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Summary: A transient evaporation from a condensed phase surface was studied based upon a kinetic
model equation that yields correct Prandtl number Pr. The kinetic equation was reduced to a set of
linear differential equations with the aid of half-range Hermite polynomials and the resultant equations
were solved by use of the Laplace transformation. A quasisteady solution for #3»1 was obtained and the
results showed that the evaporation rate and the uniform flow behind the evaporation wave or adjacent
to the Knudsen layer were little dependent upon Pr but the behavior of the dissipative wave (contact
surface) was rightly dependent upon Pr. The evaporation rate obtained showed a good agreement with
the one in the previous paper.

1. INTRODUCTION

When a condensed phase surface at temperature 7, and corresponding saturated vapor
pressure p, is contact with its vapor at pressure p, and temperature 7, an evaporation from
or a condensation onto the condensed phase surface takes place. A kinetic theory
analysis of transient evaporation (condensation) from (onto) a liquid surface was first
done by Shankar and Marble [/] applying a moment method to the Boltzmann equation.
They found that an evaporation wave (or expansion wave) propagated in the vapor and
after the wave proceeded far away from the surface a quasisteady vapor motion** took
place in the vicinity of the condensed phase surface.

Murakami and Oshima [2] carried out a Monte Carlo simulation to the Boltzmann
equation for arbitrary values of p,/p,. Obtained transient behavior of vapor had similar
features to those of shock tube problem. Present author [3] treated the problem as a
quesisteady one with the aid of shock tube relation and jump conditions derived from an
entropy balance relation and the obtained results showed a good agreement with those of
Monte Carlo simulation.

If the evaporation is weak, i.e., Mach number M. of quasisteady flow is small
(M-<1), the results of Monte Carlo simulation showed innegligible scatterings atributed
to the insufficient simulation time. These shortcomings of the previous papers are the
main reason why the author treats the problem in this paper. A linearized hierarchy
kinetic model equation [4] which resembles the Boltzmann equation correctly within 13
moments is reduced to a steady state equation with the aid of Laplace transformation and
the resultant equation is solved using the half-range Hermite polynomials [5]. Analyti-
cal forms of the solution can be obtained for two limits, s3>1 and 1/s>>1, where s is the

* Department of Aeronautical Engineering, Faculty of Engineering, Nagoya University.
** Shankar et al. did not find any quasisteady flow adjacent to the Kunudsen layer for the evaporation
problem.
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variable in the image function: An initial stage of transient evaporation may be
corresponding to the solution for 1/s3>1 and a solution for s< 1 must be corresponding to
the solution for +<1 (r is the time after the evaporation started up).

Since the solution for £2>1 must be physically interesting, the solution for s<1 and the
original function of it are obtained. The results will reveal the features of the transient
evaporation and will show the differences between the hierarchy kinetic model equation
and the BGK [6] model equation.

2. FORMULATION OF THE PROBLEM

2.1 Basic Equation

We consider a transient evaporation from a plane surface of liquid which occupies
x<0 and is kept at temperature T, (corresponding pressure is p,) is contact with ambient
vapor which occupies x>0 and is kept at T, (corresponding pressure is given by p,);
T.,=T,(1+At,) and p,=p(1+Ap.).

Due to the pressure difference p,Ap, maintained between the liquid surface and
ambient vapor, mass* and energy fluxes take place from the liquid surface (Fig. 1). If

rcondensed phase evaporation wave
P To No !
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7 layer surface region

Fig. 1. Schematic drawing of evaporation from a
plane surface.

Ap, is small, i.e., the mass and heat fluxes are small, the phenomenon can be described
by a linearized version of the Boltzmann equation. Instead of the linearized Boltzmann
equation, for simplicity, a linearized kinetic model equation [4] which correctly
resembles the Boltzmann equation within 13 moments so that it may yield the correct
Prandtl number Pr is applied to the present analysis.

In the one-dimensional problem the kinetic model equation is given by

e (¢=3)+3(1-5)r{e5¢)

Pt P=NA2e,Ue( =2 )+ 21— =) poa( 2 ——
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where f,(1+¢) is the distribution function with

Ji=0,2xRT,)""" exp (—¢?),

* If m<<0, it implies condensation onto the condensed phase surface.
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N the perturbed density defined by p=p,(1+N), cml the flow velocity with ¢,,=
(2RT.)'?, R the gas constant, 7 the perturbed temperature defined by T=T,(1+1), p,RT,p..
the shear stress, p,c.s3q./2 the heat flux, and cp.c,, CmsCy, and cnyc;, are the x, y, and z
components of the molecular velocity cae; =c.2+c,2+c.2. In Eq. (1) the distance x is
nondimensionalized by /,8 where /, is the reduced mean free path defined by

A
s"‘_‘;;— RTS ’

p the viscosity, and B the scaling factor of the collision frequency and the time r by

[A‘/chs .

