
JAXA Research and Development Report

September 2016

Japan Aerospace Exploration Agency

ISSN 1349-1113
JAXA-RR-16-002E

CODA: Ticket Management System to Support JSS2 Operation
and Assistance to Users

- Redmine Implementation and Hints of Its Usage -

Kazuhiro KIMOTO

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

Kazuhiro KIMOTO*１

Abstract

Redmine is an excellent issue-management-system software for various purposes, one of the OSS which is

getting more attention recently. Supercomputer Division of JAXA has been constructing and running CODA
system based on Redmine since 2014, when installation of JSS2 SORA Super Computer system was started. This
paper introduces CODA system as an example of Redmine implementation. This paper also discusses the hints and
tips of definition, setting and operation of Redmine for better use, based on the experience of CODA.

Note to English translation of the paper:

Redmine uses term of “issue” for items (tasks, incidents etc.) to be managed.
In Japanese translation of Redmine software localization, “issue” is translated into “チケット (ticket)”. Original

Japanese edition of this paper uses “ticket” in accordance with Redmine software Japanese localization.
In English translation of this paper, the term “issue” is used instead of “ticket”, so that people around the world

could understand what “issue” is, without interpreting “ticket” to “issue”.
Exception of using “ticket” is only in the title of this paper. The title remains the same as Japanese original

version so that it is identified that the papers of both Japanese and English translation have the same content.

There is a corrigendum which was published on May 31, 2016 to the original Japanese edition. The corrigendum

is applied in this English edition.

Keywords: Redmine, JSS2, CODA, ticket-management-system, project management software, issue management
system

 Introduction 1.

The Japan Aerospace Exploration Agency
(hereafter, JAXA) began operating the JSS2 (JAXA
Supercomputer System Generation 2) – SORA
(Supercomputer for Earth Observation, Rockets, and
Aeronautics)1), JAXA’s second-generation
supercomputer system, in October 2014. With the
addition of the primary computational resource
SORA-MA (Main System) in April 2015 for
stage-two operations, full-scale operation is underway.

JAXA’s Supercomputer Division is working on
JSS2 operations and various activities related to user
assistance. At the same time as the installation of
JSS2, the Supercomputer Division implemented a
issue management system called CODA (acronym for
“CODA is the Operation and Development Assistant”).
CODA is now an integral part of the Supercomputer
Division’s activities, and is used for information
sharing and progress management in operations and

support. CODA is a business management application
based on Redmine, an open-source software program
for issue and project management.

The objective of this paper is to provide useful
information to people considering introducing, or
implementing, an issue management system such as
Redmine in the future. The paper first overviews the
characteristics of Redmine, then discusses the
experiences and issues the Supercomputer Division
had with the issue management system, the
introduction and usage status of CODA. It also
discusses the benefits of the system and its utilization.

Best-practice hints and tips for introducing and
setting up Redmine are also presented. These were
found out while building and operating CODA, and
are a practical resource for those are already using
Redmine as well. Finally, the future outlook for
CODA and Redmine is discussed.

doi: 10.20637/JAXA-RR-16-002E/0001
* Original Japanese Edition: Received on October 6th, 2015
 English Translation: Received on August 19th, 2016
*1
 Supercomputer Division, Security and Information Systems Department

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E2

 Overview of Redmine 2.

Redmine is an open-source software (OSS)
application developed and published at
http://www.redmine.org/. In general, it is classified as
project management software, but is sometimes also
classified as issue management software.

2.1 Environment of Redmine

Redmine is a web-based client server application
developed with Ruby on Rails. It can be installed on a
server running Unix variants, MS Windows or Mac
OS X. Major prerequisite software on the server end
are an RDB (MySQL, etc.), an HTTP server (Apache,
etc.), Ruby, and Ruby on Rails. The client end uses a
web browser to access the system. Web browsers that
support JavaScript, such as Firefox, Chrome, Safari,
and Internet Explorer, can be used.

2.2 Development and Usage of Redmine

Redmine is being actively developed. In general,
version upgrades are provided every four to five
month. New versions actively incorporate issue
reports and requests for additional features from users
all over the world. Version 3.0, with many
enhancements, was released in February 2015 (version
3.1.0 is the latest release at the time of writing).

One well-known example of Redmine being used
for development and bug tracking is Ruby’s
development management system (Ruby Issue
Tracking system, https://bugs.ruby-lang.org/)2).
Moreover, Redmine development, release of new
versions, and related discussions are also managed
with Redmine at http://www.redmine.org.

Redmine have been coming to the forefront in
Japan primarily in the IT development and
management areas. Although accurate number of users
and market share information are not available
because Redmine is an OSS, according to a survey of
development support tools in the June 2013 issue of
Nikkei Systems3), it is second in market share for
project management tool installations at 22.3%,

following the first-place Microsoft Project (26.9%).
When only the two-year period closest to the time the
survey was conducted is considered, it is in first place
at 15.3%, more than double the share of Microsoft
Project (6.2%). In addition, many Japanese-language
books and book-style magazines specialized for
Redmine are being published.

Rich and accurate Japanese localization is another
characteristic of Redmine. The meaning of texts
displayed in Japanese, such as in on-screen messages,
is clear, and there is rarely confusion over how to use
the software. This has also contributed to Redmine’s
popularity in Japan.

2.3 Wide Range of Applications and High

Adaptability
It is stated above that Redmine is usually classified

as a project management software program. However,
Redmine has characteristics that are different from
conventional project management-dedicated software
such as Microsoft Project. These characteristics relate
to Redmine’s wide range of applications and its high
level of adaptability. The following three
characteristics contribute significantly to the active
use of Redmine with CODA:
(1) Card Image of multipurpose issue structure.
(2) Various features geared toward team and

collaborative work.
(3) Web-based settings and definitions that take

effect immediately.

2.3.1 Card Image of Multipurpose Issue Structure

Redmine offers a variety of features; however, the
issue management feature is the centerpiece of the
program. Its essential characteristics can be summed
up as follows: a “management system for
multipurpose cards that offers status management
features.” Figure 1 shows the structure of a Redmine
issue.

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

3

Figure 1 Structure of a Redmine Issue

Closed Date CategoryStart Date

Custom Field 2 ...
other Standard Fields ...

Issue Title

Assignee
Custom Field 1

Related issues ...
Description (text)

Status

Note 1(text)

Note 2(text)

Note 3 (text)

Issue #nnnn

Attached Files...

...

A Redmine issue contains information such as issue

number, issue title, status, assignee, start date, and
closed date. Description column is for adding detailed
information about what the issue deals with. These
standard fields of Redmine are equivalent to
preprinted fields on a work slip (card). Notes sections
are used to add work records and investigation
findings related to the items dealt with by the issue.
Notes are like sticky notes attached to the card and are
recorded chronologically. Files can also be attached to
the issue. This makes it possible to bundle work
records together with their outcomes and reference
materials. Furthermore, it is also possible to associate
multiple related issues together for reference. In
Redmine, it is possible to define multiple unique
“custom fields” to suit the purpose of the issue, and
these fields can be handled in the same way as
standard fields.

