
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012
2369

PAPER

Partial Reconfiguration of Flux Limiter Functions in MUSCL
Scheme Using FPGA

Mohamad Sofian ABU TALIP†a), Takayuki AKAMINE†, Nonmembers, Yasunori OSANA††, Member,
Naoyuki FUJITA†††, Nonmember, and Hideharu AMANO†, Member

SUMMARY Computational Fluid Dynamics (CFD) is used as a com-
mon design tool in the aerospace industry. UPACS, a package for CFD, is
convenient for users, since a customized simulator can be built just by se-
lecting desired functions. The problem is its computation speed, which is
difficult to enhance by using the clusters due to its complex memory access
patterns. As an economical solution, accelerators using FPGAs are hopeful
candidate. However, the total scale of UPACS is too large to be imple-
mented on small numbers of FPGAs. For cost efficient implementation,
partial reconfiguration which dynamically loads only required functions
is proposed in this paper. Here, the MUSCL scheme, which is used fre-
quently in UPACS, is selected as a target. Partial reconfiguration is applied
to the flux limiter functions (FLF) in MUSCL. Four FLFs are implemented
for Turbulence MUSCL (TMUSCL) and eight FLFs are for Convection
MUSCL (CMUSCL). All FLFs are developed independently and separated
from the top MUSCL module. At start-up, only required FLFs are selected
and deployed in the system without interfering the other modules. This
implementation has successfully reduced the resource utilization by 44%
to 63%. Total power consumption also reduced by 33%. Configuration
speed is improved by 34-times faster as compared to full reconfiguration
method. All implemented functions achieved at least 17 times speed-up
performance compared with the software implementation.
key words: computational fluid dynamics (CFD), field programmable gate
array (FPGA), scientific computations, reconfigurable hardware, partial
reconfiguration

1. Introduction

CFD (Computational Fluid Dynamics) has been widely uti-
lized extensively in the design and optimization of fluid flow
applications since many years ago. In aerospace industry,
CFD is a cost-effective design tool for aircraft components
such as jet engines and wings. It presents methods to solve
and analyze problems of the physical phenomena of fluids
involving fluid flow on discrete space and time. Therefore,
software packages for CFD with high accuracy are needed
for aeronautical engineers and researchers. However, the
long computation time required to simulate complete air-
craft configurations remains as a bottleneck in the design
flow of new structures for the aeronautics industry. Thus,
reducing the time for aerodynamics analysis is one of the

Manuscript received March 13, 2012.
Manuscript revised June 16, 2012.
†The authors are with the Graduate School of Science and

Technology, Keio University, Yokohama-shi, 223–8522 Japan.
††The author is with the Department of Electrical and Electron-

ics Engineering, University of the Ryukyus, Okinawa-ken, 903–
0213 Japan.
†††The author is with Japan Aerospace Exploration Agency

(JAXA), Chofu-shi, 182–8522 Japan.
a) E-mail: cfd@am.ics.keio.ac.jp

DOI: 10.1587/transinf.E95.D.2369

most important challenges of current research in this field.
A typical simulation platform in the aeronautics indus-

try consists of a CFD specific software application, normally
written in a high-level language. UPACS (Unified Platform
for Aerospace Computational Simulation) [1], [2] developed
by JAXA (Japan Aerospace Exploration Agency) is one of
such CFD packages. UPACS adopts structured mesh as grid
data in their simulation. Although it is a convenient tool
for aerodynamics analysis, it sometimes takes several days
or weeks when an analytical area grows large [3]. This is
mainly caused by low parallel processing efficiency accom-
panied with pointer links and a complicated memory access
pattern. In UPACS, the increasing demands for accuracy
and simulation capabilities produce an exponential growth
of the required computational resources. Cluster computing
or GPU which makes use of a high degree of parallelism is
not an efficient solution [4].

