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Summary. An analytical method for axially symmetric supersonic flow involving shock
wave is presented and applied to clarify the characteristic feature of the flow near the
region of vertex of the pointed bodies of revolution with arbitrary geometry. The method
used in the present approach is exact except for an assumption that the flow is inviscid.
It is shown that the present method can be further applied, with a slight modification, to
a circular-cone with such large semi-vertex angle that the flow behind the shock wave is
partially subsonic.

Detailed examination reveals that in axially symmetric flow there exists a particular
point which corresponds to Crocco point in plane flow and the flow characters near the
region of vertex of the body are qualitatively quite the same as those of the plane flow.

It is concluded that the transition from attached to detached shock wave is continuous
for circular-cones as well as for plane wedges.

Symbols
(#, ¥) non-dimensional cylindrical coordinates system normalized by length of
the body
(z, r) reduced coordinates system
T strained radial coordinate
0 conical variable defined by T/%
6 strained conical variable defined by 7/x
(u, v) components of local velocity vector
o density
7Y pressure

(u, v) reduced form of velocity components
o reduced density

P reduced pressure

M free stream Mach number

initial shock wave angle

initial semi-vertex angle of the body
tan 8,

stream function

entropy function
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2 K. Karashima

S(z)  shape function of shock wave

C, pressure coefficient

K, initial shock wave curvature

K, initial body curvature

I, m, coefficients in series expansion of shock shape

1,9 C : .

b i functions in series expansion of stream function
2

F,G . . . .

H I function in series expansion of density
b4

K constant indicating the order of singularity
Subscripts:

s value at shock wave

b value on body surface

0 value on surface of basic cone

D value at sonic point of basic cone

o value in free stream

( )’  derivative with respect to argument

1. INTRODUCTION

It is well known that most of supersonic flows past axially symmetric bodies with
an attached shock wave can be solved numerically with required accuracy by use
of method of characteristics. However, use can no longer be made of even the
method of characteristics, when the body is so thick that the flow behind the at-
tached shock wave is subsonic. For such flow patterns there seems to exist few
previous work on general method of theoretical approach which is available.

Analytical approaches to supersonic flows near the region of vertex of axially
symmetric bodies have already been developed by Van Dyke [/], Shen and Lin [2]
and Karashima [3], etc. However, each of these approaches is approximate one
and, hence, cannot be applied to such thick bodies with subsonic field behind the
attached shock wave. In particular, Shen and Lin’s analysis shows a result of a
logarithmic singularity at the initial semi-vertex angle and the initial surface pressure
gradient becomes infinite even for regular body shape.

For plane supersonic flows the approach to thick bodies with subsonic region
behind the shock wave can be made comparatively easily. Busemann [4] gave a
qualitative discussion on initial shock wave curvature by use of direction of spines
in hodograph plane and quantitative arguments were made in detail by Guderley [5],
Tamada [6] and Oguchi [7], etc. These approaches, although approximate, lead to
a remarkable conclusion that the transition from attached to detached shock wave
is continuous.

On the other hand, there does not seem to exist any available approach to axially
symmetric flows except for the one proposed by Oguchi [8] for open-nosed axially
symmetric bodies, since any conventional method applied to pointed bodies of
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The flow Near the Region of Vertex of Axially Symmetric Bodies at Supersonic S peeds 3

revolution has a difficulty of a singularity at the initial

semi-vertex angle.

Present paper has a purpose to give a general method of analytical approach to
axially symmetric supersonic flows involving shock waves and to apply it to the flow
near the region of pointed nose of the body. The method is exact except for an
assumption that the flow is inviscid. Moreover, being based essentially upon the
series-expansion method proposed initially by Van Dyke [/], the present method
does not indicate such a singularity as is presented in conventional method.

2. FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

Let the origin of a cylindrical coordinates system (Z,

7) be taken at the vertex of

the body of revolution, Z-axis being aligned with the free stream direction, and
7-axis being normal to Z-axis (see Fig. 1). Introducing a transformation of vari-

ables such as

|

F16. 1. Coordinates system.

r=71, 7‘:—}_’? r=tan f§,,
T
_ 2
U="u,{a+ux, r)}, a=14+_——=__
(r+1)M?, 2.1)
V=U,tV(Z, T),
ﬁzawp(x’ ’r)a

where 8, %, 7, p, p, M and r denote initial shock wave angle, components of local
velocity vector in #- and 7-directions, density, pressure, free stream Mach number
and ratio of specific heats, respectively, and rewriting equations of motion, then gives
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(continuity) {pl@+72u)},+ (ov),+ L% =0,
r

(z-momentum) (a+7*u)u, +vu, + L p.=0,
0

(2.2)
(r-momentum) (@a+7*u) v, +vv,+ RS p,=0,
o
(entropy) (a+ 7u) (-pﬁ>x+v <£>T:O,
o o’

where subscripts denote differentiation.

Let shock wave shape and body be expressed, respectively, in the transformed
coordinates system as

r.=S8(x),

Ty =1,(),

then, the boundary conditions along shock wave and on body surface are given, '

respectively, as

2 S’

7+1 14728

2 S (1_ l+r2S’2)

7,+1 1472872 M2:2S'2 ’

_ (7 + 1) M272S" (2.3)

o D MAS Y 2(1 4 03877

_ 2yM?*2S8— (y—1) (14 72S"?)
G+ M1 4287

?

D

’

(tangency) v=(a+ *u) %%— at r=r,. (2.4)

Continuity equation may be accounted for by introducing a stream function

$(, 7),

¢=—Tpv, . =rp(a+7u). (2.5
Then, entropy equation predicts that p/p’ is a function of only ¢. Thus, it is con- -
venient to define an entropy function ® as ' v
w(g)=-L-. (2,6)

Elimination of %, v and p from momentum equations and energy equation by use of
Eqgs. (2.5) and (2.6) leads to the following simultaneous equations with respect to
¢ and p, which are the fundamental equations to be solved in the present analysis;

Prpoe— 2¢:4,42t+ Qbi‘/)rr
=1 {rod,0'0, + &' + (w70, + @' P}

Pt T+ 7?{’1‘ corip=Krip, 2.7
dw 2

bo K=14+___° .
d¢ * G—1HM?
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The flow Near the Region of Vertex of Axially Symmetric Bodies at Supersonic Speeds 5

3. FLow PasT CIRCULAR-CONES

As a simple example, consider a supersonic flow past a circular-cone with semi-
vertex angle of . The flow is assumed to be supersonic everywhere for convention.
Since the flow field downstream of the shock wave is conical, the stream function,
and shock wave shape can be written, respectively, in the forms

¢, 1)=2f(6),  px, 7)=F(0), (3.1)
_r

0_;, (3.2)

r,=8x)==z. (3.3)

The shock wave being straight, the flow downstream of it is irrotational and isen-

tropic, so that the entropy function w is constant everywhere between shock waves
equal to w, which is given as

= 2L (D04 (=DM 20140 I
r(r+ DM+ (+ )M

Substitution of Eq. (3.1) into Eq. (2.7) gives the following simultaneous equations
for f() and F'(6);

4f* " —2f [ =y 0 FTF" {f —*0(2f — 0f')} ,
24 c22f —0f) 2 + 2Tl w02 F T = K§*F*. } 3.5)

(3.4)

0

Shock wave location is given by §=6,=1 and the boundary conditions for f and F
are expressed, respectively, by use of Eqs. (2.3) and (3.3) as

1
f(1)~——2—,
= G+ D+ =D} M?* 4 2(1 4 2%
=1 - DMy 214y (3.6)
F(y=__ GtOM=
(r—DHM?*z*+2(1 4 ¢?)