Thus, the issues can be handled like work slips
(cards) that bundle the following items as a whole:
(1) Preprinted fields (standard fields, custom fields).
(2) Summary descriptions (description).
(3) Memos and sticky notes such as work records

(notes).
(4) Related materials (attached files).

If we consider work records and related materials

being grouped together, a “folder” may be a more
appropriate metaphor than a work slip.

Description and notes sections of an issue support

the markup notation used on Wikis. In addition to easy
formatting such as itemization or bold text, it is also
simple to put in external URLs and links to
information within Redmine such as other issues,
Wikis, or Documents (Section 2.3.2).

Multiple combinations of fields can be defined to
the trackers (one combination for one tracker) and
combined with the workflows (Section 4.1).

Moreover, generation of the issue lists are
supported, using field values as query criteria. Full
text search is available. CSV and PDF export of
generated lists and PDF export of issues are also
supported.

2.3.2 Various Features Geared Toward Team and

Collaborative Work
Redmine is a client-server web application and it

means more than just “using web browsers”. It also
offers a variety of features that make it easy to work
collaboratively with multiple users. Resolution of
conflict of adding notes and field updates on issues by
multiple users are taken into account. Moreover,
Redmine offers features such as those below, which
can be selected to be used or not, depending on the
nature of the business which Redmine is applied to:
(1) Wikis.
(2) Forums (bulletin board feature).
(3) Notification of updates by email.
(4) News.
(5) Gantt and Calendar.
(6) Repository of the documents.

Based on the characteristics outlined in this and the

previous section, Redmine can be considered as an
assistance tool that supports team operations centered
on issues, rather than a standard project management
software such as Microsoft Project, which is aimed to
resource and value management. Such a view is
appropriate for Redmine. It makes it easier to adapt
Redmine in various businesses and enjoy its benefits.

Redmine also offers features such as the ones below
that are useful and valuable when used for team
development work as well.
(1) Cooperation with version control system software

(Subversion, Git, etc.).
(2) Roadmap (target version management).
(3) Distribution of files.
(4) Recording of labor hours (time spent on work).

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E4

2.3.3 Web-based Settings and Definitions that
Take Effect Immediately

Virtually all Redmine settings and definitions can
be made via a web-based console, and changes take
effect immediately without the need for a restart. For
instance, the format of a custom field can be defined
from multiple format types. In the “List” format type,
it is common to add possible values or change the
order of the possible values. Such changes take only a
few minutes in Redmine. This makes it possible to
reflect the business changes to Redmine and to
improve it quickly, without delay.

 Usage in the Supercomputer Division 3.

The Supercomputer Division uses the
Redmine-based CODA system for information sharing
and process management in operations of JSS2 and
user support activities. This section describes the
introduction of Redmine to the division, usage
statistics, and examples of utilization for CODA. Also,
the factors which make proactive use of CODA is
discussed.

3.1 Experiences and Issues of the former Issue

Management System, and Introduction of
CODA

The JAXA Supercomputer organization, which is
now the Supercomputer Division, had been
developing and using a custom-made incident
management system called NSIM (Numerical
Simulator Incident Manager) approximately for 10
years4). Like CODA, NISM was a web application that
uses web browsers. As time went by, issues such as
those described below began to surface over time:
(1) Insufficient document and troubleshooting

difficulties.
(2) Difficulty to adapt to changing needs and

improvements for newly introduced
supercomputer systems to be used. For example,
option values for system classification were
scattered within the source codes, and the format
of reports to be generated was fixed.

(3) XUL (XML User Interface Language), which has
been used for web browser screen control,
assumes the use of a specific web browser, and
incompatibilities has been getting apparent as
many release-ups of the browser software.

Because of these issues, the Supercomputer
Division began to study for alternative software to
replace NSIM. In the study, multiple candidates as
issue management systems or incident management
systems were considered. During the process, the
following viewpoints were focused.
(1) The software has no assumption or reliance on a

specific methodology or development style.
(2) Multiple definitions of issue type and work are

allowed, to make it easy to use the software for
different ways according to the details of the
business or the person in charge.

(3) The software does not require users to learn new
technologies very much when installing and
setting-up.

(4) New system can likely be built in a short period
of time so that the preliminary system can be
started before the introduction of JSS2 begins.

(5) Rich information about the software in books or
on the internet is available, particularly in
Japanese.

(6) Development activities are active for such as bug
fixes and additional features, and the discussion is
open to public.

In parallel with searching for the software, the

Supercomputer Division also considered to develop an
in-house tool to succeed NSIM, Redmine was finally
adopted. The reason is that it would provide the
organization with a high-quality tool in a shorter
period of time and with fewer effort than developing
an in-house tool. Another driver was that it was
expected to keep sustainability to be compatible with
the business over the long term.

The following points also contributed to the
decision to adopt Redmine.
(1) Packages are available on the net that allow users

to install and set up Redmine and its required
software as a bundle (Bitnami
[https://bitnami.com/stack/redmine], etc.). By
using these packages, functions could be
evaluated on the PCs running Windows without
difficulty. Although CODA is built on Linux, it
was a major advantage that evaluation could be
performed on the commodity PCs during the
consideration process.

(2) As a result of the evaluation, we got certain that
adding or changing settings of Redmine was

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

5

simple, and that we would be able to make
changes in order to suit Redmine to our
operations in a moderate and flexible manner.

Redmine based CODA system started production

run, synchronized with the start of the installation of
new JSS2 supercomputer system. Prior to the
production run, works focusing on investigating the
settings and use of CODA itself was managed with
CODA as a “test drive”. Over this period, we became
relatively proficient in Redmine’s operation and
functions, and improved the settings while using it. It
was helpful in launching production run.

We decided not to use the existing old NSIM
system for matters related to JSS2. NSIM was stopped
when JSS, the predecessor of JSS2, was retired.

3.2 CODA Usage

CODA is used for most of the Supercomputer
Division’s operations. This section summarizes
CODA usage from the perspectives below.
(1) Number of users: CODA has 46 registered users,

with approximately 35 of them using CODA for
daily operations at the time of writing.

(2) Organization of Users: All members of the
Supercomputer Division are registered in CODA.
Moreover, vendor members of JSS2 system (i.e.
System Engineers and Customer Engineers) are
also registered.

(3) Number of issues: From the start of CODA’s test
drive in January 2014 to the time of writing, there
have been approximately 3,100 issues. Figure 2
shows the accumulated number of issues
registered and the trend per month up to July
2015. Following the start of JSS2 stage-two
operations in April 2015, approximately 300 new
issues have been registered every month.

(4) Projects: Major business scope of the
Supercomputer Division is the following:
operations and management of Supercomputers
and IT facilities, ISO-9001 based quality
management 5), and user support including
visualization of computational outputs. In
addition, there is also organizational and business
management. CODA has several different
projects since the primary persons in charge differ
depending on the business, and fields of the
issues corresponding to the nature of the business

are different. There are currently seven projects.
Users participate in single or multiple projects
according to their business responsibilities.

3.3 CODA Application Examples
This section presents several specific examples of

CODA applications that can serve as a reference for
those thinking of using Redmine.

