and “rig-wise
path,” which is suitable to keep tasks having various size of data/priorities with balancing
performance and cost.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Architecture (The Perfect Clusters’ Ring)

Divisibility in two directions. (See Fig. B, C)
It is evident that the perfect clusters’ ring is divisible in ring-wise and layer-
wise. Moreover, each divided part can be divided again.
It still keeps the following three features:

1. Symmetry,
2. Two Directions,
3. Divisibility again after division.

The inter-node architecture should be like following.
1. Symmetry: Symmetric architecture makes system management easy.
2. Two directions of communication paths:

To run many kinds of tasks at one time, we need to assign each task resources and priorities.
We hope we can mix “high performance but expensive” and “low performance but cheap” at various levels.
The vertical direction is high performance, and ring-wise direction is low cost.

3. Divisibility: We have to handle middle or small data sometimes. So, the architecture should be divisible.

(Reprint)

This document is provided by JAXA.

51

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (1/5)

Age Gend. Adrs

0 8 F West

node-0 1 5 M East

2 9 F North

3 4 M South

Age Gend. Adrs

0 6 M South

node-1 1 9 M East

2 8 F West

3 5 F North

GOrd RecNo Age Gend. Adrs GOrd RecNo Age Gend. Adrs

0 0 0 0 0 8 F West 0 0 0 3 0 8 F West

1 1 1 1 1 5 M East 1 1 1 1 1 5 M East

2 2 2 2 2 9 F North 2 4 2 0 2 9 F North

3 3 3 3 3 4 M South 3 6 3 2 3 4 M South

GOrd RecNo Age Gend. Adrs GOrd RecNo Age Gend. Adrs

0 4 0 0 0 6 M South 0 2 0 3 0 6 M South

1 5 1 1 1 9 M East 1 3 1 0 1 9 M East

2 6 2 2 2 8 F West 2 5 2 2 2 8 F West

3 7 3 3 3 5 F North 3 7 3 1 3 5 F North

Sort by Age

add
"GOrd"+"RecNo"

How shall we give addresses to each record within many servers?
When we sort/search/etc. to the table, we change its record order. Swapping records takes vast cost because it moves records.
Then another option: swapping record number array is useful for a single computer system (“RecNo” array in the figure below).
However, that is not possible to the case of records are distributed to many servers.
Here I propose to separate that “RecNo” into two parts: 1st is record number in local (“RecNo”), 2nd is record order in global (“GOrd”).

The features of “GOrd”.
The “GOrd” has the following features.
1. Always in ascending order. Then searching out a designated value is easy.
2. Always unique through all nodes.
3. Its value is from 0 to (N-1), where N is the total count of records through all nodes.

Then, what is “sorting”?
“Sorting” is to make “GOrd” and “RecNo” in each node.
(LOCAL operation). At first, “RecNo” should be built in each node.
(GLOBAL operation). At next, “GOrd” should be built across nodes.

Then, what is “Global L Operation”?
Every local operation is done by Zap-In efficiently.
Then the global operation has limited variations only because that
handles about the inter-node matters only.
(Almost all part has done at the local operation, at first.)

“Global L(Ladder) Operation” is the name of those global
operations.

This document is provided by JAXA.

52

The case of the sort by “Gender”.
I explain the sort by “Gender” that starts from the initial state.
Original Image of the table in the top figure is divided into three parts and
put to node 0, 1, 2.
Then initially, “GOrd” and “RecNo” should set as shown in the figure.

The 1st step: Local sort
The first step starts from Local sort.
You can see the result in the figure “1st Step.”
At this moment “GOrd” is cleared.

