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Summary. The creep bending characteristics such as the lateral creep deflection versus

’ . time relations are investigated in the non-uniform thermal environments for the linear
polymer column having the idealized section. The linear polymer is described as a com-

A ! bination of Maxwell and Voigt elements. The non-uniform temperature distributions

alongside the column length are assumed to be the idealized stepwise profile. The tem-
perature dependence is expressed in terms of rate process appeared in the viscosity term.
The numerical example for polymethylmethacrylate, whose physical properties are obtained
through the usual tensile creep test, shows the conspicuous effects due to non-uniformity
in the temperature distribution.

Symbols

A =cross-sectional area of idealized column
E =modulus of elasticity
H =activation energy
h=depth of idealized I section
k=constant in viscosity term
L =column length
P

p
P = compressive load
R =universal gas constant
T =temperature

nE:

cr

t=time
t., =critical time
o =stress
A=viscosity coefficient
e=strain

do=1nitial deviation divided by one-half depth
dy=maximum initial deviation divided by one-half depth
o=non-dimensional lateral deflection

[31]
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1. INTRODUCTION

As is well known the thermoplastics are quite sensitive to thermal environments
and therefore they might be well supposed to be much subjected to the effects of
non-uniformity in temperature distribution alongside the column length in case
of column creep bending initiated by the axial compressive load applied.

From the view-point of actual structural design of compressive members sub-
jected to any thermal environments, no such linear polymers of thermoplastics may
be allowed to be used. Although the present problem is rather far from the actual
practice, however, for the fundamental understanding of viscoelastic behavior of
linear polymers subjected to any thermal non-unifomity, the author believes the
present work might be something.

For the analytical manipulation sake we adopt the four element model, that is,
a combination of Maxwell and Voigt model as shown in Fig. 1, as a mechanical
equivalent of fundamental linear polymer structure, which is typical of thermoplas-
tics. The column, whose mechanical characteristics are of four element model, is
assumed to have an idealized section [/] as shown in Fig. 3, and also to have an
initial deviation §, The non-uniform temperature profile alongside the column
length is taken as an idealized asymmetric stepwise one, as shown in Fig. 2.

The temperature dependence is included in the viscosity term taking account of
rate process expression, which is well recognized [2],[3]. The analytical approach
for the time versus non-dimensional lateral creep deflection relations is done by use
of Galerkin approximation. The numerical example for polymethylmethacrylate,
which is supposed to be among the linear polymers, is examined to check the non-
uniform temperature distribution effects.

2. DERIVATION OF THE STRESS-STRAIN-TIME Law
FOR A FOUR PARAMETER MODEL

For the linear polymer the general stress-strain-time relationship governing the
mechanical behavior of the four parameter model shown in Fig. 1 may be derived
as follows [4].

If at any time ¢, the stress ¢ is applied to the model as shown in Fig. 1, where ¢
is positive in tension, the strain contribution ¢,, of the elastic element with Young’s
modulus E'y, is given by Hooke’s law as

Ela:—Eg;‘: (1)

Ly
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FiG. 1. Four Parameter Model Representation

For the viscous element with the viscosity coefficient 1, Newton’s law gives

. g’
E1p= — 2
= (2)
in which the dot above the strain indicates the differentiation with respect to time t.
From Eqs. (1) and (2) we have the combined strain contribution related to the

applied stress, i.e.,

.}‘ . 7 o
61—E+"2—1" (3)

This shows the stress-strain-time law for a Maxwell model.

Next, another strain contribution due to a Voigt model is to be determined. The
strain relating to the Voigt model is e,, which is common to both a spring and a
dashpot, but the stresses induced must be different, say, o,, and g,,, where the sum
of these stresses is the applied stress ¢. Thus we have

&= ‘g: (4)
g, = J20 5
€ 2, ( )
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where E'; is the modulus of elasticity and 2, the viscosity coefficient as shown in
Fig. 1. Hence the strain ¢, is related to the applied stress ¢ by the equation

22.€2+E2€2=(f (6)
Eq. (6) is the defining equation of a Kelvin or Voigt model.
The total strain ¢ for a system shown in Fig. 1 is
E=¢g + &g ( 7 )

where ¢, is given by Eq. (3) and ¢, by Eq. (6).