Recently, reconfigurable systems using FPGAs have
been utilized for acceleration of specific applications includ-
ing bio-informatics, digital image processing, finance and
others [5]–[7]. Even though the early reconfigurable sys-
tems did not focus on large scale numerical scientific ap-
plication, the use of FPGAs for such areas has been grow-
ing remarkably because of the rapid performance improve-
ment of modern FPGAs with a large number of config-
urable logic blocks, memory blocks and embedded multipli-
ers. However, although some research works using FPGAs
achieved significant speed-up ratio to the software [8], [9],
targets were simple programs rather than practical software
packages.

The goal of our research is to improve the performance
of UPACS by using FPGAs as a reconfigurable platform.
However, the whole UPACS package is too large to imple-
ment in an FPGA, and often larger than the size of the tar-
get platform. In our previous research efforts [10], we tried
to implement core subroutines in UPACS which has com-
plicated memory access into FPGAs. Although the perfor-
mance can be improved, it is found that the target requires
too vast resources to implement on a small number of FP-
GAs. Use of multiple FPGAs is one option to resolve this
problem. However, we want to save the number of FPGAs
to be used, and also reduce power by introducing partial re-
configuration provided in recent FPGAs. Since UPACS con-
sists of various solvers, not all of them are needed to solve
a target application. As the first step in this study, we intro-
duce this mechanism into flux limiter functions in MUSCL

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

2370
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

scheme available in UPACS package.
The rest of this paper is organized as follows. Sec-

tion 2 discusses related work to this study. Section 3 is an
explanation regards to UPACS package whereas the target
subroutines and MUSCL scheme are explained. Section 4
is about partial reconfiguration technology. Section 5 de-
scribes about the implementation of this work. Then follow-
ing by Section 6 for evaluation and Sect. 7 will summarize
this work with conclusion.

2. Related Work

In fluid dynamics simulation, execution time or computa-
tions time is the largest concern. There are various studies
using FPGAs reported so far to examine the issue. Andres
et al. [9] and Sano et al. [11] reported the result for FPGA
accelerations. However, their implementations are not for
practical software packages. Another result is reported for
implementation of FPGA-based flow solver based on the
systolic architecture for CFD [12]. This work proposed a
systolic algorithm for the fractional-step method employ-
ing the central difference schemes. Although good results
are obtained, their implementation is based on 32-bit single
precision which is not sufficient for practical fluid dynamics
analysis [13].

A reconfigurable hardware platform has flexibility to
fill the gap between hardware and software for algorithm
implementation. Therefore, partial reconfiguration technol-
ogy has attracted many researchers in this field. Recently,
this technology was applied to information and communi-
cation system security [14]. In computer security applica-
tions field, partial reconfiguration is applied in AES algo-
rithm implementation [15]. It is also had been used to ac-
celerate video processing in driver assistance system [16].
It is noted that research has been done on an aerospace ap-
plication using partial reconfiguration method. LaMeres et
al. [17] designed and prototyped the computing architecture
which dynamically reconfigures the system depending on
the environment. Another work has been done on the frame-
work for a highly reliable fault tolerant system using partial
reconfiguration in spaces applications [18]. However, none
of them are in the CFD applications. Our trial is the first
implementation example of CFD on FPGAs with partial re-
configuration.

3. UPACS

UPACS is a CFD package to simulate compressible flow us-
ing multi-block grids. It provides researchers an easy way
to run large scale simulations. It has been developed as a
common aerospace CFD software equipping with flexibil-
ity, scalability and portability since 1998. The application is
written in FORTRAN 90 and it supports the MPI interface.

UPACS supports Euler, Navier-Stokes and Reynolds
Averaged Navier-Stokes equations as governing equations.
By choosing solvers, users can execute simulations on their
parallel systems without any code tuning. Users also can se-

Fig. 1 UPACS profiling result.

lect desired solutions and determine the number of process
by setting parameters. In order to run a simulation, users
just prepare a parameter file and grid data files. Figure 1
shows the simulation flow and profiling result of UPACS
and its correspondent percentage of execution time. Note
that, the percentage of the execution time is only shown
from “boundary condition pressure” to “calculate residual”,
and thus the sum does not 100%. This profile had taken on
SPARC64V processors at 1.3 GHz with Solaris8 operating
system with 403 grid data.