Another condition is that the stream function vanishes on the cone surface 6=4,.
Hence,

f(6,)=0. (3.7
Thus, semi-vertex angle ¢ of the cone is obtained by the relation
tan g =14, . (3.8)

It must be noted that Eq. (3.5) together with Eq. (3.6) gives an exact solution for
circular-cones in a different sense from the conical theory proposed by Taylor and
Maccoll [9].
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6 K. Karashima

4. FLow PAsT CONVEX BODIES OF REVOLUTION

Consider a supersonic flow past convex bodies of revolution with an attached
shock wave. The flow behind the shock wave is assumed to be supersonic every-
where. In this case, the flow aft of the shock wave is considered to consist of a
basic conical field upon which is superimposed a perturbation field due to body
curvature, as was done by Van Dyke [/] and Karashima [3]. Although this can be
done in such a way that the stream function ¢ and density p are assumed to be
expanded into power series of z with suitable coefficients built up by similar func-
tions of the conical variable ¢, a mathematical difficulty takes place that some of
these similar functions for higher powers of # become non-analytic near the surface
of the basic cone §=46,, under which the solution does not exist. This mathematical
difficulty together with the fact that the body surface lies under 6, for conventional
convex bodies of revolution suggests that the solutions to ¢ and p cannot be made ¢
beyond the singular point to the body surface. In order to avoid this difficulty, it is
convenient to introduce a slightly strained radial coordinate 7 such that the body
surface is given by 7,=6,x.

Let the body surface be given by

ry==0,x+ —;—lﬂlxz-{-%mﬁ,oﬁ—}- cen, 4.1y

and the corresponding shock wave by

rs:x—-«-l»»lx’—-_-lw—mﬁ—u- , (4.2)
2 3
then, the simplest choice for 7 is
Fer— (% 16,2° + %—mﬁ,xﬂ- . ) 4.3)

and the strained conical variable 4 is defined as
~ 7 1 3
b= =0~ (- Bat —-moait ). (4.4) ¢
x 2 3
Therefore, the body surface is expressed by use of the strained conical variable as

@ror,= (%)mb:o,,. 4.5)

The stream function and density function may be written, respectively, in the
forms

gl 1) =2 (0) ~ 1 {9(0) — 0.5 O} —| m B~ L0.70)]

+0 [i(ﬁ) +—;—0,g’(5)~%0?f”(5>}]— B (4.6)

’ o
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2

IO+ 0,60~ - oF G} |-

o(z, r):F(ﬁ‘)-l:c{G(é)— 1 HlF’(é)}—xz[m {H(é)——wé_ﬁzF’(é)] ‘
1L |
8 J

In the same way the entropy function may be expanded into

w(ﬁb):‘”o(l—wJ*]ﬂ”‘”zme" EEIR 4.7)

The conditions just behind the shock wave are found to be

(%)‘L) =0+ a,lr+ (@,m+a,l)2t+ - - -

<——f%f—)s:bo+bllx+(b1m+b,lz)x2+... , s
0s=po—prl&— (oM + ol 2%+ - - -,
o;=wy {1 —w,lx— (0 m—al®)2?+ - - -}

b

where

a= " {(r+1)+(r—l)r”}M’+2(l+r’),
1472 (G—1DM?*22+2(1 + %)
b — 2 M2 —(1417%)
P14 =M 214
a1=~[ 4 {G+D+G—D M2+ 2(14 %)
1422 {G—=DMc 4 2(1 + %)} 2
A4z M?z2 ]
(I+7)? =DM 4+2(1+77) 1
blz—z[szz“‘(Hr") 2— (r—1)M?*c*— 27
1472 {— DM 4 2(1 4 £} 2
2 M2 ]
I+ —1)M*224+2(1+72) 1’
0. — T DM {(—1)M?*c? 4 2¢%) {3(r— 1)M?r? 4 671 —2)
’ T+ {G—1)M*2* +2(1 4 %)} 3
4G+ DM ((y— 1) M?22 + 2¢%)
I+ {(r—1)M?*2* + 2(1 + 2%} ?
L 2A=3){G+H D+ =D M2+ 2(1 4 %) ,
T+ {(r—1)M?*c* +-2(1 + %)}
b.— _ 2+ DM 3¢r—1)M*c* + 6:*—2) (4.9)
? 1+ {(—DM*c 4 2(1 473} ?
4(r+ 1)M?22(1— %) B
I+ —DM?*c* +2(1 4 %)} 2
203(3—2?) {M?r? — (1 4 ¢2)}
(I+ ) {(r— ) M2+ 2(1 4<%}
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8 K. Karashima

0y = — (r+ 1) M3z?

C =DM+ 2(1 417
. 4(y+ 1) M2z

01

{G—DM*c+2(1 473}’
0, = 200+ )M 2 {3(y— 1) M?*z* + 672 —2)
{G—=1D)M*c*+2(1 +z2)} 3
4r(r—1) (M — (14 ¢%)}?

b

T A 2 — = )1+ )} (G~ DM 1 2( oY)
o 2y M3 (1~ 37?) N 6;
I+ 2 M — )1+ 7)) =DM+ 2(1+0)
B 16,2 M2
(1+ o) 2Mie = (— D(1+ 2%} {G— DMee* + 2(1+ o)
+ - 8&r(r—1)

{G—DM*x 4 2(1 422}

and where w, is given by Eq. (3.4). Since the stream function along the shock wave

is given by ¢, = _;—frﬁ, Eq. (4.6) can be expressed along the shock wave as

() = 0, = (1 — o,z —%(wzm—w,mxu ). (4.10)

- Therefore, w, is obtained by comparing Eq. (4.10) with Eq. (4.8) as
2
0, =20, — Qa—aw,) L. (4.11)
Som

Substituting Eqgs. (4.6) and (4.7) into Eq. (2.7) and equating like powers of
x yields for (f, F'), (g9, G), (h, H), (2,1), etc. the simultaneous ordinary differ-
ential equations, respectively. Equations for (f, F') are quite the same as is given
by Eq. (3.5) as well as their boundary conditions corresponding to the basic
conical flow.

