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Oscillatory Marangon Flow in Half-Zone
Liguid Bridge of Molten Tin

By
N. Imaishi', K. Li', S. Yasuhiro', S. Yoda®

Abstract: To evaluate the experimental observations at JAXA, a long-run numerical simulation was conducted
on a realistic model of a half-zone liquid bridge of molten tin, which is identical to the apparatus of the JAXA’s
experiment. Using time dependent temperature difference imposed on both ends of the supporting rods, which is
calculated based on the experimental temperature recordings measured through two thermocouples, the numerical
results reproduce the experimentally observed oscillations of melt free surface temperature with different
frequencies and explain the experimental results. The present study also indicates that very sensitive temperature
measuring system must be developed to experimentally determine the critical conditions of Marangoni flow

transitions through the melt free surface temperature measurements.

1. Introduction

Studies on stability of Marangoni flow in half-zone liquid bridges of low-Pr fluid are stimulated by the
experimental fact that Marangoni flow instability in floating zones may cause striations in crystals grown in
space [1]. It is well known that in half-zone liquid bridges of low-Pr fluid, Marangoni flow is axisymmeiric and
steady under a small temperature difference (AT). At a certain threshold value of AT (the first critical AT,)), a
transition to a three-dimensional steady Marangoni flow occurs. At a further higher threshold value of AT (the
second critical AT,,), a second transition to oscillatory Marangoni flow occurs. Many experimental studies were
conducted on the Marangoni flow in half-zone liquid bridges over a wide range of Pr number. However, few [2-15]
have been reported on low-Pr fluids due to the difficulties in conducting well-controlled experiments induced
by the opacity, high reactivity with oxygen and high melting temperatures of the low-Pr fluids (mostly liquid
metals). On the other hand, theoretical studies conducted on the Marangoni flow in half-zone liquid bridges of
low-Pr fluid, both linear stability analyses [16-22] and direct numerical simulations [22-30], confirmed the two-
step transition. In the numerical studies, a simple liquid bridge model was adopted, i.e., the liquid bridge was

supported between two differentially heated isothermal discs and the calculation domain was restricted to the

melt zone.

Recently, JAXA conducted on-ground experiments [31] on incipience of the oscillatory Marangoni flow in
a small size liquid bridge of molten tin supported by iron rods. The imposed temperature difference on the liquid
bridge was measured through two fine thermocouples mounted in the rods (AT"). The thermocouple junction
was located on the axis of the supporting rods with a certain distance (d = 0.5mm) apart from the melt/rod
interface. By measuring the melt free surface temperatures at two different points through radiation pyrometers,
the oscillations of melt free surface temperatures were successfully detected. However, the detected temperature

oscillations are low with large amplitude. The frequencies are much lower than the critical frequencies predicted
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by the numerical simulations. Moreover, the critical Marangoni numbers based on AT are larger than the
numerical predicted ones by a factor of 1.5 t0 2.0 . It is noted that for such a low-Pr fluid liquid bridge apparatus,
the thermal conductivity of the supporting iron rods (k) is smaller than that of the molten tin (k). The large heat
flux through the rods and melt zone may cause significant temperature drops even if the thermocouples position
offsets (d) are small. So AT may not correctly represent the effective temperature difference which drives the
Marangoni flow. On the other hand, there remains a question about the observability of the critical point, i.e., the
incipience of the oscillatory disturbances. In the experiment, the imposed temperature difference was gradually
increased and the oscillatory disturbances started growth process after the critical condition was satisfied. Thus,
the observed critical condition may substantially larger than the theoretical one. However, the above aspects have

not been studied in detail so far except in our previous study on a liquid bridge of As = 2.0 [32].

In present study, a long-run numerical simulation was conducted on a realistic model of the half-zone liguid
bridge of motlen tin to precisely review the JAXA experiment on a liguid bridge of As = 1.22 [31]. The numerical
results reproduce the experimentally observed supercritical melt free surface temperature oscillations of different
frequencies and explain the experimental results. The present study also gives the first and second critical
Marangoni numbers and indicates that very sensitive temperature measuring system is necessary to be developed to
detect the temperature oscillations right after the incipience of the oscillatory Marangoni flow experimentally. The

numerical results are described in the dimensional form for the convienent comparison with the experiment results.