In this study, we focus on MUSCL scheme subroutine,
since this subroutine is used twice in core routine of UPACS
from turbulence model to calculate residual. The core rou-
tine occupies about 70% of total execution time and its ratio
grow up more than 90% as grid size increases [19].

3.1 MUSCL Scheme

MUSCL (Monotone Upstream-centered Schemes for Con-
servation Laws), which is a method to improve the accuracy,
was introduced in a paper by Bram van Leer in 1979 [20].
It provides highly accurate numerical solutions for a given
system. In UPACS, MUSCL is used in the turbulence model
(TMUSCL) and the convection term (CMUSCL) calcula-
tion. It extrapolates cell surface values from cell center val-
ues shown in formula (1) to (4) and Fig. 2.

q′i+1/2 = (qi+1 − qi)/(Δi+1 + Δi) (1)

q′i−1/2 = (qi − qi−1)/(Δi + Δi−1) (2)

qi±1/2 � qi ± φ(r)Δiq
′
i−1/2 (3)

r = (q′i+1/2)/(q′i−1/2) (4)

In the Eqs. (1) to (4), qi is the cell center value, Δi repre-
sents the distance between cell center and cell surface, q1/2

is the cell surface value, and φ(r) is the flux limiter func-
tion. i in the formulas indicates the direction which can
be extended to three dimensions. In addition, qi consists
of five physical values in UPACS, and there are data de-
pendency between them. These physical values are density,
velocity, pressure, viscosity and energy. FLFs are used to

ABU TALIP et al.: PARTIAL RECONFIGURATION OF FLUX LIMITER FUNCTIONS IN MUSCL SCHEME USING FPGA
2371

Fig. 2 MUSCL scheme.

suppress oscillation of values, which often arises in the field
where values change rapidly with a high order difference
scheme. Six FLFs of MUSCL are shown in Eqs. (5) to (10).
In TMUSCL, four symmetry FLFs no limiter, van Albada,
van Leer and minmod limiter functions are included. On
the other hand, 2nd order CMUSCL uses no limiter, van
Albada, van Leer, minmod and superbee limiter functions.
Finally, 3rd order CMUSCL consists of no limiter, minmod
and Hemker-Koren limiter functions.

no limiter, φ(r) = 0.5 ∗ (r + 1) (5)

van Leer, φ(r) =
(r + |r|)

(1 + r + EPS)
(6)

van Albada, φ(r) =
(r2 + r)

(1 + r2 + EPS)
(7)

minmod, φ(r) = max[0,min(1, r)] (8)

superbee, φ(r) = [0,min(2r, 1),min(r, 2)] (9)

Hemker-Koren, φ(r) =
(r + 2r2)

(2 − r + 2r2)
(10)

Here, r comes from (4), and EPS is a machine epsilon (1 ×
10−16).

4. Partial Reconfiguration

The flexibility of FPGA raises the possibility for hard-
ware configurations with software as needed to improve
efficiency, robustness, security and capability to be pro-
grammable on the fly. A partially reconfigurable design of
an FPGA consists of three major modules: the top module,
static module and reconfigurable modules (RMs). The top
module includes the static module and the RMs. The static
module is a set of non-reconfigurable modules, while RMs
are the dynamically reconfigurable part of the design. The
area of the device in which RMs is implemented is called
Reconfigurable Partition (RP).

MUSCL scheme is used twice in UPACS execution
flow. Therefore, at the beginning, users must specify which
limiter function they want to use at both parts. First,
MUSCL is used in turbulence model with four FLFs got
involved. Then, MUSCL is used again in convection term
calculations part. 2nd order calculation for convection term
involves 5 FLFs, and 3 FLFs are available for 3rd order

Fig. 3 High level system overview.

calculation. However, in CMUSCL calculation part, 2nd
order CMUSCL and 3rd order CMUSCL are alternatively
used. Here, partial reconfigurability of the FPGA and in-
tractability of the bitstream is effective to meet the require-
ments. Figure 3 shows the block diagram of the system.
In FPGA, the system consists of top MUSCL module, Re-
configurable Partition module for FLFs and on-chip mem-
ory using BlockRAM. The system is connected with the
host PC which contains all FLFs bitstreams. The connec-
tion is through UART via a JTAG port. JTAG is chosen for
configuration port because of quick testing and debugging.
Although ICAP port is a good alternative, it requires user-
designed PR controller such as custom state machine or em-
bedded processor such as MicroBlazeTM. Moreover, when
the partial bit files are stored in host PC, JTAG is convenient
compared to self configurations using ICAP.