Equation for g, which is obtained by eliminating G from the simultaneous equa-
tions for (g, G), and equation for G can be written, respectively, in the forms

Dyg"=A+Bg+Cy, (4.12)
MG= {f'—*02f—0f)} g’ +3<*2f —6f \g + N, (4.13)

where
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The flow Near the Region of Vertex of Axially Symmetric Bodies at Supersonic Speeds 9
—<20(f' = 0f")} + rF' {f' — 2f 0f’)}
B=12f"+ 3c%ad FF' — 30,8 £ [ (f' —4(2f — bf'))

X AF(f'—0f") + yF'2f — 6f")} + c2(2f — Gf')2F) . (4.19)
+ 32,0 EH@ @F —8f) {f' — <6 f — 7))

A= o F (' —i0r 1) -4 (41
=T B <40 -0} +ef — iR N
— o, 8*J2f FTF" {f' —*0(2f — 6f')}
o F (-,
M=M@) =d [KF T(TL_*TQ TszFr], (4.15)
N=N@ = - 1 wow, 02 2f Fri. (4.16)
The boundary conditions for g and G are obtained from Eq. (4.8) as
9(1)=— b,
gM= - (FM)-F D} —a,, @)
G(1)= p,— % ().

However, it must be noted that the final condition, G(1), is automatically satisfied
by Eq. (4.13), once g is determined from Eq. (4.12).

Since the function f associated with the basic conical flow vanishes at the surface
5:00, the coefficient A in differential equation for g becomes infinite at §=8,.
This indicates that the function g becomes non-analytic near the surface. On the
other hand, the fact that f is analytic near the surface leads to possibility of a series
expansion of f as

FO)=(0—0.)f 0s) +O[(6—b,)7]. (4.18)

It follows that near the surface the coefficients of the differential equation for ¢
behave like

A~ —Ay6—6)) 1, l
B"’Bo,

C"’Co,
D"“Do,

(4.19)

R—
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10 K. Karashima

where
A=~ w831 + 2633 Fy {1 b e ol
2 7’*" 1 MO
By= — 3t il + 263 f;2 Fills
M;
— 377 7’“’0‘92 {fo(l + 7202) (fo Bof(l)') + 1'20(21)%2} ’
(4.20)
Co=raudi(L+f Fillo
M
2 2oy JoF'y (o 2 29 f
— rwobs(1 + 7°6;) A {F' (1 + 2%67) — 42%0, .},
0
Fy
2A02\2472
Dy=ranfi(1 + <01 ob 6
and where subscript 0 indicates the conditions at §=46,. Although the point §=6, : '

is a singular point of Eq. (4.12), it is an ordinary point of the homogeneous equa-
tion by deleting A. Therefore, the general solution of the homogeneous equation is
analytic, while the particular solution of the non-homogeneous equation has 3/2-
power branch point at §= 6. The two unknown constants involved in the general
solution of the homogeneous equation can be determined as the values of ¢ and its
ﬁrst derivative at §,. Thus, the full solution of Eq. (4.12) can be obtained near
0=40, as

o=t 2 Dop 4 (G By

3 D, 5C, 35\D: D,
+g(00){1+ ; g‘; ‘“r% g‘; %‘;53+ e } (4.21)
+9'00)% [1+%%25+%(g§ +§Z-)52+ L
where ) . ‘
§=0—0,. (4.22)

The integration of Eq. (4.12) is carried out numerically step by step_inward
starting from the known values at §=1 and using the same intervals for §. The
step by step solution is then joined at the two points in the very vicinity of =4,
with the series expansion of g about the singular point given by Eq. (4.21). Thus
9(6,) and g’(f,) are determined and the full solution for g is obtained.

Differential equation for &, which results in eliminating H from the simultaneous
equations for (%, H), and the equation for H are given, respectively, as

Dh'"=J+Rh+UWN, (4.23)

H={f'~*(2f —0f )} I+ 4c*(2f — 6 )h + P, (4.24)
where
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The flow Near the Region of Vertex of Axially Symmetric Bodies at Supersonic Speeds 11
_ ‘zFTM’ ' 200 fF _AfN12 r_ 02 202\ r I
U—rwof} T {(f/—*0(2f —0f")} 12ff rod*(1+ 203 F'F
— o £ — <~} (F {7 — <0 —6F7)
+522Q2f —0f )} + 7' {f = <*2f —6f)} ],
R=4(f"*+ 4ff" + t*yw °F'F') — 47 rmoaz%~»[{f’—r 2f —6f")}

X AF(f'—0f") + yF' (2f —6f")} + 2c2(2f — 6f')°F]

_*_42.27,0)002 ”F_ﬂ]l;z:“ {f’*f25(2f—~5~f')} (2f—5f’) , ) (4.25)

J = — o2 F {f — 392 —Gf')) d% (%)

— 10 F [ F {f — 202f —Gf')} + 2c2(2f — OF)F] 7%

— 2000, 0*F" [y fF {f' — 2202 —6f")} + F {f'*+ <*(2f — 6F")%) ]
P=P@)=

27’ Tzwowlé'fFT.H.
r—1
The boundary conditions for & and H are obtained from Eq. (4.8) as

h<1>=~—§bo,

KO =3 )=V} —a, (4.26)

H()=p,— L F/(1),

and the final condition, H(1), is automatically satiéﬁed by Eq. (4.24), once h is
determined from Eq. (4.23).

Equation for i, which is obtained by eliminating I from the simultaneous equa-
tions for (¢, I), and the equation for I are expressed, respectively, as

Di"=L+ Ri+ U#, (4.27)
MI= {f'—*6(2f —0f")} &' + 4= 2f —6f)i+ Q, (4.28)
where
L=3(2f'gg' +2fg"*—3f"g*—4fgg")

~—w0w102 9 pregpe 22(2f —Bf"
22 {2+ <*2f—061")*}

+ 0o, 0° ~J:..~[(r+l)F'G{f’2+rz(2f 0f')?} +2F+ {f'g’
+722f —0f")(39—09")} + rF'F g (f' — 62 —6f")} ]
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12 K. Karashima
+ rwowlszﬁ [fFF'G {fl_ 7252(2f—§f')}
+FF{g' 039 —09)} + F{f'G'+ *@f —67')(G - §G')} ]
o St DF R G~ 0] ~0f0) + PG

X {g'—70(39—09")} + 1F'G {f'G'+ 2(2f —Of') (G — 6G"))} (4.29)
+F{g'G'+ 7} (39 —09') (G—0G")}]

~ 0o 2a— ) F [ fF' {f' —6(2f —0f")} + F {f* + <2(2f — 6" 23]
Y P o Q
rold*Fr {f' — 6 2f — 6f')) do<“‘>

M
——T‘”OézFr_’[rF’ {f’—r2§(2f~(§f’)} +2r2(2f~(;f')F] Zg ’
—Q@) = LKRGE— g2 ' A
Q=Q®) 2[KﬁG —9"—7*(3g— ﬁg)] 7~1Tw00 lez_fF )

H+ Don2f PG+ Qa—anfFroot LEED. Gopres |,
and the boundary conditions for ¢ and I are obtained as

= | bemant 4 D - 0+ 200} ]

1 1 1 ! 144 !
S1M+ P +g"(1)—g <1>], (4.30)

I()=p,+ ~ G'<1>+ ;

z"<1>:i[if"'<1>—

F’I( )

where the final condition, (1), is automatically satisfied by Eq. (4.28), once 1% is
known from Eq. (4.27).
It is clear that the functlon k is analytic everywhere, while the function 4 is non-
analytxc near the surface = 0,. The same mathematical procedure as was made
or g(ﬂ) is, therefore, applied to clarify the behaviour of ¢ near the singular point, ) ‘
indicating that the particular solution of the non-homogeneous equation for ¢ has
1/2-power branch point at #=6,. However, it seems to be convenient to represent
the full solution of 7 near the singular point in the form of not i(6) itself but the

combination () + g '(9) -?—0- Hence, the series employed is
0

P 170" 2 3 -
z(a>+g(0)%—: J wl fﬂ 05 2(X0+2X15+...)