3.3.1 Daily Events, Work Records,

Communications
CODA is most frequently used for service requests,

incidents, and event management of service failure
and so on. An issue is filled out for each matter,
including inquiries from users about using the system,
change requests, and malfunctions. In addition, CODA
is used to record jobs which are related to operations.

It is easier to search for necessary information in
centralized management system such as CODA,
compared with conventional email communication or
file-based management systems such as Excel because
(1) the most recent information can be shared in real
time and (2) information is not scattered around as it is
in emails and files.

Creating statistical reports on events such as
hardware and software malfunctions is also simple.
For example, a user can obtain a list of issues and
number of occurrences by narrowing down query
results based on the period when the malfunction

Figure 2 Number of Issues Registered in CODA

0

500

1000

1500

2000

2500

3000

3500

Ja
n‐
20

14

Fe
b‐
20

14

M
ar
‐2
01
4

Ap
r‐
20
14

M
ay
‐2
01
4

Ju
n‐
20

14

Ju
l‐2

01
4

Au
g‐
20

14

Se
p‐
20

14

O
ct
‐2
01
4

N
ov

‐2
01

4

De
c‐
20

14

Ja
n‐
20

15

Fe
b‐
20

15

M
ar
‐2
01
5

Ap
r‐
20
15

M
ay
‐2
01
5

Ju
n‐
20

15

Ju
l‐2

01
5

Number of Issues per month

Number of Issues (accumulated)

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E6

occurred, and exporting the list as a PDF which is to
be a report of “Summary of Malfunctions in the
Previous Month, organized by Manufacturers and
Machine types.” In this way, CODA can also be used
as a source of data when looking back on past events
to identify what to improve. Another example is that
turnaround time of user Q&As and service requests
are recorded in issues so that CODA issues are used to
analyze the number and distributions of turnaround
time.

3.3.2 Management Records

In CODA system, Redmine’s flexible method of
dealing with issues are used for management records.
The following are some examples of management
records.
(1) Customer Property: In accordance with the

ISO-9001 certification that the Supercomputer
Division has implemented and received,
Customer Property must be managed
appropriately. More specifically, Customer
Property includes items such as source codes
with which are entrusted by users. Statuses of
Customer Property is recorded in CODA, for
example, where it is kept, where its copies are
made to for evaluation by whom, number of
copies made, when the copy is deleted by whom.

(2) Corrective and Preventive Action: Corrective
and Preventive Action is defined in “continual
improvement” in ISO-9001 clause. It must be
recorded and reviewed. Records, related
documents made, and record of review and
approval are managed in CODA, making it
possible to examine its progress with just one
click.

(3) User needs: Requests from users regarding
service improvement and expansion are managed
in CODA in a standardized form.

(4) Priority Usage (special usage): Priority usage is
the program of JSS2 usage, which allows the
user’s jobs to be scheduled with high priority.
The users of the program could use JSS2 system
resources more than normal users could. It is
necessary to record the approval process of the
nominees, period of priority usage start and end,
and the amount of resources that can be assigned
to the priority usage. Related information such as
communication with users is also bundled and

managed within an issue.

How they are recorded in CODA is standardized,

for example, what to input and how the detail
information is described so that it is easily retrieved
with queries.

3.3.3 Preparation and Minutes of meetings, To-do

List Items
CODA is also used in a variety of ways to manage

meetings.
In addition to meeting announcements (date,

location, etc.) description, the materials used in
meetings (files) can be attached to issues for meeting
minutes. After a meeting ends, the minutes are added
to the description. This makes it possible to, among
other things, view the status of meeting preparations
or look over the minutes of past meetings along with
the materials used.

At meetings which are related to operations, or
projects such as the introduction of JSS2, the creation
and progress of to-do list items are major topics on the
agenda. These ones are recorded in CODA, meetings
can be conducted while showing the CODA
information on a projector. This has many advantages
compared to summarizing using tables in Excel, which
is likely still widely used: no time nor effort needs to
be spent for creating summaries, the latest information
can be shared, and there are no discrepancies between
versions.

3.3.4 Deliverables plus Their Catalog

At the time when JSS2 is delivered, there are a
variety of deliverables such as specifications or test
result reports from vendors along with computer
systems.

Such deliverables generally arrive in the form of
physical documents organized in a binder, but the
original documents are usually digital files of word
processors and the like. It means that it is more
convenient if they are viewed and referred online. As
such, we prepared a dedicated project to collect
deliverable documents, added categories to issues to
catalog deliverables, and began attaching deliverables
in file form to issues. In this way, CODA is used as a
“library card compilation and search system” that
allows users to access the library documents.

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

7

3.4 Factors behind the wide use of CODA
Luckily, issues are registered and updated in CODA

every day, and CODA became an indispensable tool in
the Supercomputer Division. However, there are a fair
number of examples of issue management systems
like Redmine being introduced but barely (or never)
used. Such comments often appear in online blogs and
the like, and magazines6) and books7) have also
presented strategies for avoiding such situations.

As a reference for those dealing with Redmine and
other issue management systems, the following points
can be cited as factors behind the wide use of CODA.
(1) A policy of centralizing accumulated information:

We synchronized the timing of the full-scale
production of CODA with the beginning of JSS2
introduction, it was easy to consistently follow
the policy to “always register work and materials
related to the new system into CODA.” In
addition, a source of motivation that encouraged
us to use CODA was the standardization of
operations, including issues of meeting minutes,
meeting to-do list items, and hardware
malfunctions.

(2) Management’s support: In the Supercomputer
Division, management strongly encourages the
use of CODA. Even with the knowledge that past
records are helpful when a similar malfunction or
question arises in the future, recording daily work
in issues can sometimes be a hassle. For
addressing this, proactive CODA usage policy,
comments on CODA issues, and approval of
issues from management are one of driving forces
behind CODA taking root. Management’s major
expectations regarding CODA are as follows: to
increase the efficiency of work, thus improving
the quality of user services and creating more
time for creative work; to share and inherit work
experiences and skills; and to support ISO-9001.

(3) Experiences of the previous system: As described
in Section 3.1, the Supercomputer Division had
been using an in-house incident management
system for approximately 10 years. When use of
CODA began, it received a major boost from the
fact that, to a certain extent, there was already a
shared awareness of the benefits of ticket issuing,
recording and immediate sharing of the most
up-to-date information using a web application.

(4) Focusing on bringing in users: When CODA was

initially introduced, users were first encouraged
to use it by being asked to do so. There was not
very strict rules about granularity of issues, how
summaries are to be made when the issues are
completed, or how precisely work and/or
communications with users was recorded.
Enforcing overly detailed rules would discourage
users, it possibly leads abandoning of the system.
As described in the previous section, many users
already had experience with the old system and,
luckily, there were few major disruptions.
Best-practice methods for using CODA is now
being formed as users become more familiar with
it. Now we are currently using the methods as
baselines to develop rules for CODA usage.