Elimination of ¢, and ¢, from Egs. (3), (6) and (7) results in the following

stress-strain-time relation governing the mechanical behavior of four parameter
model shown in Fig. 1:

. K E.2 E
+___2_(1 Ea2 B,
T VT Ea T E,

. E,E, :E(.. _E_z) g
)0+ 2a, (oot (8)

3. TEMPERATURE DEPENDENCE AND NON-UNIFORMITY
IN THE TEMPERATURE PROFILE

The creep deformations are likely to be controlled by some process involving the
activation energy, therefore, we may represent the viscosity term in terms of rate
process resulting in the following temperature dependence [2],[3].

H_
A=ke®T (9)

As to the non-uniformity in the temperature profile we just assume the asym-

metric stepwise one as shown in Fig. 2. The uniform temperature considered in
the present work is indicated by the dotted line.

4. SOLUTION FOR A CREEP BENDING PROBLEM
BY THE GALERKIN APPROACH

For the essential evaluation of the non-uniform temperature distribution effects
the idealized column proposed by Hoff [] is conceived so as to avoid any detour
in the theoretical treatment followed.

As shown in Fig. 3, the axial compressive load P is applied to the idealized
column of four element model, causing the lateral creep deflection due to the initial
imperfection of §,=d;sinn&. The produced stresses for the concave and the convex

side of a column are
P w
= 1+ % 10
g; ! ( + ( h) ) (10)
2

and

@
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Fi1G. 2. Idealized Asymmetric Stepwise Temperature Dis-
Py tribution assumed

v®
go=L 1 W _ (11)
()

Denoting P/A =g, and w/(h/2)=4d, for convenience, we can rewrite Eqs. (10) and

(11) as
0;=0a,(14+9) (12)
0,=0,(1—20) (13)
(0<1)
respectively.

The strain difference is described by
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Idealized Section
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Fi16. 3. Idealized Column with Initial Deviation
2 2 2 2 2
sa_si:h(aw_awo): h (aa_aao) (14)
ox? o0x? 2L% \ gg* 0&?
The boundary conditions for pinned ends, shown in Fig. 3, are
5=9% _0 at £=0 and e=1 (15)
0&2
The initial deviation of a column centerline is assumed to be* N ‘n
. ol
wo(§) =a, sin 7é€ (16)
0=¢=s))
and also
0= 0, Sin 7€ (17
for the non-dimensional form, which already appears in the previous page, where
0o="2o/(k/2) and gy=a,/(/2).
Assuming the non-dimensional deflection**
* In the present analysis it is assumed that the ng value is near unity, so that the first har-
monic sine is predominant.
** It is assumed that the first harmonic sine is predominant, and Eq. (18) is to satisfy the
previous boundary conditions given by Eq. (15).
]
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5, t)=1(t)-sin n¢ (18)
Then we have, denoting the differentiation with respect to time ¢ by the dot,

§=F sin n&

5= f sin 7€

bee= —fn? sin & (19)

de=— fr? sin &

Combining Eps. (8), (12), (13), (14), (18) and (19), we have the fundamental
equation,

Af+B,f+Cif=0 (20)
where
2
A, =—2¢,sin n&+ -Igllflz 7% sin 7€
E LE, | E,\. E.E.h? , .
B::—2m~l(1 Aoy -Jan 1Bsh” 2 Gin
=t M s, TR, e T 21)
C,= —20m~€i§'i sin &

Now we are going to apply the Galerkin approximation to Eq. (20) to have the
relationship between f(f) and time ¢.*

Application of the one-term Galerkin approximation to Eq. (20) yields

1 . -
[ 147+ Bif+C/fsin rgdg=0 (22)
0
Considering both the non-uniform temperature profile prescribed in Fig. 2 and the
temperature dependence given by Eq. (9), we lead to the following equation after
mathematical manipulation,

Ayf+Bof +Cof =0 (23)
where
C, %%2 (e"%{H—e 32)

The solution for Eq. (23) is given by
f(t):Kle”‘t-{-Kze"” (25)

* Jt is assumed that Eq. (18) holds at any time, and f(¢) is to be determined so that Eq. (20)
may be satisfied in the region 0=<£ =<1 by the Galerkin method.
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where 4, and g, are as follows.
— B, |BI_44,C,

The constants K, and K appeared in Eq. (25) are to be determined by the
initial conditions described in the followings.