]

+i(8,) (1+~2~252+ %z,}g“r . )

e tiee Lavame )
+GE{1+—5#~+€(1+ﬂ)E + r(431)
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s 1 1 1
oo [1+~§‘5+ @+ }
g .~ 1 . 1 N
4+ 2o 3 {] — | )z }
7 é +2ye+6( + p?)Et+
+ g‘l’gl {1+ﬂg+ i(,H_‘uZ)gZ_*_ . . }
fo 2
where
D C - R - U - L
A= 20 =20 =P ="o = 2
B, # D, D, g D, ] B, 1
L I\ TL 5 (4.32)
=g 2, =g | -+
. and where
’ FTM'
. Up=7wdi(1+ 205 s —-—Qﬁ—l—gg
_ 2(1 242 Iqlﬁ) 1 20 f" — 62201,
ywoto(1 -+ 7°6%) M {(1+ %) f, T ofo}s
0
Ry=4f; —dz*ranfy(1 + 20D f> 0
M;
—actrand BE% (14 Sy i) + 200
0
L.— 1 92(1 22]6'5 Fr+t 021+ 202) f;)F(r)Q
0—“‘"2'72:0)00)1 o(L+ 2220 fo2 9o F 5™ — raw (1 + 7°6; “]-‘70— 35

LF%%«)ﬁ%f&*ﬂ [G+ DA+ %) G+ 2F, {96"‘7200(390“909{))}]
+ TUJ003F7"1¢1[7’f(/)G0(1 +72205) + Fo {9o— 700 (390 — 0090} ]

— ool +0) 1 (Q 1, Q.31
¢ °
— ol F F (14 20 ~ 260,
)]

Ly =6f,0005— 9+ 03+ {2 yoo i1 + 26 f;1 Fig,
—~rw00§F{,'1[7‘7200féG3———7(1 + 120§)f6G0¢2—12F0(3g0-—ﬁog[))GO
—Fy{9,—7%0,(390— 0,90} $po] — 02— 01)05(1 + *00) [ Fp
— (L 0) T8 (@, Q) + 25 fif %—

1 "
Q= "JZ ;{Wli 2w 0ife g Fyt! (4.33)
‘ . , 2 1 o /42 Ty —
Q=L (KgiGi—gi—2B3go—0,00%) — LT 2 giapt,
2 20r—1)
L)
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14 K. Karashima

1
Q= 2Q1

) , , 2
Q4:K00G0¢1+ {90_7200(390‘“0090)}'%0‘ - {27

2wow,0,fo” §90F5+1
0 r—1

2
T_(Tj;lL)__ T2 wolyGop I

y
1 , , ,
= 5L e Oif, EFy (giFy— (r+ DfiGo}
2 r—1
_ 2 2 4 2 4 BO CO ’
Q5—K(90G0+K00G0¢2—— {90—7 00(390— 0090} 5—90‘+‘ D 9o
0 0

2
— 203 (39,—0,97) go— LT (r +li>— 20,0, GLF
-

2 . 2 -
ni‘%%ﬂrzwowlﬁﬁfofF6¢l— ril o F 5 1 (r + 1) Gogy

+ (2a—wl)ff')F(2)} ’
p=—(rrgy o S 1 1 @ TRE

—_— T"wyw Uy ——=——,

Dy, My 2 y—1 Mo
Go= _1__[(1 + 220 f, (Eﬂ go+ S0 g(,) + {(1+ %65 fs — 37%0.fo} g,
MO DO DO

30000 |~ Lo (14 33y 9, 3070,9,).
0

The unknown constant ¢ in Eq. (4.31) can be obtained from the equation

7:'(00) +g”(6o)—f970‘ =0+ 7—q—?~ ('Zgo‘f'#g(’)) . (4.34)
0

0
‘The differential equations for % and 7 are also integrated numerically in the same
procedure as outlined previously. Higher terms in series expansions of the stream
function and density can also be obtained in quite the same way as outlined above,
if necessary.
Now that the stream function is determined, the body shape is obtained from the
tangency condition that ¢ must vanish along the body surface =4, .

$(x, 6,)=0 (4.35)
Thus, the radius of the body is obtained by use of Eqs. (4.6) and (4.35) as
9o 7..2 ho o[ % 9090 1 g5 . 3
r=0g+ I lgts {m e p(fo g 90 1 65 JJort . @30
TR f, fi P25

‘The unknown constants, I, m, in Eq. (4.36) are determined from the given body
shape. Also, the surface density distribution is given as
0v=p(, 8,) = Fy— 12Gy— 2 [mH0+l2 {(10+ % G;,) 1

0

1 (o 009\ _1(go\(p o J(4'37)
“7;;(“”r 7;‘)““5(7;‘) (F: ~ -

W

g

8
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where

Mo (1ot 20 Gi) = (1 (i 592 ) —azia,f
fo fo

1 s ne

+—2'“ {KO:Gi— 90" — 7*(390—0,95)*}

— 0D oy ey
20 =1) . (4.38)

A =300, Sk
0

+322(fy—001y) -0

fo
M o
— 9 _]W‘L {(1+7%65) 95— 37%0,9,} -

0

Initial radio of shock to body curvature and initial gradient of surface pressure are
expressed, respectively, as

K i ( 1402 >%
K, __ , 4.39
K, 29, \ 1472 (439
1 dC, _ _ trey(1+ %003 f.F'G, (4.40)
K, dx 9o
where
Go=—T2 (14209, 3%,01) (4.41)

0

5. ADDITIONAL DISCUSSIONS AND RESULTS

In the last section a general approach to supersonic flows past axially symmetric
bodies with an attached shock wave has been presented, assuming that the flow
downstream of the shock wave consists of a basic conical field upon which is super-
imposed a perturbation field due to body curvature. The present choice of conical
field as the basic field is quite rigorous so long as the flow remains to be supersonic
everywhere, while it seems to be unrealistic for such a flow pattern that the body is
so thick that the flow downstream of the shock wave is partially subsonic, since the
flow past a finite cone with very large semi-vertex angle is no longer conical and is
modified by a perturbation due to rotationality caused by a curved shock wave.