(5) Gradual expansion and modification of features:
Since the issue management system is directly
related to the business of the organization, the
manner in which it is used has a major impact on
work efficiency. However, it is difficult to
appropriately decide on the necessary settings and
usage rules from the very beginning, and fixating
on those things means that more time will be
required to get the system starting to operate.
When we decided to synchronize the start of
full-scale CODA production with the introduction
of the JSS2 system, we also decided to have a
certain level of tolerance about changing system
settings and how the system was used after it was
up and running. Adding or changing fields in
Redmine is easy. Adding projects or trackers to
deal with additions and changes of the business
are simple as well. It is also possible to move
existing issues to a different project or a tracker.
As such, we were able to implement
improvements to usage and settings in a relatively
smooth manner, which came to mind as we
became proficient in the features of Redmine.

(6) Selection of an easy-to-use tool: When using a
tool such as an issue management system daily, it
is important to give users the feeling that the tool
is helpful and easy-to-use. This paper has already
given several examples, Redmine has convenient
features such as the following: descriptions and
notes that use a Wiki format and allow for easy
reference to other issues in CODA or external
URLs; queries and full-text search; and
customizable listing of issues. JQuery UI is used

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E8

as the browser User Interface (UI). It offers a UI
that is appropriate for contemporary web
applications. In addition, appropriately installing
plugins published on the internet creates the
system which is even easier to use.

 Hints on Definitions and Settings of Redmine 4.

As indicated in the previous section, it is easy to
reflect changes to the definitions in Redmine. It is
software to be set up easily. However, there are a few
points to consider so that the program can be used
with appropriate definitions. This section presents
hints on installing and setting up Redmine that were
discovered through our experiences implementing and
using CODA.

First, this section clarifies and organizes the
structure of Redmine definitions, which might be
slightly difficult to understand. Then, it describes tips
to efficiently make definitions in Redmine, to create a
system that is easy for users, and the criteria of project
division. Furthermore, the use of plugins are
discussed.

4.1 Clarifying and Organizing the Structure of

Redmine Definitions
Redmine allows virtually all the definitions to be

made from the administration screen of the browser.
However, although the individual screens are easy to
be understood, determining how various definitions
are related to each other may be difficult, which tends
to generate confusion when settings are being made.
This can be particularly confusing for users who are
unfamiliar with Redmine.

Figure 6 shows the top screen of Administration.
On this screen, individual setting categories are
displayed in a flat list, making it difficult to
understand what should be defined first, and how each
definition is related to which of other categories.

As an example of individual administration screen,
Figure 7 shows the settings screen for custom fields.
In addition to Format, Name, Description, and
Possible values, this screen has checkboxes at the
bottom right for “Trackers” and “Projects.” “Trackers”
and “Projects” at the bottom right are also displayed in
the list of Administration top screen, but there is no
explanation of the relationship between the top screen
and the custom fields screen, the relationship is rather

unclear. (The reason for displaying “Trackers” and
“Projects” at the bottom right of custom fields is
discussed later.)

Although guide books of Redmine that are sold in
stores do offer explanations of individual settings,
unfortunately, the relationships between settings are
rarely explained. To address this, Figure 8 presents an
overall structure showing the relationships between
major definitions of Redmine. This paper will clarify
and organize Redmine structure based on the picture.

First, Redmine definitions are divided into Logical
Component Definitions and Actual Entities
Definitions. Both of these types of definitions are
indicated in the figure by arrows on the left-hand side.

In the figure, “(1) Role Definition Layer” defines

the roles of users. A “role” is defined for each
functional role. For each of the roles, various actions
which users can perform in Redmine is permitted or
prohibited using checkboxes. Roles model the
authority of actual users. In regard to this, definitions
for actual individual users are made in “(5) User
Definition Layer” at the very bottom of the figure.
Details on this are provided later.

Below “(1) Role Definition Layer” is “(2) Issues
Definition Layer.” Here, definitions related to things
such as issue content, status transitions, and actions
for each role are created. In “Issue statuses,” which is
on the left in this layer, definitions are created for
status names of issues and attributes. Here, it is rather
difficult to understand that status definitions are not
status transitions. The definition being given here is
each status that is used as input for workflow
definitions. Status transitions are defined in
“Workflow,” which is described later. “Custom fields”
and “Standard fields” are discussed here, which are
shown on the far right of the figure. Redmine is able
to define not only standard fields such as assignee,
start date, and due date, but also original custom fields.
“Duration of Resolution,” shown in Figure 7, is an
example of the custom field which holds a selected
value from a predefined list of values. On this screen,
an administrator can set possible values and default
one, and whether the field is required or not, and so on.
“Tracker” definitions appear to the left of “Custom
fields” and “Standard fields” in Figure 8. Lists of
standard fields and previously defined custom fields
are shown in the “Tracker” settings screen, which

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

9

designate what fields are used or not in the specific
tracker by checkboxes. We now have all the
definitions required to set actions of issues.

Actions of issues in Redmine are determined by
“Workflow,” the final category in “(2) Issues
Definition Layer.” Workflow combines previously
defined Roles, Issue statuses, trackers and, for each
tracker, sets what roles are allowed to transition an
issue from what status to what other statuses.
Additionally, for each field defined in the tracker,
settings are done that determines whether the field is
read only, required, or neither when a certain role
manipulates an issue with a certain status. For
example, it is possible to specify that “Assignee” and
“Due Date” are not required for the status “New,” but
are required for statuses other than “New.”

Let us now look at Actual Entities Definitions. A
Project is an entity that contains data such as issues,
Wikis, documents, and forums. It is possible to make
multiple projects based on the needs of business.
Projects are differentiated from each other by their
names and summary descriptions. In each project,
things such as Redmine features (issue tracking, Wikis,
Forums, Time tracking, etc.) being used, trackers
being used in the project, and custom fields are
defined. Although it is not shown in the figure, when
working with a repository, the repository is defined.
When performing time tracking, names of activities
are also defined.

“(5) User Definition Layer,” at the very bottom of
the figure, defines each user to Redmine. It can also
gather multiple users together to be handled as one
group. The purpose of groups is to perform actions
such as addition of users to a project as a whole, and
optionally set the assignee of an issue to a group of
users rather than to an individual user.

To get users to participate in a project, roles are
assigned to users (or groups) and users are getting
members of the project, as shown in “(4) Role
Assignment Layer.” Permissions defined for roles in
“(1) Role Definition Layer” becomes the permissions
of those users or groups in the project, and settings for
the status transitions and field attributes defined for
those roles in Workflow are applied.

The roles of “Non member” (person who is
registered as a Redmine user but not a member of the
project) and “Anonymous” (person who is not
registered as a Redmine user, or a user that is not

logged in) are also defined in Redmine projects.
However, these are roles that are envisioned for
projects which are public on the internet mainly. (For
example, you could browse issues and documents at
http://www.redmine.org/ without registering as a
member because it is allowed to do so for
“Anonymous” role). These roles are not explained in
this paper any further. It is assumed that users are
participating as members of a project.

During the installation of Redmine, a sample series

of definitions is automatically created, including roles,
trackers, workflows, and projects. Examining the
definition samples at installation while referring the
above explanation and Figure 8 will be helpful in
understanding Redmine’s overall structure during
customization.

