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This paper reports a new simulation technique for aeroelastic systems which respond to 
external forces due to spatially distributed atmospheric turbulence. If the system equation 
includes the effects of unsteady aerodynamics which is analytically derived in the frequency 
domain, then the Inverse Discrete Fourier Transform (IDFT) can be utilized for simulating the 
response in the time domain. The response against the vertical gust is first calculated through a 
transfer function given in the frequency domain and then converted whole to in the time 
domain. The objective of the present study is to provide the system transfer function including 
the effects of unsteady aerodynamic characteristics and to simulate the response to external 
forces come from the random or spatially frozen gust. The technique may be utilized to establish 
the control law of active control device coping with discrete and/or random turbulence. The 
method can also be utilized to calculate mathematical time history data for evaluating the 
control performance against the realistic gust.  
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1. INTRODUCTION 
Wing flutter is one of the most critical problems to be solved before the final stage of aircraft design.  After completing 
the design procedure, it must be demonstrated by flight tests that the airplane is completely free from fluttering.  During 
the design procedure, flutter tests are also conducted with scaled models to confirm the flutter boundaries in the wind 
tunnel. In the following actual flight tests, it will be of importance to estimate the flutter boundary from the subcritical 
response data in the flight envelope1). Even during the wind tunnel test, it could happen that a precious wing model 
would be lost by abrupt occurrence of fluttering.  Therefore, in both cases, the reliable prediction of the critical speed 
before flutter onset is highly required.  Although quite a few methods have been proposed, it is still difficult to predict 
flutter.  Difficulties are also for evaluating various prediction methods because the data acquisition by experiments 
and/or by the analysis is not an easy task.  The aeroelastic analysis includes the complicate calculation of unsteady 
aerodynamic forces for the response of the system. As long as to find the flutter point, the method is thought to be 
matured with the aid of the linear theory of unsteady lifting surfaces. There is no efficient method, however, to simulate 
the subcritical response since the unsteady aerodynamics is mostly provided in the frequency domain except for the 
costly CFD. The other reason of the lack of reliable method for prediction is that it is quite difficult to obtain subcritical 
response data together with actual flutter occurrence experimentally.  Hence, the numerical simulation with random 
external loads and/or with random internal noise from instruments is eagerly desired. 
   The phenomena of flutter involve the unsteady forces which are induced by the wing motion itself. In order to analyse 
them, theoretical aerodynamic forces are calculated with the functions of the so-called reduced frequency which is non-
dimensionalized by a flow speed and a representative length.  In the practical process, these forces are computed with at 
most about twenty reduced frequencies for several wing-deflection modes. Values between frequencies are interpolated 
to reduce cumbersome calculations of the generalized forces which are obtained by solving the singular integral 
equation.  
   Nowadays, however, the performance of an electric computer progressed tremendously and has made it easy to 
compute the unsteady aerodynamic forces even with a small workstation. Therefore it has become feasible to give them 
with respect to literally thousands of frequencies. This leads us to an idea that the time response of an aeroelastic system 
can be simulated by using thousands of discrete digital data in the frequency domain through the Inverse Discrete 
Fourier Transform (IDFT).  Furthermore, if we choose the number of data as, say 1024 or 2048 for example, we can 
utilize the technique of FFT2) directly even for the inverse transform without any approximation of interpolation 
between frequencies. This enables us to obtain the time series of response data with a constant flow speed below the 
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 flutter by converting the analysis in the frequency domain. 
   This paper reports the data handling in details of the conversion to simulate the aeroelastic response. It assumes the 
aeroelastic response is caused by the random turbulence or by spatially frozen gust. 
   The results can be applied to evaluate the reliability of various flutter prediction methods and to find the proper 
location of sensors which depends on the flutter characteristics.  The simulation technique is also expected to contribute 
for examining the active control effects to attenuate the gust load.  
 
2.  DISCRETE FOURIER TRANSFORM（DFT） 
 The discrete Fourier transform and its inverse3) are defined by the following pair of equations 
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where )(ng  denotes a series of digital signal with equally sampled in the time domain and )(mG its DFT. Equation (2) 
is called as the inverse discrete Fourier transform which is abbreviated as IDFT. The variables nm  and  are integers and
N is selected as multiple powers of 2 so as to utilize the efficient Fast Fourier Transform technique developed by 
Cooley and Tukey. Mathematically, DFT has the assumption that the time signal should be periodic. In practical cases, 
however, this restriction does not cause any problem because the duration of the actual signal is always finite and it can 
be treated as if it were one period. 
 