In spite of this circumstance the present approach may still be applicable further
to the case of partially subsonic flow downstream of the shock wave, if the body has
an analytic shape such as given by Eq. (4.1). The reason for this is in that the flow
downstream of a shock wave attached to an infinite cone still remains to be conical
even in the subsonic pattern and the choice of either conical field, as the basic field,
appropriate to an infinite cone or any other known field does not degenerate the
essential feature of the approach to the problem under consideration. In this sense,
the present choice of the basic conical field is only conventional.
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16 K. Karashima

However, it must be noted that the present choice is compatible with only an
infinite cone in the case of subsonic flow pattern and, consequently, the solution to a
finite cone cannot be obtained only be vanishing !, m, ... in Eq. (4.6). In this
sense, the approach to supersonic flow past a finite cone with subsonic flow pattern
may be considered to be an isolated problem, which will be discussed in detail in the
next section.

The flow behaviour near the region of vertex of axially symmetric bodies is of the
most interest, which can be clarified by detailed arguments on solutions of the simul-
taneous equations for (g, G). In the case of supersonic flow everywhere, the
numerical integration of Eq. (4.12) can be easily carried out step by step inward
from the shock wave without any difficulty except for a singularity at point § =0,,
while in the case of partially subsonic flow downstream of the shock wave another
mathematical difficulty takes place at a point 5:01,, at which M (5,,) given by
Eq. (4.15) vanishes. This indicates that all coefficients in differential equatoin for
g, which are given by Eq. (4.14), become infinite at §— 0,. Since the sonic density
F, corresponding to the basic infinite cone is expressed by

r—DhHK ,
7+ 1),

the point 0~:0p has a physical meaning of sonic point appropriate to the basic
infinite cone.

Although the function g defined by Eq. (4.12) seems apparently to become non-
analytic near the point 5:0,,, it is still analytic essentially because of Eq. (4.13).
This curiosity clearly arises from the procedure of eliminating G from the simul-
taneous for (g, G). Therefore, the differential equation for g can be expressed
near the point =6, as

{f'—<*02f —6f)} 9’ + 302 2f —6f)g + N=0, (5.2)

Friz (5.1)

which is analytic. -
Differentiation of the above equation with respect to 6 then gives

9"+ a9+ ay9=ay, (5.3)
where
aozf;—720p(2fp"0pf;) ’
a :f;;’“fzap(f;’“ﬁpf;) + 272(2fp—0pf;,) >

ay=37%(f,—0,f;),
Ay — — N’<0p) s

and where subscript p denotes the conditions at = 0,. Since §=6, is a regular
point of Eq. (5.3), a series expansion of g is possible in the vicinity of the point, in
which two unknown constants involved in the general solution of the homogeneous
equation can be determined as the values of g and its first derivative at 5:()1,. Thus,
the series employed is

(5.4)
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g(é):g(@p)(l_i Gy L s )
2 a 6 a, a |
+g(ﬁ)77[1+1 Rt 5+i(£_ﬁ__)52+...} 55
! 2 a 6\a; a (5-3)
| 1 oy a; -
+ 15 (_a gy )
2 (24 3 ay
where
7=0—0,. (5.6)

The numerical integration of the function g is carried out by use of the following
procedure. The solution of step by step integration of Eq. (4.12), which starts
inward from the known values at =1, is joined at the two points in the very vicinity
of the regular point §= 0, with the series expansion of ¢, Eq. (5.5). Once g(6,)
and ¢'(¢,) are thus determmed the integration of Eq. (4.12) is then continued
again step by step, starting further inward from the known values at a point in the
very aft vicinity of §= ¢,. The jointing procedure of the step by step solution of g
thus obtained with the series expansion of g about the singular point at §= 0, is
quite the same as has been already mentioned in the last section.

In Fig. 2 are presented the results of numerical computation for g and G at Mach
number of 2, in which g, denotes initial shock wave angle. The interval of step by
step integration of Eq. (4.12) was taken to be 0.05. As is seen in the figure, the
value of g, decreases monotonously with increase of 8,. It must be noticed that

0.5 28

04 \ 24
- %o » %ol \ Go

02 \ . 1.6
0.l \ // 1.2

\ K B max
/1
G

o] ° \l 08
\ \ 2.
-0.l \\—/ \ 04
-02 ' o
30 40 50 60 g, (deq©

F1G. 2. Variable of gy, g and G, with initial shock
wave angle. M=2.
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18 K. Karashima

there exists a particular value of initial shock wave angle, 8, for which g, vanisheg
and, consequently, the second term in right-hand side of Eq. (4.36) becomes zero.

For any initial shock wave angle smaller than B, if the body has an analytic shape
and finite curvature at its vertex, the unknown constant, I, in Eq. (4.36), which
corresponds to the initial shock wave curvature, can be obtained definitely. At
point 8,= 8, , however, I becomes indefinite because of 90=0, thus indicating that no
inviscid solution satisfying the given tangency condition exists, if the body has finite
curvature at its vertex. In spite of this circumstance a certain physical solution still
seems to be capable of existing by taking the viscous effect into consideration, since
the displacement thickness of the boundary layer may distort the effective shape of
the boundary streamline associated with the outer inviscid flow into ogival shape
with cusp at its vertex, for which a mathematical solution is only available even at
Bs=48,, as is seen in Eq. (4.36).

In the case of plane flow the same mathematical difficulty as has been just pre-
dicted in axially symmetric flow occurs at the well known Crocco point, on which
many authors have already discussed in detail by use of the shock polar in hodograph
plane. In the present approach, therefore, such a point as gives g,=0 is to be called
‘Crocco point in axially symmetric flow’.

When g, exceeds Crocco point but is smaller than its maximum valye, ..., @
regular inviscid solution is again valid mathematically but giving the reversed sign
of [ because g, is positive in this range. This clearly indicates a physical meaning
that, in order to have an attached shock wave at the vertex of the axially symmetric
bodies, the shock wave must have a concave shape to the free stream if the body is
convex. This result, however, is a consequence of the analytical approach used in
the development and seems to be physically trivial, because, in the range between S,
and B_,., the flow phenomena near the region of vertex of the axially symmetric
body depend strongly upon the shock wave shape but are less sensitive to the body
shape. These circumstances may be obviously confirmed by the subsequent quali-
tative discussions.

The fact that Eq. (4.36) defines the initial curvature of the boundary streamline
suggests, together with the flow conditions just at the vertex of the body, a possibility
to draw in hodograph plane a shock polar and spines for axially symmetric flow
analogously to two-dimensional ones. However ,it must be particularly noticed that
the axially symmetric shock polar thus described indicates downstream conditions
only at the intersection of the shock wave with the body boundary, while two-
dimensional one is valid just downstream of the shock wave throughout. From the
results shown in Fig. 2, it can be easily found that the spines must change the direc-
tion of their beginning from inwards to outwards as the maximum flow deflection
angle is approached through Crocco point, at which the initial direction of the spine
is parallel to the flow deflection angle. Fig. 3 illustrates a qualitative pattern of the
axially symmetric shock polar, where ¢, ¢* and § denote resultant velocity, sonic
speed and flow deflection angle at the intersection, respectively. These flow charac-
teristics concerning the axially symmetric shock polar are qualitatively quite the
same as those of the two-dimensional one.
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Fic. 3. Axially symmetric shock polar applicable at only
intersection. M=2.

