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Summary: A numerical method using boundary-fitted coordinate system has been developed to
analyze two-dimensional viscous flows with curvilinear surface at low Bond number. Evaporating
liquid flows accompanied by thermocapillary convection, which model flows inside micro-heat pipes
or those under microgravity environment, have been numerically analyzed. The effects of the
thermocapillary force and the evaporation resistance on flow fields, the temperature distribution

along the meniscus and the heat transfer rate

have been numerically predicted.

NOMENCLATURE
Bo : Bond number T : Temperature
Bi : Biot number t : time
Bic  : Biot number to convection heat transfer U : x component of the velocity vector
Bie : Biot number to evaporation heat transfer V : y component of the velocity vector
D : width of the groove \Y : velocity vector
g : the gravity acceleration X, ¥y : space variables in the Cartesian coordinate
h : heat transfer coefficient system
K : thermal conductivity A : finite difference
k : thermal diffusivity g, n : space variables in the general coordinate
L : latent heat system
Ma  : Marangoni number K : curvature of the meniscus
P : pressure u : dynamic viscousity
Pr : Prandtl number v : kinematic viscosity
R : nondimensional evaporation resistance p : density
r : evaporation resistance o : surface tension coefficient
Ra : Rayleigh number Y : stream-function

o : vorticity

Subscripts Superscripts
i : node number in & direction m : iterative step
j : node number in 7 direction n : time step
t : time derivative
X : x direction derivative
y : y direction derivative
& : & direction derivative
n : n direction derivative
n : normal direction
T : tangential direction
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1. INTRODUCTION

Surface-tension-driven phenomena are observed in a variety of flow problems
related to two-phase systems [5]. These phenomena have been extensively investi-
gated for many years. With recent progress of space technology, interests concerning
the fluid problems in the space environment have greatly increased and it has been
recognized that the surface tension effect is dominant in such environment [6, 7].
However, fundamental behavior of fluids in low-gravity environment is still unknown.
Study of problems related to the surface tension became one of the most motivating
topics in fluid mechanics.

In this study, we consider fluid motion induced by the surface tension, which is not a
constant but varies according to the temperature. Inhomogeneous temperature
distribution along the phase-boundary causes an inhomogeneous surface tension
along the surface, then a flow is induced by tangential gradients of the surface tension.
This is commonly called the thermocapillary flow.

Several theoretical and numerical investigations concerning to thermocapillary
convection and to its flow stability have been carried out [2, 7, 9, 1I] and
understanding of this kind of fluid motion has been expanded beyond a certain extent.
In such studies, the phase-boundary was usually assumed to be plane. However, it is
well-known that, in the capillary-dominant motion, the phase-boundary surface is no
longer flat. Analysis taking into account the curved phase-boundary surfaces are
important.

On the other hand, evaporation from the meniscus is influenced by the capillary
behavior of the liquid. The fluid temperature is higher in the neighborhood of the
contact line than at far from it due to heating from the solid wall. Therefore, this
temperature difference causes thermocapillary flow along the meniscus. This
thermocapillary flow directly affects to evaporation and heat transfer. These effects
have not been clarified yet.

In the study, a two-dimensional thermocapillary flow model including evaporation
effect is proposed. The phase-boundary surface is assumed to be curved and it is
determined as a function of the Bond number and the wall-liquid contact angle. The
fluid is incompressible and viscous. This model is applicable to the fundamental flow
behavior taking place inside micro-heat pipes or under low-gravity environment.
Based on this model, a numerical scheme is developed to analyze the thermocapillary
and evaporating flow problems. Finite difference method using the generalized
coordinate system and the grid generation was applied to this curved boundary
problem. In the following sections, the flow model, the numerical method and the
computational results will be described in detail.
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2. PHYSICAL AND MATHEMATICAL MODEL

2.1 Physical model

A two-dimensional thermocapillary and evaporating flow model is schematically
shown in Fig. 1. Liquid partly fills a two-dimensional groove. Fluid flow is considered
to be steady, viscous, incompressible and laminar. Due to the assumption of
capillary-dominant flow, the Bond number is low and the phase boundary between the
liquid and the vapor is curvilinear. The contact angle a is assumed to be constant.
Thermocapillary force and evaporation resistance act on the phase boundary. Gravity
acceleration is in the downward direction. Liquid is heated from the heated wall which
has an isothermal temperature T,. Vapor is assumed to be inert, that is, it has a
uniform, lower temperature T, than T, and no vapor motion takes place. This
assumption of the inert vapor may not destroy our main purpose of this analysis, and
such well simplified problem can be solved rather easily.