Since each MUSCL function has similar structure ex-
cept FLFs, we can design a single MUSCL module with
all FLFs for TMUSCL, 2nd order CMUSCL and 3rd order
CMUSCL. However, it becomes a large hardware which is
difficult to be implemented on a single FPGA. The straight
forward way is designing three MUSCLs each of which has
their own FLFs. Although this approach reduces the hard-
ware, we must provide three independent designs. Our ap-
proach is to provide a single design whose FLF can be re-
placed by making the best use of partial reconfiguration.
The total required hardware and power usage can be min-
imized, since it provides only a single FLF required in the
target application. When the execution of UPACS starts and
the functions required for MUSCL is decided, an appropri-
ate FLF module is loaded by using the partial reconfigura-
tion while the other part of FPGA is remaining unaffected.

Each FLF module has the same inputs and outputs,
thus, it can be specified in the HDL description as the func-
tional modules with the reconfigurable partition attribute in
the description of the MUSCL top module. Multiple in-
stances corresponding to each FLF can be defined for such

2372
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Fig. 4 MUSCL pipeline with van Albada limiter function.

a single functional module. Software tools as NGDBuild,
MAP and PAR detect the reconfigurable partition attribute
on the instance and process it correctly [21].

5. Implementation

Here, Xilinx Virtex-6 FPGA (XC6VLX240T-1FF1156)
which supports a partial reconfiguration is chosen as a tar-
get device. MUSCL scheme is implemented as a top, static
module with a reconfigurable partition. Using its reconfig-
urable partition, FLFs are implemented as partial reconfig-
urable modules. The datapath can be obtained from partially
simplified data-flow representation of the algorithm shown
in Fig. 4. By inserting shift registers in the datapath, the
fundamental structure of the pipeline is designed. Xilinx
CORE Generator is used to provide the core for floating-
point adder, subtractor, multiplier, divider and shift register.
Efficient memory system is a concern overhere. However, it
is beyond the scope of this paper and had been reported in
our previous study [22]. To solve 3D model of fluid dynam-
ics problem, pipeline datapath is implemented three times
inside an FPGA.

All modules are described using Verilog HDL and
simulated with Xilinx ISim Simulator. The modules are
synthesized and used resources are measured using Xilinx
ISE 12.4. Floor-planning, constraint entry and design rule
checks (DRCs) are all accessed through the PlanAhead 12.4
software environment which supports a partial reconfigura-
tion flow. In order to demonstrate that our system works on
the real FPGA, Xilinx ML605 board is used with 200 MHz
operating frequency. All modules also implemented us-
ing IEEE754 standard 64-bit double precision floating-point
arithmetic. Here, the floating-point computational module

Table 1 Data of used computing units.

Units Latency Registers LUTs DSP48E

Adder 14 947 797 3
Subtractor 14 947 798 3
Multiplier 16 483 362 11

Divider 57 5973 3261 0
Comparator 1 0 128 0

is based on the Xilinx Floating-Point Operator v5.0 incor-
porated into Xilinx ISE 12.4 software. The Floating-Point
Operator v5.0 is an IP core for handling floating-point op-
erations, and it is configurable by the user specifications. In
order to generate high performance computation unit, the
level of DSP48E usage is set to the maximum to get the de-
sired output.