When the shock polar is applied to the convex body with finite curvature at its
vertex, it is easily known that convex curvature of the shock wave causes no difficulty
at the intersection and the solution near the vertex is regular so long as the spines are
only inward bound, since, along a convex surface, the flow behind an attached shock
wave must be accelerated irrespective of its having initially either supersonic or
subsonic speed and, therefore, the body contour is always inward bound. At Crocco
point, however, a contradiction takes place that the spine is radial at the intersection,
while the body contour still remains to be inward bound. This difficulty suddenly
terminates the regular characteristics of the flow and requires a singularity to deflect
a streamline rapidly towards the body contour in order to have an attached shock
wave. When the flow deflection angle exceeds Crocco point, the same contradiction
in boundary conditions as at Crocco point still remains in hodograph plane and
requires a singularity, although mathematical soluton may be regular for concave
curvature of the shock wave. Therefore, the regular solution may be physically trivial
in this range. The singularity required to deflect a streamline suddenly towards the
body contour must have the same character as that of a finite cone after Crocco
point is passed.

In Figs. 4 and 5 are shown, respectively, the initial ratio of shock to body curva-
ture and initial gradient of surface pressure for axially symmetric body at Mach
number of 2. As is seen in Fig. 4, the curvature ratio increases as B; grows and
becomes infinite at Crocco point. The result shown by a dotted line in the range of
shock wave angle between g, and g, _ is physically trivial, although it may be reason-
able mathematically. Qualitatively the same trend is shown by the initial gradient
of surface pressure, as is seen in Fig. 5.
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6. A FINITE CONE WITH SUBSONIC FLOW PATTERN

In case that the flow past a finite cone is supersonic everywhere, there exists a
conical solution which can be predicted by Eq. (3.5). However, if the cone angle
grows so large that the flow downstream of the attached shock wave becomes par-
tially subsonic, the shock wave may be curved because the flow along the cone
surface must be accelerated to arrive at sonic speed just at the shoulder. Such a flow
can be analysed in such a way that the flow downstream of the shock wave is as-
sumed to consist of a basic conical field given by Eq. (3.5) upon which is super-
imposed a perturbation field due to curved shock wave. This perturbation field,
however, seems to have to involve a singularity at the vertex of the cone for the
following reasons.

When the shock polar shown in Fig. 3 is applied to the problem under considera-
tion, it is readily evident that a contradiction in initial directions between spine and
body contour at the intersection occurs at any angle of the cone with subsonic flow
pattern except for the Crocco point, at which the spine has parallel direction to the
body contour. This particular cone angle corresponding to Crecco point is, there-
fore, the only case that is not singular. The overdetermination in boundary condi-
tions, of course, takes place at one point, the intersection, and causes there a
singularity so as to deflect a streamline suddenly towards the body contour. These
characters of the subsonic flow pattern past a finite cone are qualitatively the same
as those of the plane finite wedge.

0e
]

N 1
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Thus, the shock wave shape, stream function, density and entropy function may
be, respectively, assumed to have the forms

=2 (0)—la=t*g(@) — - - - - - . , (6.1)
o=F@O) —lz:GO)—----.. ,
w:a)o{lmwll(Zgb)%_ ...... }
x

r

>

0=

where [, x,- - . are the unknown constants to be determined by the given boundary
conditions. It must be noted that « indicates the order of singularity at the vertex
of the cone and is assumed to be positive.

Substituting Eq. (6.1) into Eq. (2.7) and equating like powers of x yields for
(£, F), (9, @), ... the simultaneous equations, respectively. Equations for (f, F')
are quite the same that is given by Eq. (3.5) as well as their boundary conditions,
which are given by Eq. (3.6). Equation for g, which is obtained by eliminating G
from the simultaneous equations for (g, G), and equation for G can be written,
respecfively, in the forms

Dg"=A+Bg+Cyq, (6.2)
MG = {f'—22002f —0f)} o' + (6 + 22 2f — 6/ g+ N | (6.3)
where
7] CF L, " 2 2 -
D=yw, 78 {f'—<*02f —0f')} *—4f*=D(0),
C=rw, ﬁgr % {F' —=2202f —0f")} *— 4(k+ 1) ff' — yw 6*(1 + 2% F1F"
—rw, 0211:;—1 {f'—2202f —0f)} [F {f"+ 2c+ )22 (2f —0f")

—*0(f' —6f")} + rF' {f — 202f — 6f")}],
B=(s+2)(x—1)f"?+4(x+ Dff" + (£ +2)%rw 0 FTF'

e+ 220 P (1 esair - 7)) (P —077)
+7’F,(2f"0f')} +'W'2(2f—0f’)2F] L (6.4)
oFr 3

+ (£ +2)c*rw, 7 A f—of) {f'—<02f —01")},

A= — 0,6 F {f — 220 (2f —6f")) %’i (_?Zf.)

— 10’ F 7 [y F' {f' —t20(2f — 6f")} + x22(2f — 6f')F]

E!! 2z
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-

— 10,0 2f)TFTF {f — 220(2f — 6f')}
— ko, 02 f) T Fri (72 4 22(2f — 0},

N= tszwIOZFT“(Zf)’;'.

r—1
The boundary conditions for g and G are obtained from Eq. (4.8) as

g(l) = — — b,
£+ 1
1
' —_ _fn
g()=—a+ w1 {Fra—-'mi, (6.5)
1
G(l)=p,——— F'(1),
()=p, P (I
where the final condition, G (1), is automatically satisfied by Eq. (6.3), once g is ! i (.
known from Eq. (6.2). '
It is clear that the function M(f) vanishes at point §=86,, which indicates sonic
surface appropriate to the basic conical field. The mathematical difficulty in inte-
gration of Eq. (6.2), which occurs at this point, can be treated in the same way as
has been already mentioned in the last section by considering an analytical continu-
ation of step by step solution of Eq. (6.2) with a series expansion of g about the
point #=46,. Thus, the series employed is
00)=9(0,) {1— Zpy L0 By
2 (24} 6 Xy Ay
’ 2@ T e\@  a (6-6)
L3 2{51..i§1_‘_’_3_ _}
T2 % T %
p=0—40,,
where S \‘
&0~f;—720p(2fp—0,,f;,) ’
a,=f, —7%0,(f,—0f,) + (x+ 1)7°(2f ,— 0,f,) 6.7)
@y =(k+2)e(f, —0,f7) J
az— —N’(ep)
and where subscript p denotes the conditions at §=4,,.
Since the coefficient A in differential equation for g, Eq. (6.2), involves the
term (2f)£2:}, the function g becomes non-analytic near the surface of the cone
0=40, if k<2, while it is analytic if x>2, because f vanishes at #=6,. The sin-
gular behaviour of g for £<2 can be treated in quite the same way as has been
already mentioned in Section 4 by making a series expansion of g about the singu-
lar point, which is given by (¢ <2)
' q
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9O =~— 2 Locinfiy
1]