Finally, here is the explanation why “Trackers” and

“Projects” checkboxes are displayed at the bottom
right of the custom fields settings screen. According to
the explanation thus far, definitions are considered to
be made in the following order: first, custom fields are
defined; next, the custom fields are designated to be
used with a tracker; then, the custom fields are
designated for use with a project. However, when
adding a custom field to an existing tracker or a
project, it is convenient to be able to designate
trackers and projects to be used, when the custom field
is defined. In addition, when changing the definition
of a custom field, it is also useful to be able to add or
delete trackers and projects at the same time. There is
no clear documentation about this, but it appears that
the “Trackers” and “Projects” settings at the bottom
right of custom fields are shown as a shortcut to allow
users to quickly make such changes.

4.2 Hints and Tips for Definitions and Settings

This section provides useful tips, discovered from
experience of operating CODA, for creating a
user-friendly system, while definitions can be made in
efficient manner of Redmine.

4.2.1 The “OR Rule of Role Settings”

As shown in Section 4.1, Redmine definitions are
structured systematically and are related to each other.
Although their well-established structure is a strong
advantage, the number of definitions can grow

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E10

extremely large and become difficult to maintain if
definitions are created without foresight. In particular,
increases of roles and trackers must be carefully
observed. For instance, if four kinds of roles and
trackers are each defined, workflows must be defined
for every tracker and for each role, resulting in a total
of 4 × 4 = 16 workflows. If the number of roles
increases by one and the number of trackers increases
by two, the number of workflow definitions will be (4
+ 1) × (4 + 2) = 5 × 6 = 30, nearly doubling. If many
workflows need to be completely changed, the burden
of maintenance will be larger and it will make more
mistakes to occur.

In the interest of simplifying this to a certain extent,
the below points are very helpful when assigning users
(or groups) to projects:
(1) It is possible to assign multiple roles to one user

(or one group).
(2) Permissions, which are assigned to a user (or a

group) of the multiple roles, are “OR” operated.
In this paper, this is referred to as the “OR rule of

role settings”.
A detailed example is given below.
Assume that an issue’s workflow is a simple

transition of “ New ” → “ In Progress ” →
“Completed” → “Approved”, and the transition to
go back from “Completed” or “Approved” to “In
Progress.” Members of the project are general user A,
manager B, and X who is in charge of project
maintenance. All members are able to perform
non-privileged issue operations (creation of new
issues, transitions of statuses to “In Progress” and
“Completed,” addition of notes, field updates, etc.).
However, we would like B to be the only one who can
change the status of issues to “Approved.” We would
also like to give permissions of maintenance related
operations (category management, document deletion,
addition of news, etc.) to X only.

Figure 3 shows the registration of users as members
to a certain project. In the figure, members are
registered in the project as follows: A as Role 1 of
“General;” B as Role 2 of “Approver;” and X as Role
3 of “Maintainer.” They have the authority to
manage issues as stated above.

Now, suppose we add the “Under Inquiry” status to
indicate that, for example, an expert outside the
organization is being consulted. This addition would
require that the all workflows of Roles 1, 2, and 3 to

be changed. Another example is that, in order to make
changes such as assigning “deletion of documents”
authority to all members, we must grant that authority
to Roles 1 and 2.

Conversely, Figure 4 shows settings that uses “OR
rule of role settings”, with a single user (or a single
group) being assigned to multiple roles when
registered as a member. In this scenario, although A
has only Role 1 of “General,” while B has both Role 1
of “General” and Role 2 of “Approver.” In addition to
the authority of Role 1 of “General,” B can also
change issues to “Approved” using the authority of
Role 2 of “Approver.” Similarly, X participates in
both Role 1 of “General,” and Role 3 of “Maintainer,”
X can perform actions such as category management
using the authority of Role 3 of “Maintainer” in
addition to the authority of Role 1 of “General.” In
this scenario, workflow changes related to
non-privileged issue operations, such as the addition
of the status “Under Inquiry,” can simply be
accomplished with changes only to Role 1 of
“General.”

Moreover, “deletion of documents” authority can be
granted to all members by giving the authority only to
Role 1. Although leaving the authority of “deletion of
documents” in Role 3 intact does no harm, it is more
appropriate to delete it because that authority is
covered by Role 1 of “General,” through “OR rule
of role settings.”

 Figure 3 Role Settings and Member Assignment (1)

B: Manager X: Project MaintainerA: General User

Project

Role 2 “Approver”
- Non-privileged

operations for the
issues

- Permission to change
the status to
“Approved”

Role 3 “Maintainer”
- Non-privileged

operations for the
issues

- No permission to
change the status to
“Approved”

- Permission for
maintenance tasks
- Manage Categories,

delete documents,
publish news etc.

Role 1 “General”
- Non-privileged

operations for the
issues

- No permission to
change the status to
“Approved”

- No permission for
maintenance tasks

All roles have “Non-privileged operations for the issues”
permission.
To change definitions of the “Non-privileged operations for the
issues”, all roles must be maintained.

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

11

This is how “OR rule of role settings” makes it

possible to reduce the maintenance burden for roles,
permissions, and workflows. When CODA was
initially introduced, definitions were created as in
Figure 3. However, role and workflow maintenance
became so complicated as the scope of system usage
widened that definitions were changed to the method
using “OR rule of role settings” shown in Figure 4,
approximately a year after production run of CODA.

Table 1 gives a summary of the current roles in

CODA, which were established using the methods
presented here. Among the roles in the table, “Regular”
role is applied to users participating in a project
normally. It is the most basic role and allows users to
perform actions such as issue creation and update, and
status changes (excluding some statuses). It has
read-only permission for documents in Redmine.

“File Clerk” role has only the authority to manage
documents (adding, editing, deleting) in Redmine, and
is not granted for other authorities nor make status
transitions. This was established because of a
requirement to limit the ability to manage documents
to only limited number of designated persons in some
projects. The designated persons participate in these
projects in both “Regular” and “File Clerk” roles,
allowing them to both read and manage documents
with “OR” operation of both roles. Contrarily, other
users participate only in “Regular” role, they are able
to read documents but not manage them. For other

projects, participants in “Regular” role are
simultaneously set up to participate under “File Clerk”
role, allowing them to manipulate documents with no
impediments.

 “Approver” role is assigned only to managers. It
has only permission of status transition to make issues
“Approved” and return “Approved” issues to “Return.”
On the other hand, it has no “Roles and permissions”
authority. It means that this role has very limited
function. But managers are also assigned “Regular”
role at the same time, they are able to make all status
transitions with “OR rule of role settings.” Moreover,
“OR rule of role settings” makes it possible to allow
managers to perform all the “Roles and permissions”
authority of “Regular” role.

 “Maintainer” role is for carrying out project
maintenance work. It has the authority to manage
project related changes such as project description,
activation and deactivation of trackers; management
of public queries and news; deletion of Wiki pages.
These types of authority are not assigned to other roles
than “Maintainer.” While “Maintainer” role has such
authority, it does not have any status transition in
workflow. It is a role that is assigned to only those
who are in charge of maintenance in addition to
“Regular” role.

These four roles above have authority to change
data or settings of CODA. There is an “Observer” role
that differs from these, and it is a read-only role. On
some projects, there is a requirement to give some
persons an ability only to read through issues, Wikis,
documents, and the like. “Observer role” is used in
these situations.