node 0 GOrd RecNo Gender Age

0 0 0 0 F 8 Original Image

1 1 1 1 M 6

2 2 2 2 M 6 Gender Age

3 3 3 3 F 8 0 F 8

1 M 6

2 M 6

node 1 GOrd RecNo Gender Age 3 F 8

0 4 0 0 M 7 4 M 7

1 5 1 1 M 6 5 M 6

2 6 2 2 F 7 6 F 7

3 7 3 3 M 8 7 M 8

8 F 8

9 F 7

node 2 GOrd RecNo Gender Age 10 F 7

0 8 0 0 F 8 11 M 8

1 9 1 1 F 7

2 10 2 2 F 7

3 11 3 3 M 8

0

1 2

node 0 GOrd RecNo Gender Age

0 - 0 0 F 8

1 - 3 1 M 6

2 - 1 2 M 6

3 - 2 3 F 8

node 1 GOrd RecNo Gender Age

0 - 2 0 M 7

1 - 0 1 M 6

2 - 1 2 F 7

3 - 3 3 M 8

node 2 GOrd RecNo Gender Age

0 - 0 0 F 8

1 - 1 1 F 7

2 - 2 2 F 7

3 - 3 3 M 8

0

1 2

Initial State

1st Step

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (2/5)

This document is provided by JAXA.

53

The 2nd step: Tabulation in each node
The second step is tabulation in each node.
As shown in the left upper figure, each node makes the structure shown in
the figure. (I named these structures as “Right/Left L-Structure”).

The L-Structures has “key field” and “occurrence” field.
The “key field” includes “sort key’s value” and “node number.”
The “key field” is in ascending order always.

The Right L-Structure’s Occurrence field keeps occurrence count in its node.
The Left L-Structure’s Occurrence field is cleared at this moment.

Until this step, everything has done in each node. (= Local Operation)

2nd Step
node 0 GOrd RecNo Gender Age ←　key　→

0 - 0 0 F 8 Gender node# Occur.

1 - 3 1 M 6 Right 0 F 0 2

2 - 1 2 M 6 1 M 0 2

3 - 2 3 F 8

Left 0 F 0 -

1 M 0 -

node 1 GOrd RecNo Gender Age ←　key　→

0 - 2 0 M 7 Gender node# Occur.

1 - 0 1 M 6 Right 0 F 1 1

2 - 1 2 F 7 1 M 1 3

3 - 3 3 M 8

Left 0 F 1 -

1 M 1 -

node 2 GOrd RecNo Gender Age ←　key　→

0 - 0 0 F 8 Gender node# Occur.

1 - 1 1 F 7 Right 0 F 2 3

2 - 2 2 F 7 1 M 2 1

3 - 3 3 M 8

Left 0 F 2 -

1 M 2 -

0

1 2

3rd Step

0 0

1

2

Right

1

0

1

2

Right

2

0

1

2

Right

The 3rd step: Send out of “Right L-Structures”
From this third step, the Global Operation begins.
Each node sends out its Right L-Structure to every node including itself.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (3/5)

This document is provided by JAXA.

Note:
L-Operation efficiently runs because it is a comparison between two ascending order keys.
L-Operation succeeds independently from the order of receiving Right L-Structures. 54

The 4th step: L-Operation (explained in node-1’s case)
The 4th step: L-Operation has 3 sub-steps.

(note that node-1 has 3 copies of Left L-Structures at most.)
(This number: 3 is perfect cluster’s size.)

Sub-step 1:
Receive Right L-Structure from node-0, node-1, node-2.
Each Left L-Structure side works as follows.
1. Pick Right key from top to bottom one by one and

find out the Left key which is minimum and exceeds the Right Key.
2. Add Right L-Structure’s Occurrence to Left L-Structure’s found out

record’s Occurrence.
3. Wait every Left L-Structure updated.

Sub-step 2:
Sum up every Left L-Structure into one.

Sub-step 3:
Aggregate Left L-Structure’s Occurrence.

This Left L-Structure’s Occurrence means:
“GOrd” in node-0 having value: “F” starts from 0,
“GOrd” in node-0 having value: “M” starts from 6.
“GOrd” in node-1 having value: “F” starts from 2,
“GOrd” in node-1 having value: “M” starts from 8.
“GOrd” in node-2 having value: “F” starts from 3,
“GOrd” in node-2 having value: “M” starts from 11.

4th Step

node-1 node-0

Left Occur. Right Occur.

0 F 1 -> 2 0 F 0 2

1 M 1 -> 2 1 M 0 2

←　key　→ ←　key　→

node-1 node-1

Left Occur. Right Occur.