IL[:

1
2

(26)

At t=0 =0 27)

which is characteristic of a Voigt model. Moreover, due to a spring in a Maxwell
model, there occurs the instantaneous elastic deflection, i.e.,

At t=0 (&, 0)=F(0) sin nfzﬁf’fsﬂli (28)
Ad
with the knowledge of elasticity.
The above two relations described in Egs. (27) and (28) can determine K, and
K, whose details are shown in what follows.
The viscosity term can be represented in terms of displacement, say,

. 1 dx
A I dt (29)
from which we obtain
dx o
o9 30
dt A (30)

Now for the asymmetric stepwise temperature distribution shown in Fig. 2, the
viscosity term can be expressed as the sum of individual temperature effect. Then
we have

dx_ol+al

A 2 e 2 D
Substitution of I=1 into Eq. (31) leads to
Sgliet
With Eq. (9), Eq. (32) is rewritten as
é:vi%(e‘ﬁzﬁ—{-e"k%‘a) (33)
The whole strain in the present model is
e=¢gatEpteg=¢;+ ¢ (34)
and the differentiation of Eq. (34) with respect to time yields
E=¢,+ & (35)

With reference to Eq. (33) we have

»,')J ‘
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. g o H H_

= — + (e"RTx—l—e-RTe) (36

E, 2k, )

which is for a Maxwell model.
As to a Voigt model the induced strain must be equal, but the stress is different,
say, g,, and g,,. Consequently,

O2q
=22 37
“=5 (37)
Q::%%;(e‘f%-ke'fﬁ) (38)
Substitution of Eqs. (37) and (38) into Eq. (6) derives
2k,é, _
w0 (39

e~ ET1 + e~ kT2

From Egs. (35), (36) and (39),

%2 (¢-%7i + e~ *13) 2 M 2! E, (e kTi+ e Fr3)
With Egs. (12), (13) and (14), Eq. (40) reduces to
. —40'mkgé ZGmk25 1 1
%= v AN B, \k Tk
E.E,(e®ri + i) 2 ! 2
. (41)
. k2h2 555
E.L* (e—EHﬂ + e*EH‘f‘z)
Combination of Eqs. (18), (19), (25), (27) and (41), at time ¢=0, gives
4o, 0o (K 1y + Ko po) + 20k, (_l_ .1___1_.) (K +K,)
E1E2<e RT1 4 € HTﬂ)
(42)

kb (K py + Kopts)
H H
E,L* (e“ RT1+ e~ iﬁ;)

=0

~— —

since sin 7£ 0.

For the initially deviated column the instantaneous lateral deflection shown in
Eq. (28) is observed upon application of axial compressive load P, and the com-
bination of Egs. (25) and (28) yields the following equation at time ¢=0,

K,+K,=_ % 43)
1—n,

Thus we can determine K, and K, from Eqs. (42) and (43), as shown below.

K. = (oups+ar—agp)d; (44)
(I =) (pte — p21) (; — a3)

This document is provided by JAXA.



40 A. Kobayashi

— (aalll—az—ax#l)5; (45)
(1—ng) (o — p21) (@ — as)

2

where

40,k
E.E,(e-#ti + e~ 7r3)

_lamkz (_1» _1_)
Ay — E2 kl + k2 (46)

koh*r® ]
E,L* (e'zTHT'i + e‘ﬁ”ﬂ)

) —

a3 —

Finally we can recognize the creep bending behavior of a four parameter model,
as a mechanically equivalent representation of linear polymer, through Eq. (25)
with the constants K; and K, described by Egs. (44) and (45).

5. NUMERICAL EXAMPLES AND DISCUSSIONS

Polymethylmethacrylate might be regarded as a kind of linear polymer in the
form of four parameter model under the glass transition temperature, and its physi-
cal properties are obtained through the usual tensile creep test, of which details will
be roughly described in what follows.

