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Summary: Shock-tube flows over a wedge-type step are simulated numerically by the finite volume
method with quadrilateral cells. The two-dimensional, time-dependent Navier-Stokes equations are
solved. Time development of flow fields and pressure histories on walls are obtained and shown to be
in good qualitative agreement with experiments.

1. INTRODUCTION

Numerical simulations of shock-tube flows over a step have been performed by
using the Euler equations in most cases [1]. However, Navier-Stokes simulations
are necessary when the viscous effects are important. To study shock-tube flows
over a forward-facing step, Yamamoto, Hatakeyama and Oguchi /2] solved the
Navier-Stokes equations by the finite volume method with rectangular cells. The
time-dependent flow features calculated were compared with experiments and
shown to be in good qualitative agreement. As the finite volume method allows
us to deal with complicated flow geometries in physical coordinates, extensions of
the work done by Yamamoto et. al. to flows over steps with more generalized
geometries may be straightforward. As an example, in this paper we consider
two-dimensional, unsteady, shock-tube flows over a wedge-type step. The
Navier-Stokes equations are solved by the finite volume method with arbitrary
quadrilateral cells, and results are compared with experiments.

2. Basic EQUATIONS AND METHOD OF SOLUTION

2.1 Navier-Stokes equations

According to Yamamoto et. al., [2] the change of the conserved quantities for a
region 9L in a time interval 6t is expressed as

5fgod9=—f*+<‘“ Uag gn dag] dt (1)

t

where Q is the conserved quantities, g the flux vector, and n a unit vector normal to
the boundary. In the Cartesian coordinates (x, y), g is divided into two components:
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g = Ei + Fj

where i and j are unit vectors in the x- and y-directions, respectively. The
two-dimensional, unsteady Navier-Stokes equations can be written in integral form as
o

2 fg Q dxdy+ faQ (Edy—Fdx)=0 )

and

p
Q= pu (3.1
pv

pu

E= pu*+p—(26, +B2)u—pBovy
puv"—ﬁlvx_ﬁluy (32)
(e+p)u—(2B;+Br)uu,—Bvve— B3 T —Bivu,—fBruv,

pv
F= puv_ﬁluy_ﬁlvx
pV2+p—(261+ﬁ2)Vy—ﬁ2ux (33)
(e+p)v_(2ﬂl +ﬁ2)vvy—/31uuy—[3’3Ty—[31 uvx_ﬁ2vux

In the above expressions, p, p, u, v, T and e are the pressure, density, velocity
components, temperature and total energy. For a perfect gas, e=p/(y—1)+p(u®+v?)/
2. We divide the physical domain into a number of quadrilateral cells. If s and n are
defined as coordinates along and normal to a boundary of each cell, the following
relation between the coordinates (x, y) and (s, n) may hold (Fig. 1). For example,

du , [Ou ox Ju Jdy|, OJu du 4.1)
s %=3x s dy Os As=z Axt dy Ay

n (i,3)
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-

Fig. 1. Transformation of coordinates from (x, y) to (s, n).
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du , [Ju ox Qu dy],  Su Ju
n As= 3% o + 5y an As= E™ Ay+ 3y Ax (4.2)

From Eq. (4), we obtain

ou du ou oJu cu cu
Bl = i — 5
aX Slnﬂﬁ-kcosﬂ—és—, ay COSB‘a—n'i'SlnB*as ( )

where 6 is the angle between the cell boundary and the x-axis. The similar relation
holds for the other flow quantities. Therefore, the Navier-Stokes equations can be
rewritten in terms of s and n. With the finite volume concept, the flow quantities may
be considered to be constant within each cell, and thus the gradients of the flow
quantities along the cell boundary may be neglected (that is, 8/9s=0). Therefore, the
viscous terms are expressed only by the derivative normal to the cell boundary (8/2n).

Flow quantities are non-dimensionalized as follows. '

t=t*a,/L, x=x*/L, y=y*/L, u=u*/a;, v=v*/a,,
p=p*Ip;, p=p*/p,ai, T=T*T,, e=e*/p;ai.

where a is the speed of sound. The asterisk denotes dimensional quantities, and the
subscript 1 means the quantities upstream of the shock wave. The coefficients 8;, 3,
and 5 are,

Bi=wRe, B,=MRe, B3=x/Pr-Re:(y—1)

where y is the ratio of the specific heats of the gas. The viscosity coefficients u and A
are normalized by u,; and A, respectively, and heat conductivity coefficient k by k;.
The Reynolds number Re and the Prandtl number Pr are defined as,

Re=pa,L/y;, Pr=pcp/k;

where c,, is the specific heat at constant pressure. For a monatomic gas, 23,+38,=0.

2.2 Numerical algorithm

The flow quantities on a cell boundary were estimated by the same method as that
proposed by Yamamoto, Hatakeyama & Oguchi [2]: for example,

Pi—12,i=Wi—1/2,iPi—1.,j +(1 _Wi—l/Z,j)pi,j

where p;_y, j is the density on the boundary between the cells (i—1, j) and (i, j). The
weighting function w;_;,; is given by

Ci—1jtlcizyl
Cimpjtleimyjl+e i+l

Wi—12,i=
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where characteristic speeds normal to the boundary are expressed as,

Cio1 =W j'Mi—12jtTai—
Cij=—U Mi_ypjta;

t=0.214

t=0.277

t=0.342

t=0.405

Fig. 2. Comparison of time-developing flow fields. 6,,=30°. M=1.84.
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Here n;_,,; is the unit vector normal to the cell boundary.

Calculations are performed on a H-grid generated by solving the Poisson equation
[3] and having 200 cells in the direction normal to the wall and 600 cells in the
direction along the wall. The first-order Euler scheme was used for time integration.

3. RESULTS AND DISCUSSION

The time-developing flow fields which are calculated for the case of y=5/3 are
compared with those obtained experimentally. The wedge angle 6, was 30°, the shock
Mach number 1.84. In the experiment argon was used for a test gas.

In Fig. 2, isopycnics calculated are compared with the Schliren photographs.

- Because of a small window in our shock-tube, the flow field covered in the Schliren
photographs is about half of the computational field. We assumed t=0 when the
shock-wave reached the wedge coming from the left hand side. As readily seen from
Fig. 2, time-development of the flow field is simulated pretty well, though fine
structures such as the roll-up of the slip flow at t=0.277 and the shock-wave of lambda
type caused by the flow separation at t=0.277 and 0.342 are not captured by this
simulation. The fine structures may be simulated with finer cells.

Pressure histories are also compared. Both in the experiment and in the
computation, pressure histories are measured at two different points; one is located
on the upper wall (marked by (a) in Fig. 2 at t=0.405) and another on the lower wall
(marked by (b)). The results are shown in Fig. 3. On the upper wall both
computational and experimental results show a good agreement (Fig. 3a). On the
lower wall, quantitative agreement between the computation and the experiment is
only fair (Fig. 3b). However, qualitative features of the pressure history which are
observed experimentally are well simulated.
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Fig. 3. Comparison of pressure histories. 6,,=30°. M=1.84. —N. S. solution. ~ Experiment. a) upper
wall, b) lower wall.
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4. CONCLUDING REMARKS

The two-dimensional, Navier-Stokes equations are applied to the shock-tube flows
over a wedge-type step, and solved by the finite volume method with arbitrary
quadrilateral cells. Comparison of calculated results with experiments showed that
qualitative features of the time-dependent flow field observed experimentally are well
reproduced by the finite volume approach.
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