2. Problem statement

The schematics of the half-zone liquid bridge model adopted in the present study are shown in Fig.1. The
gravity level is assumed to be zero because the dynamic Bond number of the liquid bridge in the experiment
is smaller than unity, so the melt free surface is assumed to be non-deformable and cylindrical. A cylindrical
coordinate system (1, 8, z) is adopted here with the origin of the coordinate located at the center of the lower
melt/rod interface. The radius of the liquid bridge is R. The length of the melt zone is L and the length of iron
rod 1s L, . The thermocouple junctions are located on the axis of the supporting rods with certain distance d apart
from the melt/rod interfaces. The aspect ratios are defined as: As = L/R, As, = L. /R and As, = d/R respectively.
The fluid being considered is molten tin of Pr = 0.009. It is assumed to be an incompressible Newtonian fluid
with constant properties. With the above assumptions, the fundamental equations are expressed in dimensional
form as follows:

In the liquid bridge:

V-U=0 (1)
90U I
IV L U-VU = -~ Vp+vV2U )
di 0
L UVT=av'T )
dt

In the iron rods,
2=a,‘V2T @)
a1 ,
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where U = (U, U,, U,) is the velocity vector, v the kinematic viscosity,  time, p the density, p pressure, T temperatore
and o the thermal diffusivity for fluid, ¢, the thermal diffusivity for rod respectively. The fluid is assumed to be

motionless and isothermal before the temperature difference between the supporting iron rods is imposed.

The boundary conditions are defined as follows:

At the free surface of the liquid bridge (r = R):

0 (U o, T oU o.dT 0T
U, =0, —| = :=2T ’ t=oto—, —=0 5
gri r J r"pv 48 dr pv dz r
At the surface of the rods (r = R):
8T
2o =0 6
P 6)
At the upper and Tower melt/rod interface (z =L and z = 0):
aT aT
U =U,=U,=0, k—=k, — 7
dZ dz

where k and k, are the heat conductivity for the rod and melt respectively. A simple heat conduction dominant
model [33] is employed to convert the thermocouple temperature recordings T, (thermocouple-1) and T,
(thermocouple-2) to the time dependent temperatures imposed on the hot end (Ty) and cold end (To), ie., the

heat flux through the rods and melt zone is assumed to be one-dimensional in axial direction, steady and totally

- ' <L1=d}
iC :TZ—AT!?‘— (8)
| ir L“n"Zdl
\ & / \ 1 /

' - . N . 3 1 st . 1 . o, +3 4 M
where AT =T, — T,. As mentioned above, AT does not precisely represent the effective temperature difference

v / \
|
|

driving the Marangoni flow, thus the effective temperature difference acting on the liquid bridge melt/solid

interfaces is introduced as follows,
2p 2p /
AT, = { [T(R.0.0)d0 [T(R.0.L) d%} /20 ©

The Prandt] number and the Marangoni number referred in the present study are defined as:
v Ro AT
Pr=—, Mas= e
[24 ova

2
Je

2
z

umerical methods

The governing equations are discretized by the finite difference method with a Kawamura scheme of third
order accuracy for the convective terms [34]. Non-uniform staggered grids are adopted to increase the resolution
near the boundary. The radial velocities at the central axis are calculated by the method of Ozoe et al. [35].
A fully implicit code is developed based on the preconditioned Bi-CGSTAB method [36]. The details of the
numerical method can be found elsewhere [27-30]. In the present study, the total grid number is 27x63x94 (N,
xNyxN,), and 40 grids are placed in the z-direction of the melt zone. The numerical simulation was carried on
a vector processor of Fujitsu VPP-5000. The thermophysical properties and geometric parameters for the liquid

bridge model are listed in Table 1, which are identical to the experiment conditions.
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4. Results
As shown in Fig.2, the experimental temperature recordings of the thermocouples are simplified to be
linear with a constant heating velocity (dAT'/dr = 0.34 K/min, i.c., Case-1 hereafter), which is the same as
the experimental averaged heating velocity. The temperatures at the hot and cold ends calculated by the
heat conduction dominant model are also shown in Fig.2, and taken as the thermal boundary conditions for
the simulation. To evaluate the effect of the heating velocity on the incipience of the critical conditions, the

calculation with a faster heating velocity (dAT'/df =2.04 K/min, i.e., Case-2 hereafter) was also conducted.