3.  IMPULSIVE RESPONSE AND TRANSFER FUNCTION 

Generally, time history of the response can be obtained with a convolution integral of an impulsive response function 
and the external loads. An impulsive response function is equivalent to the inverse of the Laplace transform of the 
transfer function itself 4). Therefore it can be calculated with the inverse Fourier transform when the frequency response 
function of the system is given. 
  For the continuous signal, the impulsive response function of a system is directly related to the inverse Laplace 
transform of a transfer function )(sH . 
 

    )]([)( 1 sHtg  L .        (3) 

 
In the Laplace transformation domain, the impulse as an external force can be given by a unit function. Then the 
response becomes 

 
       1)()(  sHsG .        (4) 

 
In case of the steady state response by harmonic excitation, Eq.(4) yields, by putting is  , 
 
         1)()(   iHiG .        (5) 

 
This relationship describes the response with the uniformly distributed exciting force in the frequency domain.  On the 
other hand, the definition of the Laplace transform is given by 
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Putting is   in Eq.(6) leads us to an expression for the steady state response by the harmonic excitation. 
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Here, in order to clarify the relationship between the Laplace transform and the Fourier transform, we extend the 
impulsive response function to the negative region of time as 
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     )0(),()(  ttgtg .       (8) 

 
Then, the corresponding part of the function in the frequency domain becomes  
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Thus, we can obtain the Fourier transform as 
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If we assume the transfer function )(sG for an aeroelastic system including the effects of unsteady aerodynamic forces, 
then the spectrum of frequency response function becomes 
 

         )(ˆ)(  giG  .                (11) 

 
This enables us to write the impulsive response )(tg  as an inverse Fourier transform. 
 

             )0()],([)( -1  tiGtg F .              (12) 

 
Equation (12) implies that the discrete data of the time history can be converted from the discrete frequency data and 
vice versa through the pair of relations, Eqs.(1) and (2).  
 It should be noted that the amplitudes of the response calculated form the transfer function in the frequency domain 
by using the digital data with finite values are different from those obtained with a unit impulse in the continuous time 
domain. We have to adjust the level of each input whenever comparing those results.   
  Once the impulsive response function of a system has been obtained, then the time history for arbitrary external forces 
can be generated by the convolution integral5). There is an alternative method, however, to obtain the response in the 
time domain, i.e. the application of inverse Fourier transform after the multiplication of the transfer function and the 
Fourier transform of the external forces.  The present paper explains the latter technique since it is much efficient to 
simulate the response. 
 
4.  PROCESSING OF DIGITAL SIGNALS 
(1) Implementation 
 The Theodorsen function for a two dimensional airfoil, or the unsteady lifting surface theory6) for a finite wing, 
provides the unsteady aerodynamic force due to the system motion as functions of the reduced frequency, i.e. given in 
the frequency domain.  Therefore, they cannot be expressed directly with the Laplace operator s which is corresponding 
to the differentiation with respect to time.  This means that the transfer function of an aerodynamic system is written in 
the matrix of complex numbers while its responses of Eq.(2) are real numbers.  In the application of IDFT to obtain 
time history data, we have to take this consideration correctly into account. The procedure is described as follows. 
 
(i)   Assume )(mG  as an the aeroelastic response function in the frequency domain and calculate )12/( N  number of 

complex values for each frequency with an interval   from 0  up to   )2/(N . 
 
(ii)  The corresponding duration time (a theoretical periodic interval in the time domain) and the sampling period of 

digital signal become, respectively, 
 

             /2T    and   NTt / .               (13) 
 

(iii) In order to hold the causality valid, the following complex conjugates are allotted to )(mG for
)1(),...,12/(  NNm . 

 

    )]([ conj)( mNGmG  .               (14) 

 
(iv)  Particularly at a center of the data series, we enforce to put 
 

First International Symposium on Flutter and its Application, 2016 423

This document is provided by JAXA.