The perturbed values are given by

N 1

U N Cy

T =n‘3/ZIJf $—1 ¢ exp (—c*)de, p=N+r. 2
Dizz - 203:—’%‘32

q;c cxcz——'g‘c:t

If the evaporation coefficient . =1, the distribution function of the emitted molecules
is given by [7]

é(t, x, ¢,>0)=0. (3a)

Since the ambient vapor at x—o is at rest and in thermal equilibrium, the perturbed
distribution function at x—o can be given by

(t, 00, )=AN,+ At,(¢—3); AN, = dp, — At,. (3b)

Conveniently we introduce half-range distribution functions b0 (¢, x, ¢,S0) and
b7, x, ¢.S0);

Bl porcsts

and expand them with the aid of half-range Hermite polynomials Hi(m) [5] as

(G)-Emo(): (-1, ma()eopnm

where n=|c,].

Substituting the expansion form (5) into Eq. (1) and using the orthonormal relation of
H, [5], we obtain
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ot ox

Xz(af:a;’ "'70;’b1+9b2+, "'ab;’al_aa;, ---,a;,b{,b{, ""b;)t9

where M is a constant matrix [5], the matrix A is obtained from the righthand side of Eq.
(1) and the superscript ¢ denotes the transpose of a vector or a matrix.
In terms of vector X the boundry conditions (3) yield

X*(t,0)=0, (7a)

where X1 and X2 are the vectorial forms of 1 and ¢?—3/2, respectively.

2.2 Laplace Transformation of the Basic Equation

Introducing the Laplace transformation
)?:F X exp (—st)dt.
0

to Egs. (6) and (7), we obtain

%X=(F-—srl)z?+M-lxu; P=M-'A, [,=M-, ®)
X
X+(0)=0, (%a)
X(o0)=1X,. (9b)
S

A solution of Eq. (8) is formally obtained as*
~ 2n 1
szzi U.(s) exp [—fi(S)X]pk(S)-i-?Xu, (10)

where —7i(s) is the eigenvalue of the characteristic equation
2n
|T—sy,—71=1] (" —=7D)=0, (11)
k=1
and U. is the eigenvector corresponding to the eigenvalue —yi(s).

If we choose the unknown parameters pi(s) so that X may satisfy the boundary
conditions (9a-b), a general solution to Eq. (6) is given by

* In the solution (10), terms including positive eigenvalues should be omitted because these terms express
waves propagating into the condensed phase.
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7 +fo0

1 2n
X=““'.Z

27” k=1Jo—-i

U.(s) exp [—7 ()] p(s) exp (st)ds, (12)

where o is a constant (>1).

In order to know the behavior of the solution X we first obtain the eigenvalues as the
function of s and the results are shown in Fig. 2 {see also Table 1). In the two limited
cases Eq. (11) can be rewritten as follows:

‘a0t a1 1 10

Fig. 2. Loci of y(s) (<0) for B=Pr=1 and n=6; ---
asymptotic value of y;(s) for s>1.

Table 1. Values of y®, v/, and y;(x)
for B=Pr=1 and n=6; ;125 % = —y;®
(1=i2n-2, k=0, 1), y©0=0
(4n—3=ii<4n, k=0, 1).

i -v{® -y —(yil$)=

1 12.00246 12.73204 12.72368
2 10.75151 12.81236 12.72368
3 2.28586 2.58687 2.58593
4
5

1.74974 2.61480 2.58593
0.97746 1.16228 1.15427
[1/sound speed=(6/5)!/2=1.09545]

6 0.72083 0.92699 1.15427
7 0.53769 0.77479 0.68234
8 0.42120 0.47133 0.68234
9 0.33504 0.39642 0.46030
10 0.32930 0.32939 0.46030

| 0.32932
12 ... L. 0.32932
i) 1sgl; |T—sTy—71|= [] (*—5,.)=0, (13a)
k=1
2n—2
i) s<l; |D—sD,—71|=(@—8s)(?—25) [] (—TO)=0, (13b)
k=1
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where the subscript 0 and « denote the values at s=0 and s—c, respectively (see Table
1). Thus the solution for 1/s&1 indicates free molecular flow solution and the solution
for s€1 includes two different waves. If necessary, the solution for intermediate values
of s in Eq. (12) can be integrated numerically and such result may converge to the
analytical solution for #2>1 as 7 increases.

