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Abstract: Gravitaxis of swimming microorganisms has so far been explained largely in terms of
the physical properties of the microorganisms that are assumed not to have any speculative
mechanisms of gravity sensation. However gravity-induced sensory input and the subsequent
modulation of locomotor activity in Paramecium has been suggested by precise analyses of
swimming velocity as a function of swimming direction with respect to the gravity vector (Ooya et
al, 1992). As a result, Paramecium appears to modulate its propulsive effort depending on the
swimming direction by increasing the propulsive speed in upward and decreasing it in downward
directions. These results suggesting gravikinesis were obtained from the averaged measurement on
a large number of the cell. In the present study we aimed to confirm the results on the basis of
the measurement on the swimming of a single cell. Velocities of upward and downward swimming
was measured from the single cell, and the velocity of sinking was measured on the same cell
which was immobilized in Ni** containing medium. We did not find significant differences
between the propulsive thrust to upward and downward directions which were calculated by the
above motility parameters. It may be partly because of the disturbances to the cell in the course of
the isolation, which is suggested by the straight swimming trajectories.
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Fig 1. A and B, superimposed trajectories during swimming (A, for 30 s) and sinking (B, for 60 s) of

a single P. caudatum. B was obtained from the same cell as in A after Ni’

*_immobilization. Asteriscs

in A and B indicate the start of the trajectories. C, micrograph of a Ni**-immobilized cell. Scale bars,

2 mm for A and B, and 50 um for C.
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