2.2 Mathematical model

Force balance among the pressure, the surface tension and the viscous stress must
be fulfilled at the phase boundary. Because the effect of the fluid motion and the
viscosity on the shape of the meniscus is not large [/2], the meniscus is assumed to be
same as the static meniscus;

P/ipg+y, (x) = H

P,—P =Ko
1
dzyo/dxz ( )

K =

[1+(dyy/dx)’]?

/
/) = ¢
/) %
T, ? Liquid /
é s
S S /.
T, > Ty
Fig. 1. Schematics of thermocapillary and evaporating
flows.
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Where P is the pressure, yy(x) is the meniscus line, H is a constant, P, is the vapor
pressure, o is the surface tension coefficient and « is the curvature of the meniscus
line. Eq. (1) is nondimensionalized in the following form

dzy()/dxz
[1+(dyy/dx)*]

—Boy, = H (2)

where Bo=pgD%0, D is the width of the groove. The meniscus line is to be
determined from Eq. (2).

Basic Equations expressing the conservation of mass, momentum and energy of
liquid flow are, respectively,

U oV _, o
oxX 9Y
oV 2
aT , w. =1y
2 (VT)V= pvT (5)
Ra = D3g ﬁ(Tl_T()) Pr:l
vk ’ k

where Ra is the Rayleigh number and Pr is the Prandtl number. The Boussinesq
approximation has been applied.

Non-slip and isothermal conditions are to be fulfilled on the wall. On the meniscus,
the boundary conditions are expressed as follows,

oVn

P"’PV‘*“GK - 2[1*“8";1*" (6)
oVan , V., _ 90
‘u(ar+8n)_ar )
1
Vo= T (T—Ty) (8)
_rol _ _
Oy =h (T=Ty)+LV,p 9)

Eq. (6) and Eq. (7) express force balance of normal and tangential forces. In Eq.

(7), the right hand term is the tangential gradient of the surface tension due to

temperature dependence and is written as (9_2 -al The (—?—U is a negative con-
oT’ or oT

stant. In Eq. (8) concept of the evaporation resistance is applied, it means that

evaporation velocity on the meniscus is proportion to the temperature jump across the

phase boundary. Eq. (9) expresses the heat transfer on the meniscus, the first term of

the right handside is the convection heat transfer, the second term is latent heat due to

evaporation.

An attempt to solve the Egs. (3)-(9) was not successful, due to difficulty to
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converge numerical solution of Egs. (3), (4). The first reason is that the finite
difference terms of the normal or tangential gradients on the curvilinear boundary in
Egs. (6), (7) have low accuracy. The second one is that the boundary conditions
(6)~(9) are implicit. To overcome these difficulties, vorticity and stream-function
formulation is applied, by which, explicit boundary conditions can be obtained from
Egs. (7), (8). The vorticity transport equation and Laplace’s equation for the
stream-function in the (x, y) coordinate system are expressed in the following
nondimensional form.

2

2
0V, yePyoL 0w, o0, g, 01 (10)
ot = ox oy  ox oy ox
2 2
¥8V12P+ 9 g} = —w (11)

oy

where the vorticity w and the stream-function vy are defined as, respectively,

- ovV_oU

12
ox oy (12

oV _y, ¥ _ _y (13)

The boundary conditions on the meniscus of the vorticity and the stream-function
are derived from Egs (7)—(9). The pressure boundary condition is Eq. (6), used only
for pressure calculation. Therefore, their nondimensionalized form are expressed as
follows.