0 F 1 0 0 F 1 1

1 M 1 ->1 1 M 1 3

←　key　→ ←　key　→

node-1 node-2

Left Occur. Right Occur.

0 F 1 0 0 F 2 3

1 M 1 ->3 1 M 2 1

←　key　→ ←　key　→

node-1 node-1

Left Occur. Left Occur.

0 F 1 2 0 F 1 2

1 M 1 6 1 M 1 8

←　key　→ ←　key　→

node-0 Left Occur.

0 F 0 0

1 M 0 6

node-1 Left Occur.

0 F 1 2

1 M 1 8

node-2 Left Occur.

0 F 2 3

1 M 2 11

aggre
gate

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (4/5)

This document is provided by JAXA.

node 0 GOrd RecNo Gender Age ←　key　→

(F) 0 -> 0 0 0 F 8 Gender node# Occur.

(F) 1 -> 1 3 1 M 6 Right 0 F 0 2

(M) 2 -> 6 1 2 M 6 1 M 0 2

(M) 3 -> 7 2 3 F 8

Left 0 F 0 0

1 M 0 6

node 1 GOrd RecNo Gender Age ←　key　→

(F) 0 -> 2 2 0 M 7 Gender node# Occur.

(M) 1 -> 8 0 1 M 6 Right 0 F 1 1

(M) 2 -> 9 1 2 F 7 1 M 1 3

(M) 3 -> 10 3 3 M 8

Left 0 F 1 2

1 M 1 8

node 2 GOrd RecNo Gender Age ←　key　→

(F) 0 -> 3 0 0 F 8 Gender node# Occur.

(F) 1 -> 4 1 1 F 7 Right 0 F 2 3

(F) 2 -> 5 2 2 F 7 1 M 2 1

(M) 3 -> 11 3 3 M 8

Left 0 F 2 3

1 M 2 11

0

1 2

55

The 5th step: End up of Global L-Operation.
Each node has Right L-Structure which keeps how many times each “Gender” value exists. (In the Figure, blue arrow)

Each node has Left L-Structure which keeps GOrd’s start value corresponding to each “Gender” value. (In the Figure, red arrow)

5th Step Global L-Operation satisfy following.
1. Universality (not proven in this document)
2. Symmetry (obvious by this document)
3. Independence from processing order

(obvious by this document)
4. Divisibility of communication packets

(not proven in this document)

Global L-Operation Contributes to
Making Preemptive Multi-Tasking of
Massive Parallel RDB System.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Algorithms (Global L-Operation) (5/5)

This document is provided by JAXA.

56

Zap-Mass
(Massive Parallel)

Big Data’s
massive parallel,

preemptive multitasking RDB

Zap-Mass TR
(Table Representation)

.

.

.

.

.

. .

The expected usage of Zap-Mass
(Its functions are similar to Zap-In except for the size of Big
Data: many trillions vs. 2 billion)
1. It imports Zap-In/Over/Mass TR or CSV.
2. It does checking/transformation/calculation/matching/… to the imported.

If necessary, it uses local DW.
If necessary, it saves these results in its local DW.

3. It exports process results or extracted data from its local DW, in the format of
Zap-In/Over/Mass TR or CSV.

Make The Global Utilization Cycle of Big Data;

Zap-Mass: The Expected Usage

This document is provided by JAXA.

57

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Other Issues

I mentioned about the Application / Architecture / Algorithms of Zap-Mass.
However, to design a real preemptive multi-tasking massive parallel RDB system,
many other issues should be discussed.

For examples,
1. Other Global L-Operations.
2. How to switch these tasks.
3. How to check the results.
4. How to re-map resources.
5. How to manage the system.
6. How to recover from malfunctions.
7. Expected performances of Zap-Mass.

…

I make the chances to discuss them.

This document is provided by JAXA.

58

Several
Patents are

Pending

Make The Global Utilization Cycle of Big Data;

Zap-Mass: Patents

This document is provided by JAXA.

59
This document is provided by JAXA.

Visit our home pages
to see more!

Turbo Data Laboratories, Inc.
http://turbo-data.co.jp/en/

Esperant system
https://www.ess-g.com/

60
This document is provided by JAXA.

http://turbo-data.co.jp/en/