First International Symposium on Flutter and its Application 

     0)]2/(Im[ NG .              (15) 

 
(v)  Since the present simulation is aimed for the aeroelastic subcritical analysis, there is no need to include the static 

displacement.  Hence 
 

          0)0( G .                (16) 

 
(vi)  Appling IDFT to )1(),...,0( NGG   thus formed yields a time history consisting of N number of digital data. 

 
(2) Mathematical background 
    The discrete time signal can be written with the frequency response function )(mG

 
in the discrete frequency domain 

as 
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The necessary and sufficient condition that the left hand side of Eq.(17)  becomes a real number for any complex 
response data in the frequency domain can be given by  
 

                                    .0)](Im[    and       ,1,...,1for        ,)()( 22  NN GmmGmNG                 (18) 

 
5.  GOVERNING EQUATION OF AEROELASTIC SYSTEM 
 Assuming )( iD  as the impedance matrix of a mechanical system and )(A  as the unsteady aerodynamic matrix, we 
can write the governing equation for an aeroelastic system with the generalized coordinates q  as 
 
          fq   )]()([ AsD ,         (19) 

 
where the  f in the right hand side of the equation denotes the generalized external forces, which may also be random 
aerodynamic noise. If we re-define the transfer function of the system )( iH in the frequency domain as )(H , then it 
can be obtained from Eq.(17) as 
 
      1)]()([)(   AiDH .               (20) 

 
Then the impulsive response of the system including the effects of the unsteady aerodynamic force is written for each 
component as 
 
                )]([)( -1 ijij Hth F , )0( t .              (21) 

 
6.  TYPICAL SECTION AIRFOIL 
 As an example problem, we shall use a typical section of the two-dimensional airfoil shown in Fig.1. Each parameter  
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is defined in the non-dimensionalized form. Different from the flutter analysis, the frequency is normalized with 
respect to a pitching frequency   instead of the so-called reduced frequency k . Defining the generalized coordinate 
vector as T}, { h , we obtain a part of the transfer function except for the aerodynamic force as  
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where R is a frequency ratio and 2
r  is moment of inertia of the section which has been non-dimensionalized by the 

representative length and mass. 

A textbook7) provides the two-dimensional incompressible unsteady aerodynamic matrix for Eq.(19) with Theodorsen 
function having the argument of the reduced frequency. We denote the mass ratio as  and the non-dimensional speed 

)/(*
bUU  . Additionally, the non-dimensional dynamic pressure and time are introduced by /*2 2UQ   and 

tt  , respectively. As the flow is fixed to a certain speed in the present problem, the Theodorsen function 
)/()( *UCkC  is written as )(C . Then the aerodynamic matrix can be given by 
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In the following numerical examples, the parameters of the system are set as the same as the case(n) on the P538 of the 
reference.  Those are 3.0 and   ,25.0   ,1.0   ,2.0   ,10 2  Rrxe  .  This combination of parameters results in the 
flutter critical dynamic pressure 80.0FQ with the flutter frequency 62.0F

. 

7. FINITE STATE MODEL 
 In order to compare the results obtained by the present IDFT procedure, a time domain method using the finite 
state model is introduced. The aerodynamic effect is embedded in the system of differential equations approximately 
with the augmented state variables. For unsteady aerodynamic terms, the following form of the finite state8) is used, 
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where the symbol q denotes the generalized coordinate vector. The coefficients in Eq.(24), 
iLAAAA  and ,,, 012 are 

determined with the aid of the least square method after the calculation by DPM9) for the frequencies from 0.01 to 2.0. 
The interval of the frequency is selected as 0.01 and the three arbitrary parameters i ’s are selected as 0.1, 0.5, and 1.5. 

Figure 1: Typical Section Airfoil
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8.  NUMERICAL EXAMPLES 
(1) Impulsive response 

For a certain dynamic pressure below the flutter critical speed, the impulsive response is calculated by applying 
IDFT to the transfer function which is given by Eq.(20). The discrete values of the function are computed for 

10242/ N  frequencies with a frequency increment 01.0 . This yields 2048 data in the time domain with the 
sampling rate 3068.0* t . In the practical calculation, this distribution may be appropriately cut for higher frequencies 
above 5  since the two natural frequencies of the system in this case are well below as 3.0 and 1. Figure 2 
illustrates the response of  hhth h )( *  due to the  impulse.