Some tasks, such as creating projects, managing
members, and deleting issues, are not assigned to any
of the roles listed above. Redmine administrators are
the ones who handle such operations because they are
able to perform all operations without being limited by
the role settings. How it is appropriate to give these
authorities to whom varies according to the
organization. Possible ideas are; structures such as
giving authority to Redmine administrators only
(centralized structure), giving authority to maintainers
of each project (decentralized structure), and giving
authority to all members (flat structure) etc. CODA is
operated under the centralized structure style.

Figure 4 Role Settings and Member Assignment (2)

B: Manager X: Project MaintainerA: General User

Only Role 1 “General” has “Non-privileged operations for the
issues” permission.
To change definitions of the “Non-privileged operations for
the issues”, only Role 1 must be maintained.

Project

Role 2 “Approver”
- Permission to

change the status to
“Approved”

Role 3 “Maintainer”
- Permission for

maintenance tasks
- Manage Categories,

delete documents,
publish news etc.

Role 1 “General”
- Non-privileged

operations for the
issues

- No permission to
change the status to
“Approved”

- No permission for
maintenance tasks

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E12

4.2.2 Project Participation using Groups

As shown in Figure 8, there are two possible
methods of assigning users to projects in Redmine:
assigning each individual user to a project as a direct
member, or creating groups and assigning users to a
project in group units.

CODA uses the group assignment method in
principle. When making changes such as personnel
rotation, individual user assignment requires changes
to be made to each project in which the individual
participates. On the other hand, with group units we
can simply remove the person transferring out from
the group they belonged to and replace them with the
person transferring in, eliminating the need to change
the project participation status for each individual.
Particularly for situations in which there is a large
number of projects and roles, the group assignment
method keeps the burden of maintenance work low
and reduces the possibility of making mistakes.

4.2.3 The “AND Rule of Field Settings”

One thing to consider when creating trackers is the
field settings that will be used with those trackers.
Status transitions constitute workflows and they are
often consistent in an organization (for instance, the
transitions shown in Section 4.2.1: “New” → “In
Progress” → “Completed” → “Approved.”) in
general. Conversely, the fields which are used often
differ based on the nature of the business in the
organization.

A straightforward implementation method is to
prepare multiple custom fields tailored to each
situation, then individually define appropriate trackers
for them. The drawback of this method is that multiple
trackers are created for fields in use that only differ
slightly. Workflows must be defined for the number of
trackers times the number of roles, thereby increasing
the maintenance burden. The best way to address this
issue is to avoid increasing the number of trackers as
much as possible and using the same ones in many
situations. In Redmine, dividing things up using
multiple projects makes it possible to achieve the
appropriate use of fields shown here. This paper refers
to this method as the “AND rule of field settings.”
Figure 5 shows a detailed example of this method.

 “ General ” tracker is a multipurpose tracker

handling general issues. It defines the organization’s
basic workflow: “ New ” → “ In Progress ” →
“Completed” → “Approved”. On the other hand, the
details of business vary, they are for system operation,
user support, and quality management system (QMS)
activities based on ISO-9001. Persons who are in
charge and the meetings to be held are different
between the businesses. However, workflow is the
same within the organization, it is better to use the
same “General” tracker for all of the jobs. To make
this possible, the following definition is valuable to
utilize only the fields that are relevant to the business
by using the “AND rule of field settings.”

First, custom fields that “can be” used are defined
to “General” tracker. Three projects that actually store
issues are to be defined for each subject area of
business: A (system operation), B (user support), and
C (QMS activities). In each project, the custom fields
that will be used “actually” for the business are
checked, and the fields that will not be used are not
checked. Using Project A of Figure 5 as an example,
“Severity” and “Inquiry to” fields are checked, these

Figure 5 Example of the AND Rule of Field Settings

#nnn Issue Title
Standard fields
■ Assignee
■ Category
■ % Done
Custom fields
■ Severity
■ Inquiry to

Project B
Tracker
■ General

Custom fields
□ Severity
■ S/W classification
■ Inquiry to
□ ISO9001 Section#

Project C
Tracker
■ General

Custom fields
□ Severity
□ S/W classification
■ Inquiry to
■ ISO9001 Section#

Project A
Tracker
■ General

Custom fields
■ Severity
□ S/W Classification
■ Inquiry to
□ ISO9001 Section#

#nnn Issue Title
Standard fields
■ Assignee
■ Category
■ % Done
Custom fields
■ S/W classification
■ Inquiry to

#nnn Issue Title
Standard fields
■ Assignee
■ Category
■ % Done
Custom fields
■ Inquiry to
■ ISO9001 Section#

Tracker “General”
Standard fields
■ Assignee
■ Category
■ % Done
Custom fields
■ Severity
■ S/W classification
■ Inquiry to
■ ISO9001 Section#

“General” issue of Project B

Project A-C Definitions

Tracker Definition

“General” issue of Project C“General” issue of Project A

Custom fields
definitions of Tracker

definition and those of
Project Definition are

“AND” operated.

Only custom fields, which are checked in both Tracker
definition and Projects definition, are available in the issues in

the projects.

Legend
■ Checked
□ Not checked

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

13

fields appear on Project A’s “General” issue.
Conversely, “S/W classification” nor “ISO9001
Section#” are not checked, they don’t appear. This is
because only fields for which both the tracker field
definition and the project field definition are checked
(i.e., those that fulfill the AND condition) can actually
be used. This same setup causes “Inquiry to” and
“ISO9001 Section#” appear on Project C’s “General”
issue, but “Severity” nor “S/W classification” don’t
appear.

Utilizing this method makes it possible to use one
tracker to deal with situations in which the workflows
are the same but the contents to be managed (fields)
are different. This makes maintenance easier, and
gives the following benefits to users.
(1) Only fields that are relevant to the subject area of

business are shown in the issue. There is not any
field displayed on the screen which are not for the
business. Hence, it is easy to focus on the
business.

(2) When a person is in charge of multiple subject
areas of business, he/she can use the same tracker
(for example, “General”) even when working on
different projects. This lowers the number of
tracker choices and reduces confusion.

4.3 Project Division Criteria

Although multiple projects can be used in Redmine,
not much information is provided on the internet or in
existing publications regarding when it is appropriate
to divide projects. However, based on our experience
with constructing and operating CODA, project
division is a major factor to effective use of Redmine.
The principles of project division likely differ in
accordance with the culture and policies of the
organization which use Redmine, whether or not to
divide projects is an important issue to consider when
the scope of business is expanded. To this end, this
paper introduces project division criteria based on our
experiences implementing CODA.
(1) Divide projects when participating members are

different for security reasons and the like. As
discussed in Section 3.2, vendor members also
participate in CODA. Matters that are being
handled with vendors are managed in the projects
that they participate in, while other matters are
managed in projects that they do not participate.
Redmine has a feature called “subproject” which

makes projects to be connected in a
“parent-child” relationship, and that feature is
effective in such cases. Projects that vendor
members participate in are “sub-projects” of
projects that vendors do not participate in, users
of the Supercomputer Division can search issues,
work with the documents of both projects at once.
Meanwhile, vendor members are only
participating in the sub-project, they cannot see
content of the parent project.