For the moduli of elasticity, E/; and Es, and the viscosity coefficient 2,, all these
values are found in the creep strain versus elapsed time curve under the constant
load as shown in Fig. 4. As for another viscosity coefficient 4,, the creep strain
versus logarithmic time plotting, shown in Fig. 5, is used to determine the retarda-

tion time 7, from which 2, is calculated since r=21,/E,. The retardation time posi-

tion on the curve is the location where the gradient is maximum. The physical
properties thus obtained are as follows:

E2=1640%
A1=584X 10555

") \

J ¥

ti=142 (Sec)

t=0

F16. 4. Tensile Creep Test Curve obtained

AN |

s
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Fi1G. 5. Determination of Retardation Time

E =418 Kg/mm?
E,=1640 Kg/mm?
A1=35.84 X 10°Kg - s/mm?
A;=1.18 X 10*Kg-s/mm?
r="17.2 sec.

The above values are derived from the test results at 12°C (=285°K) with the
tensile stress g,=1.67 Kg/mm?.

For easier understanding of non-uniform temperature distribution effects the
following numerical examples are tried. In the examples, we assume

T,.=285°K

H =29000 cal/mole

R =2 cal/°K mole

n;=0.9 (0,=2.32 Kg/mm?)
h/L=1/20

d,=1/100 (f(0)=0.1)

in addition to the above physical properties. The numerical results obtained are
shown in Table 1 and Figs. 6 and 7.

Fig. 6 shows the conspicuous reduction in elapsed time up to the prescribed
deflection in case of non-uniform temperature distribution. For instance, in case
of only =£1.75% temperature variation compared with the uniform temperature of
285°K, i.e., T1y=290°K and T,=280°K, the calculated elapsed time to reach
f=1[5] reduces to 69.5% compared with the uniform temperature case. If it has
+3.51% temperature deviation, namely 77=295°K and T»=275°K, the situation
becomes worse and shows about one-third of elapsed time degradation. Therefore,
we have to be careful in case we work the present column as a compression mem-
ber under uniform temperature profile alongside the column length, so that we
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TasLe 1. Thermal Non-Uniformity Effects on Creep Bending Characteristics

T, °K 305 300 295 290 285
T, °K 265 270 275 280 285
+ AT °C 20 15 10 5 0
4T % 7.02 5.27 3.51 1.75 0
T
f=0.5 0.44 0.93 2.10 4.54 6.54
t f=1.0 0.66 1.42 3.20 6.91 9.95
(See) | 4—1.5 0.80 1.71 3.87 8.37 | 12.00
f=2.0 0.90 1.93 4.36 9.40 13.45
7‘_ f=1.0 0.066 0.143 0.322 0.695 1
m
t
tm
= X _ |
10 f=1 So—m
05t
O L 1 1 i
285 290 285 300 305 TieK
285 260 275 270 265 T2°K

Fic. 6. Elapsed Time versus Thermal Non-Uniformity Relation
under the Prescribed Condition

investigate the actual temperature profile to check any non-uniformity in tempera-
ture profile to avoid such catastrophic degradation of elapsed time as shown in the
results. The previous results already pointed out by Hayashi et al. [6] and after-

(Sec)
150
100}
50

AT=F15°C

AT=120°C
1 1 i i
0 01 0.5 1.0 1.5 2.0 f

Fic. 7. Elapsed Time versus Non-Dimensional Lateral Creep De-
flection Curves influenced by Thermal Non-Uniformity

¢
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wards by Kobayashi [7], both for metal, also agree with the present tendency.
In Fig. 7, we can perceive that the lateral creep deflection rate is accelerated as
the magnitude of non-uniformity in temperature distribution increases. Conse-

quently, for large temperature difference case the lateral deflection versus time
curves soon become asymptotic.

It is easily recognized that T'; and T, are interchangeable in this case. There-
fore, the above results seen in Figs. 6 and 7 are also available for estimating the
lower elapsed time limit for the corresponding temperature fluctuation.

6. CONCLUSIONS

The non-uniform thermal environment effects are found to be conspicuous in case
of column creep bending of four parameter model. Since T, and T, are inter-
changeable in the present problem, the obtained results also show the lower elapsed
time limit for the corresponding temperature fluctuation.
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