Z 0y T _
o Bn Ma—ar (14)
1
Vo= o T (15)

in+(Bic+Bie)-T =0 or —a—T—AJrBi-T =0
on on

22|(T,~Ty)D

pLw
where Ma= , Re——————Pr,
uk D (T,—Ty)
N . . Dh . D
Bi=Bic+Bie, BlC—T, Ble———K—r—

After taking the tangential gradient of Eq. (14), one has

oVan _ 1 T
2t R or (17)

According to definition of the vorticity, the explicit boundary condition for the
vorticity is written from Egs. (15), (17)
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_9Va _oV: _ 5, 9Va ,3Va, 0V., _ 2 oT
Y on =2 ot (8r+8n)_(R+Ma) oT (18)

On the other hand, the evaporating mass rate from the meniscus is,
m = PAY;; = pV,ds (19)

Then considering Eq. (14), the boundary condition for the stream-function is obtained
as follows.

A‘rlpi‘l = Vnds = - dS

~| =

or T
YVie1~ Vi = R ds (20)

Starting from the given value of ¥, on the wall, each value of y; on the meniscus is
successively calculated.

When the evaporation resistance has a finite value, the exaporating mass is supplied
from the bottom of the groove. We assume that the flow there is uniform. Value of
this uniform velocity must be determined in such way to satisfy the mass balance for
evaporation.

In the following numerical analysis, the necessary equations are Eq. (10), Eq (11),
Eq (5) with the boundary conditions Eq. (16), Eq (18), Eq (20). In this mathematical
model, six nondimensional parameters appear, which are the Bond number, the
Rayleigh number, the Prandtl number, the Biot number, the nondimensional
evaporation resistance and the Marangoni number.

3. NUMERICAL METHOD

3.1 Computation of the meniscus line

The meniscus line equation (2) is a nonlinear ordinary differential equation, and the
asymptotic solutions are obtained for the small or large Bond numbers by small
perturbation method described in Ref. [1]. Numerical integration is also easily carried
out. In our analysis, Eq. (2) is linearized and TDMA (tridiagonal-matrix algorithm) is
applied.

dz}’o dyo 2132, _
o2 Bo [1“‘(”&;) I"“yo =0 1)

Aoyt =Bo [1+(Ay5) 2y =0

the meniscus at the Bond numbers of 1.0 and 100 with the contact angle of 15° are

This document is provided by JAXA.



Numerical Analysis of Thermocapillary 45

(a)

(b)

Fig. 2. Grid system and meniscus, (a) Bo=100, (b) Bo=1.0.

shown in Fig. 2. When liquid is water, a Bond number 1.0 means that the groove
width is about 1.0 mm at 1-g environment, or the groove width is about 10 cm in space
environment of 10™%g. a Bond number 100 means that the groove width is about 1 cm
at 1-g environment, or it is about 1 m in space environment of 10~ %g.

3.2 Grid generation and coordinate transformation

A general coordinate system (&, 1) is introduced in order to make the meniscus
coincide with the coordinate surface. The grid system is generated in the physical
coordinate (x, y) by algebraic method. Transformation between the physical
coordinate (x, y) and the computation coordinate (&, 7) follows the formula,

x=§
y=1nYo (X) (22)
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The grid system generated by this formula is shown in Fig. 2.
Derivatives of function f(x, y) in the physical coordinate can be expressed by those
in the computational coordinate as follows, the first order derivatives are

fx = (yn fE_yE fn)/J
f, = (xg f,—x, f:)/]

(23)

The second order derivatives appear in the form of Laplacian, which is expressed in
the following form,

V= (afee—2pfs, +y £, + 6, +e £:)/J° (24)

the normal and tangential derivatives are,

f -

o = (h—BIVy (25)
f —

587 = £V

Where

V= Xeyn—%p¥e
a = x%+y,2,, B = XeXytYeyn, v = x§+xf,
0 = [ye(aXee=2BXcy +¥Xyn) —Xe(aYee = 2BYey + YY)
&€= [Xn(a/yéé‘i_zﬁy.fgn_’_}’Ynn)—yn(a/xgs_zﬁxgn'{'yxnn)]/‘]
then the governing equations and the boundary conditions for this computation are

transformed into the computational coordinate by substituting Eqs. (23)—(25) into
Egs. (5), (10), (11), (16), (18), (20),

1

TUE sy (Xebmxald) - L gey (26)
(BT,—BT:)/J Vy +BiT = 0, on the meniscus (27)
Vi = —o (28)