3. SOLUTION FOR s>1 (t>1)

In this section we seek a solution of X for s<1, i.e., a solution of X for t>1. Let
introduce a column vector Y defined by

"?:(U0+SU1)?: (14

where U, and U, are the matrices of size 4n. Substituting Eq. (14) into Eq. (8) and
making a suitable choice for U, and U, (See Appendix A), we obtain

(3 g)eoc]s

where I is the diagonal matrix of order 4n—4 and W is the square matrix of size 4 [See
Eq. (18)].

Thus, if we take into account the solution up to the order of s, Eq. (15) can be solved by
dividing ¥ into_Y4,._4=(y1, Y2, ¥3,..., Yan-a) and Ya=an-1, Yan-2, Yan—1, Yan)"

A solution of Yi,-4 is obtained as (See Appendix A)

Yinoi={0,, exp [— (O +STOXLp; p=(P1s Do =+ *» Pin-d)’s (16)

A comparison of Eq. (15) with that of steady state problem [5], we find

Y=, 0,z 0 k=4Pr., 17)
and Eq. (15) yields
0 —2s 0 14+ Pr-'s
% —S 0 0 0 -
¥ _ (18)
dx 0 0 0 —1—Pr-'s
$2Prs 0 —$¢Prs 0

The characteristic equation of Eq. (18) for s<1 yields following eigenvalues:
+4/6/5s, ++/2Prs.

The eigenvalues with negative sign are corresponding to the phenomena in the vapor
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phase (x>0). Thus, a physically interesting solution of Eq. (18) yields
Y,=a,W, exp (— v6/5 sx)+ a,W, exp (— +/2Prs x), (19)

where a1 and @z are Pr arbitrary parameters and eigenvectors W, and W, corresponding
to —(6/5)"’s and —(2Prs)'? are given by*

-

3/2 0
V158 of
W,= ) / + 0 V6/5 s+ O0(s*7),
0 1
) (20)
-1 0 0
W,= 0 + -1 v s[2Pr + 0 24 0(s*)
N 0 —1| Pr '
0 2 0
As a consequence Eq. (10) is written as
Z=+sU)(] 0 )aeo+1x.; @1
0 ww, s

PX)=(pL,ps -+ -, 1> e, @), pi=p. exp [— (7" +s7{)x],
aj=a, exp (—vV6/55x), a,=a,exp (—+/2Prsx),

where I is the unit matrix of size 4n—4. If we take into account the boundary condition
(9b), the arbitrary parameters p; corresponding to the positive eigenvalues [—1vy:(0)>0]
should be zero and then we have

Pe=0 (2n—1Zk<4n—4). (22)
imposing the boundary condition (9a) and (22) on the solution (21), we obtain

I 0

£+0)=(U U+(
0)=U,+sU,) o ww,

)p(0)+-i—X;=0, @3)

where the superscript + denotes the upper half of a vector or a matrix.
Expanding W,[See Eq. (20)], p, and «; as

* Here, each vector is not normalized.
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W, =W+ s WD LsWwP,
p=s"'p" V454 pO4 .., 4

ai:s"a§“’+s“/2a§"’2)+a§°’+ Sy,

substituting these expansion forms (24) into Eq. (23), and equating each coefficient of

s"? (i is an integer) to zero, we can obtain p"’ and then a1’ and 2"

a£_1)= ig/-ﬁ Apu ,
vV10/3—(c,+c¢,)

(—c, ++8/15)AN, +(c,—v'6/5)4t,

ai™ V= " A -
10/3—(c,+c,
3—( )a 1) 9
oM =[(c,+e)—2Pr(d, +d)] /‘2},"‘;’ :
1D [, + B, 2Pr(dy — 3 d,)+ 24/ 158 ¢, ] G
y U =[—C,T3C n ¢ . A4,
[44 c ) r ~/2 A

................

where ¢, and ¢, are the macroscopic jump coefficients of density and temperature due to
evaporation and d, and d, are those due to heat transfer (See Appendix B). The
coefficient ¢, is a constant that is given in Appendix B.