Inputs given to the pipeline are vectors each of which is
consisting of five physical values mentioned before. At one
time, only one FLF is used and employed in the FPGA. All
FLFs are synthesized separately from the top module. The
top MUSCL and reconfigurable FLF modules are consisting
of many arithmetic functions. The parameters used for each
computing unit are shown in Table 1. Adder and Subtractor
are set to 14 clock cycles per operation using high speed
mode. In addition, Multiplier takes 16 clock cycles with
11 DSP48E modules. The latency of Divider is set to be
57. Although it is possible to decrease the divider pipeline
latency, it will severely degrade the clock frequency.

The designs for all FLFs are shown in Fig. 5. The one
with the smallest clock cycles is minmod limiter function
which only requires 2 clock cycles. The largest latency is by
Hemker-Koren limiter function which requires 117 clock cy-
cles to get result. Van Albada and van Leer limiter functions
require 87 and 85 clock cycles, respectively. In these FLF

ABU TALIP et al.: PARTIAL RECONFIGURATION OF FLUX LIMITER FUNCTIONS IN MUSCL SCHEME USING FPGA
2373

Fig. 5 Implemented flux limiter functions.

modules, shift registers are used to synchronize the input
value. Shift registers are 64 bit width and can take various
clock cycle depth depending on the situation. Machine ep-
silon (1×10−16) and constant value 1.0 are also used in these
FLFs modules. The remaining minmod and superbee lim-
iter functions require comparator modules which are used
for minimum and maximum value comparison.

6. Evaluation

In this section, evaluation results are shown in order to
demonstrate the concept of the system. The following three
designs are evaluated and compared.

• design-1: One static module of MUSCL scheme with
all FLFs.
• design-2: Three static modules only with the associate

FLFs for TMUSCL, 2nd order CMUSCL and 3rd order
CMUSCL.
• design-3: One top module of MUSCL scheme with

partial reconfiguration FLFs. This is the proposed sys-
tem.

6.1 Resources Utilization

The amount of required slice registers, slice LUTs and
DSP48E are evaluated when the design is synthesized. The
results for all three designs are shown in Fig. 6 and Fig. 7.

Fig. 6 Resource usage in design-1 and design-3.

The results show that design-3 has the lowest resource uti-
lization compared to design-1 and design-2. The largest re-
source is occupied by design-1. The slice LUT usage had
exceeded 100%, so it cannot be implemented on a single
chip. Design-2 has less resource required for implementa-
tion compared to design-1. However, design-2 will require
three different FPGAs or three times full reconfiguration on
an FPGA.

In design-2 TMUSCL has four FLFs: no limiter, van
Leer, van Albada and minmod. CMUSCL 2nd has five
FLFs: no limiter, van Leer, van Albada, minmod and su-
perbee. CMUSCL 3rd has three FLFs: no limiter, minmod
and Hemker-Koren. In design-3, all FLFs share the same
reconfigurable partition in MUSCL. In contrast, the over-

2374
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Fig. 7 Resource usage in design-2.

Fig. 8 Total on-chip power for design-1 and design-3.

Fig. 9 Total on-chip power for design-2.

head in resource utilization is small. It comes from unused
resource in reconfigurable partition. Since the partition size
is fixed, each FLF is not fully used the resources available.
However, in this case, the overhead is negligible.

6.2 Power Consumption

Power consumption becomes one of the biggest concerns in
FPGA design as capacity and performance of FPGAs have
been increased. The results of total power consumption for
all three designs are shown in Fig. 8 and Fig. 9. In design-1,
Xilinx XPower Estimator (XPE) 13.3 is used since the de-
sign cannot be implemented in an FPGA. Resources usage

from synthesis result of design-1 is used as an input to XPE
to estimate total power usage. It shows that design-3 has the
lowest power consumption compared to the other two de-
signs. On the other hand, the highest power is consumed by
design-1.

In design-1, the total power is high because of static
power by unused limiter functions module. In design-3, the
total power is only consumed by top MUSCL and the re-
quired limiter function. Moreover, the power for design-
2 is less than that for design-1, but design-3 is advanta-
geous even when it is compared with design-2. This is be-
cause design-2 also has unused limiter functions in every
TMUSCL, CMUSCL 2nd and CMUSCL 3rd during opera-
tion. This increases the static power.