T .
Ay = R ds, on the meniscus (29)

ot U (P Ly (e - g2y R Yale Vel ;YET' (30)

w = (»}%+Ma) T,/Vy, on the meniscus (31)
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3. COMPUTATIONAL SCHEME

Finite difference algorithm is applied to approximate the derivative terms in Eqgs.
(26)-(31). the implicit time difference scheme is used and these equations are solved
by Gauss-Sidel iterative method at each time step. The successive steps in this
computation are as follows,

Step 1. Th =f, (T"!, T, y"Y)
Step 2. wgﬂ—l:fZ (Tnv wnrm wn)
step 3. ot =6 (T, y", 0", o)

After a proper initial condition is chosen, the temperature at time step n is
calculated at step 1 from Eqs (26)—(27). At the step 2, the stream function at time step
n is calculated from Eqs. (28)—(29). At the step 3, the vorticity at time step n+1 is
calculated from Egs. (30)-(31). At each step, iterative process is performed. The
index m denotes the number of iterative steps. Then, returning to the step 1, the
temperature, the stream function and the vorticity at next step are calculated.

Steady numerical solution is considered to be obtained when the condition

n+1__rn
Max {—IQ—*T¥)}<10"6 is achieved.
E_(Tn+1_+_Tn)

4. NUMERICAL RESULTS AND DISCUSSIONS

The flows with the Bond number of 1.0 and the contact angle of 15° were computed
by this method. Nondimensional parameters such as the Biot number, or the
evaporation resistance can only be determined by experiments, but these data are not
readily available. In our analysis, these parameters of different order were used so as
to investigate their effects.

At first, the temperature distributions at various condition of the thermal
conduction and the thermocapillary convection are compared. When the evaporation
resistance is infinite, only the convection effect exists. Further, if both of the
Marangoni number and the Rayleigh number are zero, no flow is induced and heat is
transferred only by conduction. In Fig. 3, isothermal lines are shown, difference
between each line is 0.055 and the maximum temperature is 0.9625. We can see that
when the thermocapillary force is acting, the fluid temperature near the side wall is
higher than in the case of heat conduction only and the one near the groove center is
lower. This means that the thermocapillary force causes convection that the direction
of the convection heat transfer is cdunter to the conduction one near the center, and
their directions are same in the region near the side wall. Temperature distributions
along the meniscus for the same cases are shown in Fig. 4. This is typical character and
as long as the thermocapillary force presents, this type of temperature variation
appears.

This document is provided by JAXA.



48 H. L. Chen, K. Oshima and M. Hinada

(a) (b)

Fig. 3. Temperature field for the heat conduction and the
thermocapillary convection, (a) heat conduction, Bi=10,
(b) thermocapillary convection, Bi=10, Ma=500.
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Fig. 4. Temperature distribution along the meniscus, (a)
heat conduction, (b) thermocapillary convection.

The thermocapillary flow patterns are compared with buoyancy-driven convection
in Fig. 5 and Fig. 6. The flow concentrates in the region near the meniscus in
thermocapillary convection, but the buoyancy-driven convection appears in all over
the groove.

The numerical results of the evaporating flows are presented in Fig. 7-Fig. 11.
Thermocapillary effects are investigated for various evaporation resistance. At the
case of a low evaporation resistance R=0.04, shown in Fig. 7, flow pattern scarcely
shows any dependence on the Marangoni number. The evaporating flow is dominant
and the thermocapillary effect is small. The region near contact line has higher
evaporating velocity due to its higher temperature. Therefore, the streamlines curve
toward the contact line. When R is increased to 0.2, some change is observed near the
meniscus line, as seen in Fig. 8 (b). When R is further increased to 1.0,
thermocapillary effect becomes strong, as shown in Fig. 9 (b). Because thermocapil-
lary force drives fluid near the meniscus apart from the contact line, the streamlines
adjoining to the meniscus leave apart from the contact line. Therefore, there is
counter effects on the meniscus between the evaporation and thermocapillary effect,
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()

Fig. 5. vorticity for the buoyancy-driven convection and the
thermocapillary convection. (a) buoyancy-driven flow, (b)
thermocapillary flow.

e
-

(a) (b)

Fig. 6. Streamlines for the buoyancy-driven convection and
the thermocapillary convection. (a) buoyancy-driven flow,
(b) thermocapillaru flow.