(2) Divide projects when, although participating
members are the same, their roles need to be
changed between the projects. The roles currently
used in CODA are shown in Table 1. The role of
Regular are assigned to users in the normal case.
But, default role is Observer for projects that
store deliverables. Read-only role of Observer is
assigned in order to protect issues and attached
files in a secure way. Adding new deliverables or
updating deliverables to new revisions is only
performed at the time of delivery. Consequently,
only during this period alone, Regular role is
added for specified users and deliverable issues
are added or updated. During this time there is a
possibility that an issue could be modified
incorrectly or attached files could be deleted by
mistake. Redmine records changes to issues, it
would be possible to track such mistakes.

(3) Divide projects when the required fields are
different, or the frequency of updates
significantly differs, in accordance with the scope
of business. CODA is used to manage a variety of
businesses in the Supercomputer Division. Major
portion of issues are related to the operation of
JSS2. In the organization, there is a group of
persons who is mainly in charge of user support
such as visualization of the computational results.
Projects are divided between the operations of
JSS2 and visualization support, with the “AND
rule of field settings” outlined in Section 4.2.3.
Redmine has a feature that notifies members by
email of issues updates etc.. User can select
options of mail notification settings such as “For
any event on all my projects”, or “For any event
on the selected projects only” and so on. By
dividing projects based on the scope of business
in this way, users can set things up such that they
receive all notifications for just the projects

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E14

within the primary scope and receive notifications
from other projects only “you watch or you're
involved in (eg. issues you're the author or
assignee)”. This allows them to appropriately
limit their email notification flood.

(4) Divide the project related to Redmine
maintenance. The reasons behind this are
predominantly the same as those for scope of
business in the previous paragraph; dedicated
project for CODA development and maintenance
is held in order to separate tasks from other
operation-related projects. It is convenient that
features and changes which are specific to the
project can be tested here before being applied to
the production in other projects.

(5) Divide projects when the options of “Category”
field are to be split based on the subject area of
business, and make selecting options easy when
editing issues and set the criteria for query. This
is discussed in 4.3.1 on this aspect.

4.3.1 Using the Standard “Category” Field

One of the benefits of project division is active use
of the standard “Category” field that Redmine offers.
“Category” works in a slightly different manner than
other fields and it is strongly related to projects, it is
worth to discuss here.

Value ranges or options of standard fields are
common in a Redmine installation. Custom fields are
fields that can be defined in an installation and their
attributes, and options settings are the same across the
multiple projects in an installation. In comparison,
“Category” is a list form field, which means that users
select a string from the predefined list of strings, and
what is unique is that the list of available strings is
defined independently in every project. This makes it
possible to prepare options (list of strings) to suit the
nature of the business handled by each project. This is
useful to make finer classifications of business or add
specific keywords for queries. For example, in the
projects presented in Section 4.2.3, the Maintainers
can provide options that are suited to the business of
Project A (system operation), Project B (user support),
and Project C (quality management system),
respectively. Although this is not a major benefit when
there is only one project in an installation, it is highly
recommended making use of, when multiple projects
are held.

During initial construction of CODA, there were
only 1 or 2 two projects, so we did not prepare unique
options of Category for individual projects. As usage
of CODA expanded, the number of projects increased
and the jobs being handled also became more varied.
As such, it is now planned to set category options
which are unique for each project.

The Categories field has two more characteristics
that other fields do not. The first is a feature that
automatically assigns an issue assignee according to
the option value. This feature is very convenient when
used in a well prepared manner, at present there is no
plan to implement it in CODA. The second is the
ability for users to directly add options while editing
an issue. This feature may make number of options of
Category much larger without control in exchange for
its convenience. In CODA, updating options of
Category are allowed only to Maintainer role. We are
currently considering whether to allow it for general
users.

4.4 Use of Plugins

Various plugins are available in the internet which
expand features of Redmine. Many plugins are free
open source software. These plugins can make
Redmine usage more pleasant or maintenance and
management easier. At present, CODA is using six of
them.

Although consideration for using plugins are likely
the same basically as those for using any OSS, this
paper introduces a brief presentation about what is
considered when installing plugins in CODA below:
(1) Whether updating of information and addition of

features are done regularly or not. There is a risk
that plugins are not working correctly because of
the version upgrades of Redmine. This is why it
is important to have ongoing maintenance.

(2) Whether explanations and documentation are rich
and sufficient or not. Although it depends on the
features of the plugin, when documentation is
insufficient it is safer not to move forward with
using it.

(3) Check users’ experiences and reviews on the
internet. These information could reveal how
developers respond to things and whether
maintenance is ongoing.

(4) Choose simple plugins whenever possible.
Considering the risk that a plugin may stop

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

15

working when Redmine is updated, it is safer not
to be too reliant on plugins. As such, more care is
needed when considering a sophisticated,
complex plugin as opposed to a simple one.

In the experience of CODA, there were two cases in

the past when the Supercomputer Division considered
introducing a plugin, but decided against it. In one of
these instances, the primary reason was lack of
information; documentation was insufficient and there
were various questions being ignored in past question
and answers. The other instance was because of
version incompatibility: the plugin had not been
maintained and was not compatible with recent
Redmine upgrades, there was number of blog articles
that the plugin started working after correcting the
incompatible issues through trial and error.

 Future Outlook 5.

This paper concludes in this section with a
discussion of the future outlook for CODA and
Redmine.

5.1 Future Expansion of CODA

Approximately one year after beginning full-scale
production run of CODA system, the expansion of its
use is generally going smoothly, and it has become an
indispensable tool in the Supercomputer Division.
Moving forward, we would like to further perfect its
use, mainly focusing on the points below.
(1) Updating to the new Redmine 3.1 system: At the

time of writing, we have been using the Redmine
2.5x system, the version available when full
production of CODA began. Since then, version 3
of Redmine was released (at the time of writing,
the most recent version is 3.1.0). Many features
that improve usability were added in version 3.
We are planning to upgrade to that version
quickly and use it to improve productivity of
work.

(2) Promoting standardization in areas such as issue
creation and completion: While users are more
familiar with using the software than when it was
first running, we are still on the way of
standardization of rules such as granularity of
issues, how detail description is needed and
conditions of issue completion. This is true not

only for the efficient use of the tool, but also for
quality management of organization, namely, the
standardization and transparency/visualization of
business. In the Supercomputer Division,
promotion and revision of workflow
standardization from the perspective of ISO-9001
is underway. We would like to coordinate this
with the manner how CODA is used and apply
CODA as a tool to better support the
organization’s activities.

(3) Working with a version control system: Redmine
can be used with version control systems such as
Git. In CODA, this feature is only used as a trial
use for modification of source program of
Redmine and creation and maintenance of themes
(CSS (Cascading Style Sheet) used for browser
look and feel.) With JSS2 operation, commands
for users and operational utilities are developed
and maintained, as well as modifications of
system parameter files are managed. We would
like to enhance CODA to work with a version
control system so that they can work together in
order to relate the modifications of programs and
parameters to CODA issues which describe
system events or malfunctions.