6.3 Configuration Time

The configuration time for full reconfiguration and partial
reconfiguration are compared. In this case, only design-2
and design-3 are evaluated, since design-1 cannot be imple-
mented on a single chip.

In the case of JTAG configuration, for Virtex-6 device,
configuration time is given by:

configuration time =
(2044 + bits in bitstream)

TCK frequency

where bits in bitstream is size of the configuration bitstream
in bits and TCK frequency is maximum configuration TCK
(Test Clock) frequency and used for boundary-scan opera-
tions. In this case, for Virtex-6 device with −1 speed grade,
TCK frequency is 66 MHz. 2044 is the total number of clock
cycles needed for pre-processing and post-processing while
programming the bitstream to FPGA.

In full reconfiguration, each MUSCL module bitstream
size is 9,017 KB. Based on the above formula, the config-
uration time is equal to 1.119 sec. On the other hand, bit-
stream size for each partial reconfiguration bit file for the
2nd order FLFs is 255 KB. This means that the configura-
tion time is equal to 0.031 sec. In the case of the 3rd order
FLFs, partial bitstream size is 266 KB and corresponding
configuration time is 0.033 sec. In short, the partial recon-
figuration method accelerated the configuration speed by 34
times. In other words, execution time is not so degraded
compared with design-2 when the FLFs are switched dy-
namically.

In our implementation, the MUSCL will stop working
when the FLF is loaded to reconfigurable partition in the
FPGA. However, since the time taken to load the FLF is
between 0.031 sec to 0.033 sec, this small overhead is ac-
ceptable. Even if low speed JTAG is used through iMPACT
tool to reconfigure the FPGA, the time to change from one
FLF to the other is less than one second, and hard to been
recognized by human eyes. Usually, the partial reconfigura-
tion is done once when TMUSCL is changed into 2nd-order
CMUSCL or 3rd-order CMUSCL in a job which requires
large execution time. Thus, the overhead for partial recon-
figuration will be acceptable.

ABU TALIP et al.: PARTIAL RECONFIGURATION OF FLUX LIMITER FUNCTIONS IN MUSCL SCHEME USING FPGA
2375

Table 2 Clock-cycle in TMUSCL.

TMUSCL
Flux Limiter Function # Clock-cycle

no limiter 233
van Albada 290

van Leer 288
minmod 204

Table 3 Clock-cycle in CMUSCL.

CMUSCL
Flux Limiter Function # Clock-cycle

no limiter 2nd 233
van Albada 2nd 290

van Leer 2nd 288
minmod 2nd 204
superbee 2nd 222
no limiter 3rd 233
minmod 3rd 204

Hemker-Koren 3rd 320

6.4 Performance

MUSCL is implemented with pipelined structure and the
clock cycles are measured. Total clock cycles for MUSCL
with each FLF is shown in Table 2 and Table 3. The number
of clock cycles is corresponding to the time for solving an it-
eration. In TMUSCL, van Albada is the largest, and it takes
290 clock cycles. In CMUSCL, Hemker-Koren requires 320
clock cycles to get the result.

The execution time in MUSCL with partial reconfig-
urable FLFs is compared with the execution time by soft-
ware. In software, MUSCL is executed by Core 2 Duo
2.4 GHz with Linux Kernel 2.6.18 operating system. The
compiler used is GNU Fortran 4.1.2. The execution time to
solve 100 × 100 × 100 iterative calculation is measured by
using call cpu time in Fortran 90 language and the 3rd order
Hemker-Koren is selected for comparison, since it has the
largest clock cycles. In software, the execution time took
0.08399 sec, while it takes 320 clock cycles to finish one it-
erative calculations in the FPGA. Adding the time for I/O
sending the data sequentially, it took 1,000,320 clock cy-
cles to finish the whole simulation. 1,000,000 comes from
the grid size corresponding to the total mesh points. Since
the operating frequency in the FPGA is 200 MHz, the total
execution time is 5.0016 × 10−3 sec. That is, by execution
of CMUSCL in FPGA, about 17 times acceleration is ex-
pected. Since the grid size will grow large and take a lot
of iterations, configuration time will not caused a bottleneck
to the system. Furthermore, overhead also did not influence
the operation frequency.