For case-1, Fig.3 shows the evolution of maximum absolute value of the radial velocity at the axis

7

{
transition, against the temperature difference between the hot and cold ends (AT = Ty — T¢). In the early stage,

T . . . N o~ s . o ~ .
’Jr(r:() —0.51)] . 1., indicator velocity hereafter), which is the most sensitive parameter for current oscillatory
? - max

the temperature and flow fields are steady and axisymmetric with a small AT, and the corresponding azimuthal
velocities of four monitor points at the melt free surface are zero (see Fig.4). When AT is increased, the
amplitude of the indictor velocity increases gradually. At AT = 7.89 K (f = 303.5 s), the azimuthal velocities of
the monitor points start increasing quickly from zero indicating the growth of three-dimensional disturbance. The
flow pattern change also results in the sudden decrease of the indicator velocity. When AT is further increased,
the three-dimensional disturbance reaches the fully developed stage, and the azimuthal velocities decrease slowly.
The corresponding three-dimensional temperature and flow fields are steady with the characterized azimuthal
wave number m = 2 (see Fig.5), and maintained during the disturbance growth process, At AT = 43,05 K (r =
1655.2 s), the indicator velocity starts oscillation with a frequency of f = 0.54 Hz by FFT analysis (see Fig.6).
As shown in Fig.7, its amplitude grows exponentially and its frequency increases to f = 1.13 Hz (It is noted that
because of the absolute value function in the definition of the indicator velocity, soon after the incipience of the
oscillatory transition, the frequency of the indicator velocity is two times of the corresponding frequency of the
flow field oscillation). The corresponding oscillation mode is 2+1 [30], i.e., the superimposition of m = 1 type
three-dimensional oscillatory disturbance on the three-dimensional steady flow m = 2. Tt results in an oscillatory
radial velocity on the axis. Since AT = 49.4 K (r = 1900 s), the oscillatory flow reaches the fully developed
stage. During the time period (¢ = 1900 ~ 2100 s), the amplitude of the indicator velocity is slightly increased
as shown in Fig.6, and the corresponding frequency is nearly constant (see Fig.8). On the other hand, the fully
developed flow osciliation induces the oscillation of the effective temperature difference between the melt/solid
interfaces (see Fig.9). When AT is further increased, during the time period (r = 2100 ~ 2156 s), a new oscillation
of 27 mode [30] appears, which produces the torsional oscillation (twisting) in the core of the flow. As shown
in Fig.10, the 2T mode oscillation of low frequency (f, = 0.039 Hz) enhances the oscillation amplitude of the
indicator velocity, and modulates the 2+1 mode oscillation of relatively high frequency {f, = 0.72 Hz). When the
coexistence of two oscillation modes reaches the fully developed stage, the oscillation amplitude grows slowly,
and the frequencies of the two oscillation modes gradually increase to f, = 0.05 Hz and f, = 0.75 Hz respectively
(see Fig.11). Fig.3 also shows the evolution of indicator velocity against AT for case-2. The behavior of the two-
step Marangoni flow transitions is similar to the case-1. The first and second bifurcation points are AT = 10.61 K
(t=068s) and AT =44.7 K (r = 286.9 s) respectively, and the occurrences of the bifurcations are delayed. It may
results from the time lag between the imposed temperature difference and the developments of the temperature

and flow fields under the relatively fast heating velocity.
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Fig.12 shows the evolutions of the azimuthal velocities at the monitor point against the effective temperature
difference (AT.). For case-1, when the effective temperature difference (AT, ) is 1.14 K, the local azimuthal
velocity starts growth, and the first critical Marangoni number is estimated as Ma,, = 15.68. For case-2, the first
critical Marangoni number is estimated as Ma,, = 20.19 (AT, = 1.47 K). The second critical Marangoni number
is determined through the indicator velocity. As shown in Fig.13, when AT, is 5.95 K, the indicator velocity
of case-1 starts oscillation with a frequency of f = 0.54 Hz by FFT analysis. The corresponding second critical
Marangoni number is Ma,, = 81.7. For case-2, the second critical Marangoni number is Ma,, = 84.4 (AT, =
6.15 X), and the corresponding oscillation frequency is f = 0.565 Hz. Fig.12 also indicates that the definition
of the incipience of the oscillation is always accompanied with some uncertainty due to the transient imposed
temperature difference. Fig.14 summaries the critical Marangoni numbers of the liquid bridges of low Pr number
fluids as the function of aspect ratio [27-30,32]. The results are given by the current realistic model and by the

simple model corresponding to the marginal stability limits. It can be seen that small heating velocity is beneficial

to the accurate prediction of the critical Marangoni numbers.