5.2 Expectations to Redmine

As discussed thus far in this paper, Redmine is a
versatile issue management system. It could be a very
satisfying software program overall for using it as
such as CODA, based on our experiences of
improvement of settings and usage. This section
presents views of current status and future
expectations regarding Redmine itself and its
ecosystem.

When thinking of using OSS, it is very important to
consider whether development is active and whether
there is a substantial supporters’ community. Redmine
is being actively developed, there are many
publications about it, and active supporters’
community is working. Therefore it is expected that
the addition of new features will be going well and
more information on how to use Redmine better will
be provided in the future.

When considering to use it as the project
management for development, there is a number of
areas in which it is inferior to programs such as
Microsoft Project in terms of features and ease of use.

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E16

Figure 6 Administration Top Screen of Redmine

Figure 7 Sample of Administration Screen: Custom fields

However, fare-paying plugins that compensate them
are becoming available in the market. In addition,
there are companies that offer Redmine ASP (SaaS)
services, or offer designing, installing, and
maintenance of Redmine implementation. Having
such a comprehensive ecosystem like these is
important for an OSS to get popularity and take root.
This is incredibly encouraging.

 Conclusion 6.

This paper discussed the characteristics of
Redmine; experiences and issues the Supercomputer
Division had with the prior issue management system,
and the introduction process of CODA; unique hints to
set up and use Redmine better, which derived from
our experiences of constructing and using CODA; and
the future outlook for CODA and Redmine.

I would like to appreciate all the people of the

Redmine community, including those who work on
the development and maintenance of Redmine itself
and its plugins; the members of communities who
spend their time to such as disseminating information
on the internet, providing articles on books and
magazines, and holding conference events; and the
companies that offer SaaS, installation and
maintenance services.

In addition, I would like to appreciate all the users
who are providing many thoughts and much support
throughout the planning and use of CODA.

References

1) Naoyuki FUJITA, “ A purpose of JAXA next
generation supercomputer installation and its
composition outlines”, The 46th Fluid Dynamics
Conference / 32nd Aerospace Numerical
Simulation Symposium, 2014,
https://repository.exst.jaxa.jp/dspace/handle/a-is/
459711 (last visited August 21, 2015). (Japanese)

2) “Who uses Redmine?”,
http://www.redmine.org/projects/redmine/wiki/W
eAreUsingRedmine (last visited July 26, 2015).

3) Yoshinobu KATO, “An In-depth Look at
Development Support Tools 2013,” Nikkei
Systems, June 2013 issue, pp. 49-51. (Japanese)

4) Yuichi MATSUO and Masako TSUCHIYA,
“Issues and Tips on the Operation of the JAXA

Large-scale SMP Cluster, Large-scale SMP
Operation Working Group Report: Attachment
39-1,” Scientific Systems Association. 2006,
http://www.ssken.gr.jp/MAINSITE/download/wg
_report/smpo/t39-1.pdf (last visited July 26,
2015). (Japanese)

5) “ISO 9001:2008 Quality management
systems—Requirements,” ISO (International
Organization for Standardization). 2008 ，

http://www.iso.org/iso/catalogue_detail?csnumbe
r=46486 (last visited August 24, 2015).

6) Ryutaro YAGUCHI, “Success Guaranteed ! The
Vital Points of Redmine Introduction,” Nikkei
Systems, September 2013 issue, pp. 50-55.
(Japanese)

7) Yoshihito KURAKI et al, “Redmine: Project
Management Made Easy!”, 2009, Impress
Japan.(Japanese)

This document is provided by JAXA.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

17

Figure 6 Administration Top Screen of Redmine

Figure 7 Sample of Administration Screen: Custom fields

This document is provided by JAXA.

JAXA Research and Development Report　JAXA-RR-16-002E18

Figure 8 Structure of Major Definitions of Redmine

Issue statuses
- Name
- Attributes

- Default (y/n)
- Closed (y/n)

Tracker
- Name
- Fields to be used potentially

- Standard Fields
- Custom Fields

Custom fields
- Name
- Format (List , Text etc.)
- Values (choices, length etc.)
- Attributes (Required, etc.)

Standard fields
- Assignee
- Start date
- Due Date etc.

Project
- Name
- Descriptions etc.

Role
- Name
- Permissions

Workflow
- Defines Status transitions
- Embeds status definitions and

roles into the trackers
- Status transitions by roles
- Field permissions

- Read-only, Required

Users
- Login

- Name
- E-mail etc.

Groups
- Name
- List of Users

Members

Roles Roles

Issue Categories
- Only this field could contain

value choices which are
unique to the project.

Trackers to be
used for the
project

Custom fields to
be used actually
for the project

Modules
- Redmine functions to be enabled

for the project
- Issue Tracking, Wiki, Forums

etc.

(4) Role
Assignment Layer

(5) User Definition
Layer

(3) Project
Definition Layer

(1) Role Definition
Layer

(2) Issues Definition Layer

Actual Entities D
efinitions

Logical C
om

ponent D
efinitions

Table 1 Roles defined in CODA
Role Name Description Status Transition Roles and permissions
Regular Performs regular tasks such

as handling of Issues,
editing Wiki.
General users typically work
with this role.

All transitions available
except for the ones which
are allowed only to
Approver role.

Permissions available which
are needed to regular tasks
except for the ones only for
File Clerk role and
Maintainer role.

File clerk Performs management of
documents.

None Only add, edit or delete
documents.

Approver Gives approval as a
manager.

Transition to change
issues “Approved”, and
“Approved” back to
“Return” ONLY.

None (see Note 2 below)

Maintainer Performs maintenance of the
project

None Only maintain Project related
Settings.

Observer Performs only read contents
(issues, documents etc.)

None Only view Issues, Wikis,
documents etc.

As of August, 2015
Note 1: In Roles and permissions, no role has permissions to add projects, manage members, delete issues, and
other administrative tasks. Only Redmine administrator can perform such tasks in CODA.
Note 2: for English translation update: “Add Issues” or “Edit Issues” permission is needed to make “Approver” to
be visible in Workflow definition of Administration. (In recent versions of Redmine, it is needed, although i t was
not needed with Redmine 2.5.0.)

This document is provided by JAXA.

Edited and Published by: Japan Aerospace Exploration Agency
 7-44-1 Jindaiji-higashimachi, Chofu-shi, Tokyo 182-8522 Japan
 URL: http://www.jaxa.jp/
Date of Issue: September 26, 2016
Produced by: Matsueda Printing Inc.

©2016 JAXA
Unauthorized copying, replication and storage degital media of the contents of this publication, text and images are strictly
prohibited. All Rights Reserved.

CODA: Ticket Management System to Support JSS2 Operation and Assistance to Users
- Redmine Implementation and Hints of Its Usage -

JAXA Research and Development Report　JAXA-RR-16-002E

This document is provided by JAXA.

This document is provided by JAXA.

	表紙
	Abstract
	1. Introduction
	2. Overview of Redmine
	3. Usage in the Supercomputer Division
	4. Hints on Definitions and Settings of Redmine
	5. Future Outlook
	6. Conclusion
	References