7. Conclusion

UPACS is a convenient CFD package that allows users to
select various set of solutions. UPACS solver together with
support utilities has proven its effectiveness in a simulat-
ing flows around complex configurations using multi-block

structured grid scheme. However, it is hard to be imple-
mented even on a large FPGAs because of its complicated
structure. Therefore, exploitation of partial reconfigurability
in recent FPGAs is considered.

MUSCL scheme using partial reconfiguration platform
has been implemented to reducing required hardware re-
source, power consumption, configuration time and improve
its performance. This implementation successfully reduced
the resource utilization by 44% to 63%. Also, power con-
sumption was reduced by 33%. Configuration speed is ac-
celerated 34 times faster and overall speed-up at least 17
times in performance is achieved. In future work, other UP-
ACS module is possible for exploration to implement using
partial reconfiguration techniques.

Acknowledgements

This work is supported in part by a Grant-in-Aid for the
Global Center of Excellence for High-Level Global Coop-
eration for Leading-Edge Platform on Access Spaces from
the Ministry of Education, Culture, Sport, Science and Tech-
nology in Japan.

References

[1] H. Yamazaki, S. Enomoto, and K. Yamamoto, “A common CFD
platform UPACS,” Proc. 3rd International Symposium on High
Performance Computing, ISHPC ’00, pp.182–190, London, UK,
Springer-Verlag, 2000.

[2] R. Takaki, K. Yamamoto, T. Yamane, S. Enomoto, and J. Mukai,
“The development of the UPACS CFD environment,” ISHPC’03,
pp.307–319, 2003.

[3] Y. Matsuo, M. Tsuchiya, M. Aoki, N. Sueyasu, T. Inari, and K.
Yazawa, “Early experience with aerospace CFD at JAXA on the
fujitsu PRIMEPOWER HPC2500,” Supercomputing, 2004. Proc.
ACM/IEEE SC2004 Conference, p.11, Nov. 2004.

[4] B. Cope, P.Y.K. Cheung, W. Luk, and L. Howes, “Performance
comparison of graphics processors to reconfigurable logic: A case
study,” IEEE Trans. Comput., vol.59, no.4, pp.433–448, April 2010.

[5] N. Alachiotis and A. Stamatakis, “FPGA acceleration of the phylo-
genetic parsimony kernel?,” Field Programmable Logic and Appli-
cations (FPL), 2011 International Conference on, pp.417–422, Sept.
2011.

[6] K. Nakano and E. Takamichi, “An image retrieval system using FP-
GAs,” Design Automation Conference, 2003. Proc. ASP-DAC 2003.
Asia and South Pacific, pp.370–373, Jan. 2003.

[7] A. Kaganov, P. Chow, and A. Lakhany, “FPGA acceleration of
monte-carlo based credit derivative pricing,” Field Programmable
Logic and Applications, 2008. FPL 2008. International Conference
on, pp.329–334, Sept. 2008.

[8] W.D. Smith and A.R. Schnore, “Towards an RCC-based accelera-
tor for computational fluid dynamics applications,” J. Supercomput.,
vol.30, pp.239–261, Dec. 2004.

[9] E. Andres, M. Molina, G. Botella, A. del Barrio, and J. Mendias,
“Aerodynamics analysis acceleration through reconfigurable hard-
ware,” Programmable Logic, 2008 4th Southern Conference on,
pp.105–110, March 2008.

[10] H. Morisita, K. Inakagata, Y. Osana, N. Fujita, and H. Amano, “Im-
plementation and evaluation of an arithmetic pipeline on FLOPS-
2D: Multi-FPGA system,” SIGARCH Comput. Archit. News,
vol.38, pp.8–13, Jan. 2011.

[11] K. Sano, O. Pell, W. Luk, and S. Yamamoto, “FPGA-based

2376
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

streaming computation for lattice boltzmann method,” Field-
Programmable Technology, 2007. ICFPT 2007. International Con-
ference on, pp.233–236, Dec. 2007.