Substituting Egs. (24), (25), and (20) into Eq. (19) and carrying out the inverse
transformation [See Eq. (12)], we obtain the original function of the solution,

(N, U, 7, ) ={a{" W OH (t — v/6/5 x)+a{ P W Ozt — +/6/5 x)] 2
+aOWOs(t—+6/5x)+ - - -}

VPrx - 1
al- VWO erfi (ﬂf—) [ W+t W(m)]
+{ erfc NGr + | 2 1 O Ja
2 1 1 -1 1
X (wt)™1”* exp (*—112"-;—6—)+ [aé"’ W+ aé"/z)ﬁWé PtV W )]
X( Pr )’/Z(x) xp( Prxt )+ . .}+(ANu, 0, 4t,, 0)", (26)
2t t 2t

where H(z) is the step function [H(z)=1, z<0 and H(z)=0, z>0], 6(z) the Dirac’s delta
function, and

erfc (z2)= 72,:_ r exp (—z%)dz.
T z

The contents of the first brace in the righthand side of Eq. (26) express discontinuous
waves which propagate with the sound speed (5/6)"%; the first term in the brace is the step
function, the second term expresses a relaxation of pressure wave, the third term is the
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delta function (this is the derivative of the first term), and subsequent terms* in the brace
include following functions:

dn — i dn . R
- ;12?;(:"«/6/5 x)" ', ‘dz_"a(’ V6/5 x).

Thus in the region, —(6/5)"’x>1, the first term remains and it gives a uniform pressure
P> and a constant flow velocity U,.

On the other hand, the contents of the second brace express dissipating waves (contact
surface); the second and the third terms in the brace decay repidly as the time proceedes
and the subsequent terms** include following functions:

dr vPrx dr Prxt
e (Y55) e e (<55
dt" erie V2t dt™ (wt)™" exp 2t

these terms decay as fast as the second or the third term. The last term in the righthand
side of Eq. (26) evidently expresses the undisturbed vapor ahead the evaporation wave.
As a consequence, the behavior of vapor for r>1 and |t—(6/5)'x|>1 can be given by

N 32 ~1 B 4N,
U|=a"[v15/8 |HC =65 ) +a5!| 0 erfc(ng‘)+ o | @
T 1 1 dt,

Equation (27) yields two uniform flow region behind the evaporation wave;

() 1Lxge'2:

. —dp
N.=cU,, t.=c U, U,=——o" u , =0, 28a
‘ V103 —(c,+¢) " (282)

(i) 12« xK(5/6)"¢:

— fIs T0/3 —, — ANu
Nz—[~/6/5 (WI0/3—c,—c,) Apu]vw,

— _.——__ 10/ — _ Atu
rz-[x/8/15 WI03—c, c,)APu]Um, (28b)

Uz-:Um, IC2=O.

The dimensionless evaporation rate U= in Eq. (28a) shows a good agreement with the one
obtained in the previous paper [3]***,

* The subsequent terms are the original functions of s”2exp (—\/6/5sx) where i is a positive integer.
** The subsequent terms are the original functions of s/?exp (—\/2Prsx) where i is a positive integer.
*** In Eq. (29) the mistyped error in Ref. 3 is corrected (2y—\/2y).
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- undisturbed
%H“ JEX) e region

|:> ap, at,

exp(—lim)x)
xHit- &)

Fig. 3. Schematic drawing of an evaporation
wave.

m__ —dp, . (29)
pscms ,‘/2?_‘}_ gg”

where v is the ratio of the specific heats.
The kinetic part of the solution (21) include a term

L pt-1 exp [— (7 4+ 570)x]
Ry

and the original function of this term is given by
P exp [—TOx]H(t—10x).

In accordance with the value of v (i=1 to 2n—2) (See Table 1) such waves make a
dispersive wave front (See Fig. 3) but the waves decay rapidly as they proceede:
Eventually a single evaporation wave (shock wave) that propagates with the speed of
sound remains. Consequently the kinetic part of the solution in the Kundsen layer
[x=0(1)] approaches the solution of the steady state problem,

N x:|*

U X; 2n—2

- = xe kZ_:l Py VU, exp (—70x). (30)
¢ =

K X;

Thus the quasisteady solution of the evaporation problem is given by

* In Eq. (30) X2 and X4 are the vectorial forms of ¢, and ci(c2—5/2), respectively.
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N

= Eq. (27)+Eq. (30). @31

qs

4. DISCUSSION

In the previous section a transient evaporation problem was analyzed by use of a
kinetic model equation: The vapor motions were revealed and the resultant evaporation
rate was obtained. The speed of the evaporation wave, the evaporation rate, and uniform
flow conditions are little dependent upon the Prandtl number Pr and the scaling factor 3,
i.e., upon the model of kinetic equation. On the other hand, the behavior of the contact
surface depend rightly on Pr and on B through the scales of x and 1.