4 2 G,
w(c+2) D

x+4—]i
4 ___(53 .Fl)z
MR YAIIRY) ) A }

(6.8)

>
S

1 C 1/ C:
+9'(0 {1+°c — {2
g'Go)e 2 D, 6 \D: D,

where

Dy= (1 + <2622 f; ]f_} ,

0

Comranti(1+20f: TBI0 a1 co) Lo 4 (14 <o)
- (25: + 2)2‘200]‘{)} s
FiM,

0 0
Bo= (e +2)(s— D — (e + 2oL+ 003 = (6.9)
0

— (k4 2 %}i (1 +20) (Fy—00fy) + k22GF)
0
-~ Lind. ) 512 7t Fr
Ay=2"7 rw,w (1 + 7202 f, * Fyril+ Tiw s =2 }
7T 1 Mo

Here an attention must be paid to the fact that the unknown constant « is
involved in both the differential equation for g and its boundary conditions at §=1,
and, consequently, the integration of Eq. (6.2) cannot be made readily. However,
from the tangency condition that ¢» must vanish along the cone surface, it is easily
known that g must vanish at §=46, because of f(6,) =0, that is

g(0y; £)=0. (6.10)

Therefore, the unknown constant £ can be determined from the condition given
above.

Since « is initially unknown, the integration of Eq. (6.2) must be carried out,
by use of a trial and error method, by assuming several proper values of «, although
it may be very laborious. The analytical continuations at points ¢, and 6, are
carried out in the same way as mentioned previously. By use of # thus determined,
the integration of Eq. (6.2) is repeated again once more and the values of ¢'(6,)
is obtained. From Eq. (6.3) G(f,) can be expressed as

Go=G(0y) = (1 +°62) T . 6.11)
M,

The another unknown constant ! can be determined from the condition that the
flow must be accelerated to arrive at sonic speed just at the shoulder (2z=1) of the
cone, that is
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P
= F°G £. (6.12)

0
where
—I)K L

*: 0 ; x:l :[_.(T_.__,_ “:] —-1. 6.13
L A O | (©-13)

In Fig. 6 is presented the variation of « with initial shock wave angle B, at Mach
number of 2. As is seen in the figure, x decreases with increase of B; and becomes
of unity at Crocco point, 8,. In the range of shock wave angle below 8,, the initial
shock wave curvature is found to be zero, while it is infinite in the range between
B. and B, thus indicating that only the flow with Crocco point at the vertex has
normal acceleration and, therefore, a regular attached shock wave with finite curva-
ture throughout. These trends are quite the same as have been already found in
the problem of a plane finite wedge with subsonic flow pattern.

20
K
1.5 <]
\ e
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0S5 - \ Bmax
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Fi1G6. 6. Variation of with initial shock was

angle. M=2.

Fig. 7 sohws the theoretical results of shock wave shape and sonic line for a finite
cone with semi-vertex angle of 38.05° and at Mach number of 2. A dotted line in
the figure indicates the shock wave shape obtained from Taylor-Maccoll’s conical
theory. So long as the shock wave shape is concerned, deviation from the conical
theory is not so large, as is seen in the figure. In Fig. 8 is presented a surface
pressure distribution on the cone calculated under the same conditions as in Fig. 7.
Since £ is 1.960 in this case, the singularity at the vertex is not so strong and the
initial gradient of surface pressure is zero.

When shock wave angle reaches 8,,., the assumption of the series expansions
used in the present development becomes inadequate because x vanishes. In such
a limiting case, since the spine of shock polar giving the initial direction of the
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boundary stramiine prescribes an outward directed beginning at the intersection
with the body boundary, it will be easily found that the flow near the vertex also
requires a singularity to deflect a streamline suddenly towards the body contour.
This characteristic feature of the streamline pattern in the velocity plane corresponds
qualitatively to the incompressibie concave corner, which is avoided by the stream-
lines. The change of velocity in the physical plane is, therefore, rapid near the
vertex of the cone, indicating that the initial gradient of physical properties is infinite
along the cone surface.

This circumstance impicitly suggests that the flow must have a logarithmic singu-
larity at the vertex of the cone. Although there is no rigorous proof for this state-
ment, it seems to be reasonable and consistent with transition process from attached
to detached shock wave, since the vertex of the cone must be a stagnation point
after detachment of the shock wave. This may be further confirmed by the fact that
Tamada [6] and Oguchi [7] succeeded in clarifying the limiting characteristics of
flow past a plane finite wedge by assuming a logarithmic singularity at the tip of
the wedge.

Aithough the flow past a limiting cone must have a singularity at the vertex, the
singular behaviour of the flow properties is restricted to the very vicinity of the
vertex and the most of flow acceleration takes place near the shoulder. Thus, the
shock wave shape, stream function and density may be assumed, respectively, to
have forms
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ro=x+lz(logdx)~1 4 ... 7
¢=a?f(0) + la*(log da)~'g(6) + - - - |

p=F () +l(log da)"'G(h) + - - - L (6.14)
d=Ltang,,,
T

where ! and {are unknown constants to be determined from the boundary conditions.
In order to simplify the analysis it is assumed that the entropy function w is constant
everywhere equal to w,. Substitution of Eq. (6.14) into Eq. (2.7) yields for
(f{,F), (9,G), --. the simultaneous equations, respectively. Equations for
(f, F') are quite the same that is given by Eq. (3.5) as well as their boundary
conditions.

Equation for g, which is obtained by eliminating G from simultaneous equations
for (g, G), and equation for G can be written, respectively, in the forms

Dg"=Bg+Cyg’, (6.15)

MG= {f’—r20(2f——0f’)}g’+272(2f-0f’)g, (6.16)
where

B=_— 2+ 8ff" + 2t w 3 F T F'
=25 L 02T 07} {F (07 + B2 — 0f1)

2270 B ooy (77— 021 — 0y,

o < (6.17)
O =411~ o (Ut F + oot T (g1 507 _
et S (= 0f 07} [F {7+ 2f — 0f)
=T = 0f")} + rF' {f' —=*6(2f —6f")} ],
D=D
Boundary conditions for g and G are obtained from Eq. (4.8) as

9(1)=—Cb,,
9'()=—C{a,—f (1) +7"(1)}, (6.18)

G()=L{e,—F'(1)},

where the final condition, G(1), is automatically satisfied, once g is determined
from Eq. (6.15).

Since the unknown constant ¢ is involved in the boundary conditions for g,
integration of Eq. (6.15) must be carried out, using a trial error method, by assum-
ing initially several suitable values of £. It is so determined as to satisfy the
tangency condition that the function ¢ must vanish at 0=46,, that is

9(0,; £)=0, (6.19)
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The another constant [ is determined from the sonic condition just at the shoulder
(x=1) of the cone such as

= (" —Fylogd , (6.20)
G,
where G, and p* are given by Egs. (6.11) and (6.13), respectively.