(a) (b)
Fig. 7. Streamlines at R=0.04, Bi=30.0. (a) Ma=0, (b)
Ma=100.

and this inevitably affects on heat transfer taking place on the meniscus. The
thermocapillary effect for the same evaporation resistance value is also shown in Fig.
11. When the Marangoni number increases, a pair of vortices appears and occupies all
over the groove as shown in Fig. 11 (a) to Fig. 11 (c).

The temperature distributions on the meniscus with the different Bi are shown in
Fig. 10. It is noted that the evaporation resistance R and the evaporation Biot number
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(a) (b)

Fig. 8. Streamlines at R=0.2, Bi=10.0. (a) Ma=0, (b)
Ma=100.

N/

(a) ' (b)
Fig. 9. Streamlines at R=1.0, Bi=2.0. (a) Ma=0, (b)
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Fig. 10. Temperature distribution along meniscus at various
evaporation resistance.

Bie are different only due to the used boundary conditions in the temperature and the
stream function. In the evaporating flow, the value of Bic is usually far smaller than

Bie. Therefore

, Bi=Bie. Only one out of the Biot number Bi and the evaporation

resistance R are independent parameter. usually temperature distributions on the
meniscus are mainly determined by R (or Bi). At the smaller evaporation resistance,
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Fig. 11. Streamlines of the flow with various marangoni
numbers at R=1, Bi=30, (a) Ma=10, (b) Ma=50, (c)
Ma=100.

the temperature is lower as shown in Fig. 10. This may be explained that more heat
escapes from the meniscus at a lower evaporation resistance.

On the other hand, heat transfer on meniscus depends upon the temperature
distribution along the meniscus and R (or Bi). Here we define [, Bi-T-ds as the
capacity of heat transfer, the ds is a small arclength on the meniscus. This quantity at
the various Biot and Marangoni numbers is calculated and shown in Tab. 1. At
different Marangoni numbers, the change of this quantity is small, not exceeding 5%.
They increase when the Biot number increase, but this variation is nonlinear.

Considering that temperature on the meniscus strongly depends upon R (or Bi), it
can be said that heat transfer on the meniscus mainly dependent upon R (or Bi). The
effect of thermocapillarity did not exceed 5% in the above results. But it is noted that
the Biot number (or the evaporation resistance) is assumed to be constant in all
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Table 1. Heat transfer rate on the meniscus

Biot number |Marangoni number| Heat transfer
0.0 0.3854
2.0
500 0.3906
0.0 1.2062
10.0
500 1.2252
0.0 2.2083
30.0
500 2.1581

analysis and do not receive any effect of thermocapillarity. However, it is possible that
thermocapillarity changes evaporation resistance, because it changes flow pattern on
the meniscus, then more effects for heat transfer are brought by thermocapillarity.
Relations between thermocapillarity and the evaporation resistance can be deter-
mined only by experiments.

5. CONCLUSION

A two-dimensional mathematical model has been proposed to analyze thermocapil-
lary and evaporating flow. In this model, the concept of evaporation resistance is
introduced, by which the explicit boundary conditions can be introduced.

A numerical method using a general coordinate system and grid generation
technique has been developed. This method is successful in solving the flow problems
in which thermocapillary force acts on the curvilinear meniscus.

Flow problems analyzed in this work are at the low Bond number, the constant
Prandtl number, the low or zero Rayleigh number. The effects of the Marangoni
number and the evaporation resistance have been investigated, and the heat transfer
rate on the meniscus has been numerically predicted. The evaporation resistance is
one of the most decisive factor to the heat transfer. Thermocapillary force gives a
large effect on the meniscus temperature distribution. However, its effect to the heat
transfer rate is not so large.

Experimental data of the thermocapillary effect and the evaporation resistance are
lacking.

Only two of six parameters have been investigated in this report. Future numerical
work is to investigate effects of the other nondimensional parameters and to analyze
unsteady flow problems.
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