[12] K. Sano, T. Iizuka, and S. Yamamoto, “Systolic architecture for
computational fluid dynamics on FPGAs,” Field-Programmable
Custom Computing Machines, 2007. FCCM 2007. 15th Annual
IEEE Symposium on, pp.107–116, April 2007.

[13] F. de Dinechin and G. Villard, “High precision numerical accuracy
in physics research,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and As-
sociated Equipment, vol.559, no.1, pp.207–210, 2006.

[14] Y. Hori, H. Yokoyama, H. Sakane, and K. Toda, “A secure content
delivery system based on a partially reconfigurable FPGA,” IEICE
Trans. Inf. & Syst., vol.E91-D, no.5, pp.1398–1407, May 2008.

[15] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream encryption
and authentication with AES-GCM in dynamically reconfigurable
systems,” Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on, pp.23–28, Sept. 2008.

[16] C. Claus, J. Zeppenfeld, F. Müller, and W. Stechele, “Using partial-
run-time reconfigurable hardware to accelerate video processing in
driver assistance system,” Proc. Conference on Design, Automation
and Test in Europe, DATE ’07, pp.498–503, San Jose, CA, USA,
EDA Consortium, 2007.

[17] B. LaMeres and C. Gauer, “Dynamic reconfigurable computing ar-
chitecture for aerospace applications,” Aerospace Conference, 2009
IEEE, pp.1–6, March 2009.

[18] B. Osterloh, H. Michalik, S. Habinc, and B. Fiethe, “Dynamic partial
reconfiguration in space applications,” Adaptive Hardware and Sys-
tems, 2009. AHS 2009. NASA/ESA Conference on, pp.336–343,
Aug. 2009.

[19] K. Inakagata, H. Morishita, Y. Osana, N. Fujita, and H. Amano,
“Modularizing flux limiter functions for a computational fluid dy-
namics accelerator on FPGAs,” Field Programmable Logic and Ap-
plications, 2009. FPL 2009. International Conference on, pp.654–
657, Sept. 2009.

[20] B. van Leer, “Towards the ultimate conservative difference scheme.
V. A second-order sequel to Godunov’s method,” J. Computational
Physics, vol.32, no.1, pp.101–136, 1979.

[21] Xilinx, “Partial reconfiguration user guide UG702,” vol.13.1, March
2011.

[22] H. Morishita, Y. Osana, N. Fujita, and H. Amano, “Exploiting mem-
ory hierarchy for a computational fluid dynamics accelerator on FP-
GAs,” ICECE Technology, 2008. FPT 2008. International Confer-
ence on, pp.193–200, Dec. 2008.

Mohamad Sofian Abu Talip received B.E.
degree from University of Science, Malaysia
in 2005 and M.S. degree from International
Islamic University Malaysia in 2010. He is cur-
rently a Ph.D. candidate at Keio University. His
research interests include reconfigurable sys-
tems and parallel processing

Takayuki Akamine received the B.S. de-
gree from Keio University in 2011. He is a mas-
ter student in Keio University in the presence.
He is interested in computer architecture, re-
configurable computing, and high performance
computing.

Yasunori Osana received Ph.D. degree
from the Department of Computer Science, Keio
University, Japan in 2006. He is currently an As-
sistant Professor in the Department of Electrical
and Electronics Engineering, University of the
Ryukyus. His research interests include recon-
figurable systems, computer architecture and its
application in computational science.

Naoyuki Fujita received the M.E. degree
from WASEDA university in 1992. In 1992, he
joined National Aerospace Laboratory of Japan
where he has been engaged in research on large-
scale storage system, FPGA computer, network
security. In 2000–2001, he joined U.S. IBM as
a visiting scientist to work in HPSS project. He
is currently working in Japan Aerospace Explo-
ration Agency.

Hideharu Amano received the Ph.D. de-
gree from Keio University, Japan in 1986. He is
currently a Professor in the Department of Infor-
mation and Computer Science, Keio University.
His research interests include the area of parallel
architectures and reconfigurable systems.