Fig. 9 shows theoretical shapes of shock wave and sonic line on limiting cone at
Mach number of 2, in which experimental shock wave shape is also presented for
comparison. The experiment was carried out by use of a cone-cylinder with semi-
vertex angle of 40.57° and 40 mm¢ in base diameter. Reynolds number of the
model referred to cone length is 5.82x10% Fig. 10 shows a schlieren photograph
of the limiting flow field past the model at M=2. So long as the shock wave shape
is concerned, the agreement between present theory and experiment is good near
the vertex. Slight deviation of the theoretical result from the experiment near the
shoulder may be due to the approximation made in the present development. It may
be an interesting result that the sonic line impinges on the shoulder from slight
downstream of it, as is seen in Fig. 9.
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28 K. Karashima

In Fig. 11 is presented a theoretical surface pressure distribution on the limiting
cone together with experimental results for comparison. The agreement between
theory and experiment is fairly good. Fig. 12 shows pressure drag coefficient of a
limiting cone with semi-vertex angle of 25° together with experimental data pro-
posed by Solomon [10] for comparison, where the drag coefficient is defined by

1
Cpr=2 f C,dzx . (6.21)
0

The detachment Mach number in this case is 1.3277 and the two Solomon’s data on
left side in the figure indicate drag coefficients in the case of shock detachment.
Therefore, it may be confirmed from Fig. 12 that the transition from attached to
detached shock wave is continuous in axially symmetric flow as well as in plane flow.
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7. COMPLEMENTAL ARGUMENTS

When the shock polar illustrated in Fig. 3 is applied to a finite cone with subsonic
flow pattern, it will be easily found from the contradiction in initial directions be-
tween spine and body contour at the intersection that the singularity required at the
vertex must change its type as the maximum flow deflection angle is approached
beyond Crocco point.

In the range of flow deflection angle smaller than Crocco point, the spines pre-
scribe an inward bound, so that the singularity required to deflect a streamline
suddenly to a more outward direction corresponds to the incompressible convex
corner, where streamlines are crowded. However, the real flow in the physical
plane will have an appreciable area, indicated by the number of streamlines, where
velocity is almost uniform. This characteristic feature of the flow pattern clearly
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indicates that the flow near the vertex is almost undisturbed by the singularity.
This, in turn, gives a physical evidence to the theoretical resuit of £>1 proposed by
the present development. Therefore, such a singularity may be called as ‘super-
sonic type’.

When growing cone angle goes beyond Crocco point, the direction of spines at
the intersection changes from inward to outward and the corresponding singularity,
from a convex corner to a concave corner which is avoided by the streamlines. The
change of velocity in the physical plane is, therefore, rapid near the vertex and the
initial gradient of flow properties becomes infinite. Although this flow pattern may
be cnofirmed by the theoretical result of £<1 in this range of cone angle, another
physical evidence must be taken into consideration that the singular behaviour of
flow properties is restricted to the very vicinity of the vertex and most of flow
acceleration occurs near the shoulder, indicating that the change of flow velocity is
fairly rapid near the shoulder but is not singular. A similar flow pattern to this
being given by the transonic flow past a finite cone, the singularity appropriate to this
range of cone angle may be, therefore, called as ‘transonic type’.

From the theoretical point of view, although the form of singularity, x*, assumed
in the present development, Eq. (6.1), may be reasonable for the supersonic type
(k>1), it might be inadequate to represent a flow pattern of the transonic type
(£ < 1), since it does not seem to be capable of predicting accurately a physical
evidence of rapid acceleration of flow near the shoulder. However, considering a
continuous change of the real flow phenomena from supersonic type to transonic
type and finally up to the shock detachment as growing cone angle goes beyond
Crocco point, the present theory might be reasonably improved by replacing z* in
Eq. (6.1) by a*(log dx)! in the range of flow deflection angle beyond Crocco

point, where d= L tan B -
T

In order to result in continuous transition from attached to detached shock wave,
the appearance of a transonic type singularity in the range of flow deflection angle
between d, and d,,, is necessary and, therefore, it may be recognized as a transient
process of preparation for detachment of the shock wave.

8. CONCLUSION

A general method of analytical approach has been presented for axially symmetric
supersonic flow involving shock wave and applied to clarify the flow characters near
the region of vertex of pointed bodies of revolution with finite curvature. It was
found that there exists a characteristic semi-vertex angle of the body for which
inviscid solution cannot satisfy the given tangency condition when initial body
curvature is finite.

Detailed examination revealed that this flow character is quite analogous to that
arises at the well known Crocco point in plane flow. In the range between Crocco
point and maximum semi-vertex angle, it was found that the real flow requires a
singularity at the vertex to deflect the boundary streamline suddenly towards the
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30 K. Karashima

body contour, although there may still exist a regular solution mathematically, which
is physically trivial.

The present theory was shown to be applicable further to the problems of a finite
cone with subsonic flow pattern and indicated a noticeable result that the transition
from attached to detached shock wave is continuous in axially symmetric flow as
well as in plane flow.

Department of Aerodynamics

Institute of Space and Aeronautical Science
University of Tokyo, Tokyo

January 25, 1966

REFERENCES

[11 Van Dyke, M. D.: A Study of Hypersonic Small Disturbance Theory. NACA Rep.
No. 1194, 1954.

[21 Shen, S. F. and Lin, C. C.: On the Attached Curved Shock in Front of a Sharp-Nosed
Axially Symmetric Body Placed in a Uniform Stream. NACA TN 2505, 1951.

[3] Karashima, K.: Second-Order Supersonic Small Disturbance Theory. Inst. Space and
Aero. Univ. Tokyo Rep. No. 329, 1965.

[4]1 Busemann, A.: A Review of Analytical Methods for the Treatment of Flows With
Detached Shocks. NACA TN 1858, 1949.

[5]1 Guderley, G.: Considerations on the Structure of Mixed Subsonic Supersonic Flow Pat-
terns. Wright Field Report F-TR-2168-ND, 1947.

[6] Tamada, K.: On the Detachment of Shock Wave from the Leading Edge of a Finite
Wedge. Jour. Phys. Soc. Japan Vol. 8, No. 2, 1953.

[71 Oguchi, H.: On the Subsonic Flow behind the Bow Wave of a Finite Wedge. Jour.
Phys. Soc. Japan Vol. 9, No. 2, 1954.

[8]1 Oguchi, H.: On the Attached Curved Shock in Front of an Open-Nosed Axially Sym-
metric Body. Jour. Phys. Soc. Japan Vol. 9, No. 5, 1954.

[9] Taylor, G. I. and Maccoll, J. W.: The Air Pressure Over a Cone Moving at High
Speeds. Proc. Roy .Soc. (London), A, Vol. 139, No. 838, 1933.

[10] Solomon, G. E.: Transonic Flow Past Cone-Cylinder. NACA Rep. 1242, 1955.

This document is provided by JAXA.

"