Within the restriction of the linearization of the problem, present results are valid for a
positive value of Ap,, i.e., for the condensation problem. Even if Ap,>0, the uniform
flow condition with the subscript < [See Eq. (28)] is uniquely determined by the
condensation rate U:(<0), while in the steady state condensation problem such
uniqueness is not found [8]. So, the uniform flow adjacent to the Kundsen layer in the
transient consensation problem may be a particular case of the steady state problem.
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APPENDIX A

The inverse matrix of U;+sU, for s<1 can be given by*
Uy+sU) ' =U'+ (= U 'O U Ds +(— U 'U U 's*+ - - -, (A-1)

where we assume that U, is a regular matrix. Substituting Eq. (14) into Eq. (8) and
using the relation (A-1), we obtain

v‘fb’f-——[Ua*FUa*+(Ua*FU1—Ua*UIUaTUo—Uo-T,UO)er LY (A

If we choose

T3 =07+ Oun-s—0un-005n; Us'TU,={17},
(=1, =1 @+, #.=0,

#,,=0 (iz4n—3 and j=4n-3);
Uy'U,={i,,}, U;T\U,={r¥},

(A-3)

where y,-“” is the eigenvalue of Eq. (11) for s=0 (i.e., U, is the matrix of solution for
steady state problem), Eq. (A-2) yields

2[5 2)+ols

where

T= (o470, T0=1% (IZi<dn—4),
w={514n(5i4n—3_6“.,,..1)-}'5'7%)} (4}1—3§l’ j_§4n),

and 9, is the Kronecker’s delta.

APPENDIX B

Conveniently Eq. (23) is rewritten as

X O =K, + V5K, o+sK) 3 s5pPO0) 45X, (A-4)

i=-2

with

* If 1/s«1, we have another expansion form, (Uy+sUy) t=s"1U1 1 +s"(— Uy U, U D)+ - - -
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K():(UiOH’ U50)+9 Y Ué?z)jm iO)a ‘QéO)),
Kl/2:(05 Oa ) 51/2)3 951/2))5
K1=(U§l)+a Ugl)+a ) Ué:z)—j-zs Qil)’ I-QL(’I)),
‘Q§0>:%X;+\/1"5"/8X2++X3+_X1+, O =X —X;,
1

QD =0, QVP=_ 1 (—Xr+2X?)

1 2 N/ZP]‘( 2 4 )
QO =VEBEXI, @=— X1,

pr
where U/ and U,"" are the ith columns of the matrix U, and U,, respectively and X, and

X, are the vectorial forms of ¢, and c¢,(c2—-5/2), respectively.
Equating all coefficients of s"* to zero (i is a positive integer), we obtain

-1 -1 +
p%O) )= '—KO Xu7

(-1
P =—Ki'(—X§ +2x) -2, (A-5)
v 2pr
(0)__K—l[(_X++2X+)a’§‘1/2)+K (-1)] L.
Py = 0 2 4 \/ZPr; V208 B .

Let define a determinant Ao by
Aozdet (U§0)+, U;DH-, ) éon):rz’ X;’ ;)9

and a determinant Ai(Z) by replacing the ith vector in the Ao with a vector Z. By using
these definitions, we have the following relations:

M) _ b
AO AO
DX _ pran 8D _ g
A, A,
—1.6853 (B=1) {—0.4467 B=1
n= C,=
“Tl-1.6778 (8=2/3), —0.4438 (§=2/3),

_ [0.7443/Pr (8=1), 4 _[—13027Pr (=)
”—{0.7467/1» (B=2/3), ‘_{-1.3016/Pr (B=2/3).

The determinant of K, yields
det (K;)=A,v15/8(v/10/3—c,— €1)

and then a,'"" and a,' ™" are given by
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alh = 1 Dy (XFAN, + X A1) = — V15/84p,

A, 7x/f6/3—cn—ct ’
1 (—c,+v/8/15)4N, +(c, —/6/5)4t
as =" A (XFAN,+ X} At)= "t TV OIS u T 7V D20
YA, i i 4t) v10/3—c,—c,
The coefficient ¢, is given by
37923 (=1, Pr=2/3)
1

=_———det (U, UL, -, UR%, X3, X)=.3.7736 (B=Pr=2/3)

Cq A
0 25282 (8=Pr=1).
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