        Figure 2: Comparisons of two Methods 

It should be noted that a unit impulse, which is Dirac’s delta function mathematically in the continuous domain, 
corresponds to a single finite value of t/1  at the starting point of the discrete data series and that the constant 
amplitude in the frequency domain must be )/(1 tN to make the powers of both signals equal to each other. It can be 
seen from the figures that the results obtained by IDFT agree well with those by the finite state model in the time 
domain. 

(2) Discrete gust response 
As mentioned before, once the impulsive response becomes known, it enables us to calculate a system response 

against general shapes of the external input by using the convolution integral. If we put the input and the impulsive 
response of the system as )( and )( thtf , respectively, then the response )(tx  is given by so-called Duhamel’s integral. 

    
t

dfthtx
0 

)( )()(          (25)

In the frequency domain, this relationship becomes 

)(ˆ)(ˆ] )(  [)(ˆ  fhtfhx  F .        (26)

Therefore, the response in the time domain for the discrete data can be calculated as 

] )(ˆ)(ˆ IDFT[] )(ˆ IDFT[)( mfmhmxnx  .              (27) 
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An example result of this procedure is shown in Fig. 3. 

   Figure 3: Transient response of the aeroelastic system 

(3) Random noise 
The random noise can be generated by the present method as follows.  First, assume the transfer function of Eq.(20) as 

a unit matrix.  Then, the components of random external forces in Eq.(19) are calculated in the frequency domain as 

                         mimmF e)()(  ,                  (28) 

where the phase m can be provided with the uniformly distributed random number between 0 and 2 .  In case of the 
white Gaussian noise, the spectrum )(m  must be the Gaussian distribution.  The IDFT conversion after these 
calculations gives a series of the random signal. The similar noise can be also generated in the time domain by 
superimposing the cosine function for the entire interval10).  Results by both methods are compared in Fig.4 for a series 
of random signal having the unit average amplitude and the standard deviation of 0.3.  

Time history       

Wavelet transform       

Power spectrum        

   Figure 4:    (a) Time Domain Method            (b) Present IDFT Method
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The result looks being agreed well to each other because the both procedures are theoretically equivalent.  It should be 
noted that the present method is much more efficient in view of the computation time due to the FFT algorithm.  

(4) Simulation of random response of a typical section airfoil 
For the same dynamic pressure as that in the example of 8.1, an aeroelastic response due to the random noise has been 

calculated.  The result is depicted in Fig. 5(a) with its power spectrum 5(b).  The smooth curve in the figure indicates 
the power spectrum of the impulsive response, i.e. the response without noise.  It can be seen that the random noise is 
properly included in the response. 

Furthermore, the dependency of the cross spectrum between the h and of the response on the dynamic pressure is
illustrated in Fig.5(c).  The figure reveals the coupling of two modes which is going into flutter at the dynamic pressure 
of Q=0.8. 
  

  

       (a) Time History of Random Response (Q=0.6）           (b) Power Spectrum

   
                                                             (c) Dependency of Cross Spectra on Q

        Figure 5: Simulation results
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9. APPLICATION OF IDFT SIMULATION METHOD FOR RANDOM GUSTS 
An example application of the present technique has been carried out on the flutter prediction using the wavelet 

transform11).  The definition of the wavelet is given by 
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Here we use Gabor’s mother wavelet as described in Eq.(30).
In Fig.6, the simulated signals of the  motion are displayed for eight different dynamic pressures.  

These may be regarded as the output of ‘virtual experiments’ for the purpose of examining flutter prediction methods.
The data in the frameworks above have been applied to the wavelet prediction method.  The result is shown in Fig.7. 

         Q=0.400 Q=0.425

         Q=0.450                      Q=0.475

        Q=0.500 Q=0.525

Q=0.550 Q=0.575

Figure 6:  Simulated Response Signals for each Dynaic Pressure
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 It can be seen from the figure that the present simulation technique provides realistic output of the virtual experiment. 

10.  CONCLUDING REMARKS 
The method using the inverse discrete Fourier transform to simulate the aeroelastic response to the random and/or 

discrete gust has been proposed and demonstrated.  It is expected to be utilized for evaluating various methods to 
predict flutter and the performance of the active control technique to attenuate the response against the atmospheric 
turbulence.
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Figure 7: Wavelet Flutter Prediction from the Simulated Signals
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