5. Discussions

It is worthy to be noted that in the JAXA’s experiment [31], the melt free surface temperatures is measured
by three radiation thermometers, and four thermocouples were inserted in the cold disk to reveal the details of
the oscillatory flow transition. On the other hand, to evaluate the possibility of using the same thermocouple
arrangement to detect the first flow transition, Fig.15 shows the temperatures at four monitor points located at the
melt/solid interface periphery (r = R} of the cold end. It can be seen that the first fransition point predicted through
the free surface temperature bifurcations is identical to that of the local azimuthal velocity (£ =303.5 s, see Fig.4).
Fig.15 also shows the relative deviations of the temperatures at the four monitor points from the expected linear
temperature decrease for the axisymmetric flow respectively. Fig. 15 indicates that the asymmetric temperature
field grows rapidly during the time period of r = 303.5 ~ 340 s. At 1 = 340 s, the maximum temperature difference

becomes about 0.01 K, which may possibly be detected through thermocouples of high sensitivity.

In the previous section, the second critical Marangoni number (f = 1655.2 s, Ma, = 81.7, f= 0.54 Hz) is
predicted through the indicator velocity, which is sensitive to the occurrence of the oscillation of 2+1 mode.
Fig.16 shows that the local free surface temperature starts oscillations at £ = 1850 s (Ma = 90.6, f = 0.565
Hz) suggesting there is a large time lag from the incipience of the indicator velocity oscillation. However, in
the JAXA’s experiment, the onset of oscillatory Marangoni flow was detected through measuring melt free
surface temperatures. Due to the limited sensitivity (0.1 K) of the measuring instruments, only the free surface
temperature oscillations with low frequency and large amplitudes can be detected experimentally. Fig.17 shows
the time evolution of the local free surface temperature. It can be seen that the amplitude of the free surface
temperature oscillations corresponding to the 2+1 type mode predicted numerically is much smaller than the
sensitivity of JAXA’s measuring instruments. Judged from Fig.17, the experimentally detected free surface
temperature oscillation (Ma,, = 113, = 0.02 Hz) may correspond to the incipience of the coexistence of 2+1 and
27 osciliation modes (7 = 2120 s, Ma = 102.7, f= 0.039 Hz), and the corresponding low oscillation frequency of
the free surface temperature may correspond to frequency of the 2T oscillation. Thus the JAXA’s experiment may
not have detected the exact critical condition, and very sensitive detecting system must be developed to determine

the critical Marangoni numbers.
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6. Conclusion

In the present study, a long-run numerical simulation was conducted on a realistic model of half-zone
liquid bridge of molten tin, which is identical to the JAXA’s experimental apparatus, and the critical Marangoni
numbers are predicted. However, the definition of the incipience of the three-dimensional disturbance is always
accompanied with some uncertainties due to the transient imposed temperature difference. Small heating
velocity is beneficial to the accurate prediction of the critical Marangoni numbers. Moreover, the second critical
Marangoni number predicted through free surface temperature oscillation is much larger than the one through
the indicator velocity oscillation. The experimentally predicted second critical Marangoni number and critical
frequency through free surface temperature may be much different from those numerically predicted due to the
sensitivity of the experimental detection technique. The exact incipience of the oscillatory Marangoni flow is not
easy to be observed through the free surface temperature unless a very sensitive temperature measurement system

can be developed.
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Table 1 Thermophysical properties and geometric parameters.

Molten Tin Iron
Pr 0.009 .
Density o [kg/m’] 6793 7700
Thermal conductivity k [W/mK] 35.44 20.0
Specific heat C, [TkgK] 242 460
Viscosity u [kg/ms] 1.318x10° -
Temperature gradient of 13x10™ .
surface tension o1 [N/mK] '
Gravitational acceleration g, [N/m] 9.8 -
Volumetric expansion -4 )
coefficient B VK] 1310
Radius R [m] 3.0x10°
Length of the liguid bridge L [m] 3.66x107
Length of rods L, [m] 6.0x107
Offset of the thermocouple 0.5%10°

junction from melt/rod interface d [m]
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Fig.1. Schematics of the realistic liguid bridge model including the supporting iren rods.
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Fig. 5 Temperature and flow field cross sections (z = 0.5L) of
the three-dimensional steady Marangoni flow of m = 2.
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Fig.14. The critical Marangoni numbers of the liquid bridges of
low Pr number fluids as the function of aspect ratio.
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Fig.15. Time evolution of four monitor point temperature at the periphery of the melt/rod interface
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Fig.16. Time evolution of the free surface temperature of the monitor point at the melt free
surface and the corresponding maximum absolute value of the radial velocity at the axis

( {Ur(r=0,=0.5L) e ) around incipience of free surface temperature oscillation.
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Fig.17. Time evolution of the free surface temperature of the monitor point at the melt free surface.
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