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Summary: The rotational transitions in molecular collisions in the para-hydrogen gas are
theoretically studied in the distorted-wave approximation. In the long-range part of the
intermolecular force, the orientation-dependence of the dipole-dipole dispersion force and
the quadrupole-quadrupole interaction are fully taken into account. In the short-range
part of the interaction, the anisotropy parameter is determined empirically in such a way
as the calculated rate constants explain the ultrasonic absorption data at 90°K. It is shown
that our rotational cross sections can explain satisfactorily the ultrasonic absorption
experiment at 90° and 293°K, but the agreement with the ultrasonic dispersion experi-
ment is less satisfactory. The orientation-dependence of the long-range interactions and
the simultaneous transitions in two colliding molecules are both found important. Fur-
thermore, it is found that the cross sections are large when the collision partner is in an
excited state of rotation.

1. INTRODUCTION

Rotational transitions in molecular collisions in the hydrogen gas have been
studied theoretically in several articles in the past. Early investigations (reviewed
by Takayanagi [/][2]) are based on the simple exponentially repulsive interaction
potential. As a more realistic interaction, Takayanagi [3] introduced the Morse
type interaction and applied the modified wave number approximation [4] to calcu-
late the cross section for the rotational excitation from the ground state /=0 to
I=2, | being the rotational quantum number. The potential function used was
(see Fig. 1)

V(R, 5, #)=D exp [—2a(R—R)]—2D exp [—a(R—R))]

1
+ 8D exp [—2a(R— Ry)][P(cos y,) + P(cos ,)], ‘v

where £, is the unit vector along the axis of the ith molecule, cos y;=#;-R, and, in
atomic units*,

D=1.1x10"*

Ro = 6. 4

* We use atomic units throughout this paper, unless otherwise stated.
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Fic. 1. Coordinates describing collision of two hydrogen molecules

X

3=0.075
200=1.87.

The parameters were chosen so as to obtain a good fit to the theoretical calculation
of the short-range interaction by Evett and Margenau [5]. Later, Takayanagi [6]
extended the calculation to excitations from excited states (I=2—1[=4, etc.). The
same intermolecular potential was used by Davison [7] and by Roberts [8] in their
full distorted-wave calculations. They found that a stronger angular dependence
(8= 0.14) gave a closer agreement with experiments. Davison also used the
following “exp-six” potential:

V(R, y1, x)=D exp [-2a(R—Ry)]—AR"®

2
+{BD exp [ —2a(R —R)]—BR~%}[P,(cos y,) + P,(cos y,)], (2)

where D, @ and R, have the same values as before, and 4A=11.0, B=0.8 and B is
regarded as a parameter to be varied. The long-range R~° terms were based on the
calculations of Britton and Bean [8].

Davison [9] proceeded to extend the distorted-wave calculations to the second
order and found that the second-order correction lead to a decrease in the excita-
tion cross section by several per cent at the thermal energy. Later, Allison and
Dalgarno [/0] studied the excitation /[=0—[=2 by a close-coupling method and
found a cross section which was 15-20% smaller than the corresponding distorted-
wave result in the energy range of 0.1-0.2 eV. These results are consistent with
a more recent theoretical study by Roberts and Ross [/7], who investigated the
rotational transitions in Ho+He collisions with the second-order distorted-wave
approximation, and found that the exact cross section is 20—-30% smaller than the
distorted wave result.

In the collision between two hydrogen molecules, the proper symmetrization of
the wave function of the whole system is required. Such symmetrization for a pair
of identical molecules has been discussed by Takayanagi [2][/3], Gioumousis and
Curtiss [/4], Davison [7], and by Biolsi and Curtiss [75].

In almost all these works, one of the colliding molecules are assumed to remain
in the ground state (/=0) throughout the collision, so that the collision problem is
mathematically equivalent to the atom-diatom collision. It is one of the purposes
of the present work to study the dependence of the rotational cross section on the
rotational state of the collision partner. Very recently, Crawford [/6] has studied
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Rotational Transitions in Para-Hydrogen by Molecular Collisions 329

this problem qualitatively. He argues that the rotational cross sections increase
when the collision partner is in a rotating state.
The simultaneous transitions

H(=0)+H,(I=49)==H,(=2) + H(l=2) (3)

were studied earlier by Takayanagi and Kishimoto [/7], who found that these
processes could not be neglected in studying the rotational relaxation in the hydro-
gen gas. The second purpose of the present article is to calculate the cross section
for the processes (3) more accurately.

Finally, we tried to estimate the relative importance of the short-range and the
long-range interactions in the rotational transitions.

2. INTERMOLECULAR POTENTIAL

The potential function adopted in the present work consists of four parts:
V(Ra Xls XZ: 90)=Vs+ Vdd+qu+qua (4)

where o=¢,—¢,. The first term V, represents the short-range repulsive inter-
action. The Evett-Margenau’s potential [5], which we have used in previous calcu-
lations, is based on a rather simple form of the electronic wave function, so that
it is not certain whether their V, is sufficiently accurate for our purpose. More
recent calculations by Magnasco, Musso, and McWeeny [18][19] are restricted to
a so limited range of the molecular orientation that their results, too, are not
adequate for the present investigation. Thus we decided to use the short-range
part of the Morse interaction (1)

V,=D exp [—2a(R—R,)]

5
+ 8D exp [—2a(R— RIIP,(cos ;) + Py(cos 1,)] ()

and determine the parameter g empirically (see § 5). As before, we take D=1.1
% 107¢,2a¢=1.87 and R,=6.4.

The second and third terms in (4) are the long-range interactions calculated by
Britton and Bean [9]. We adopt their result without modification.

10.228 | 0.18312

Vaut Vig= =+
WL 09156 st 1 o 1
+ L_ 0'0}2?46 + 0'312?24 ]sinz ¥, sin? y, cos? @ (6)
N L 0-0}2?46 _ 0-713;348 ]sin 2y, i 2y, €08 @
P[00 3.111{304]0052 . cost 7,
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330 H. Shimamura and K. Takayanagi

Finally, for the higher-order dispersion term V,,, we adopt the one averaged over
the molecular orientation

Vag=—116/R", (7)

as estimated by Evett and Margenau [5]. The expressions in (6) and (7) are appli-
cable only for large intermolecular separations. For the intermediate region of R,
the error may be corrected to some extent by adjusting the parameter B empirically.
In order to avoid the singularities of (6) and (7) at origin, we add a hard core
(V=00) for R within 2.5 atomic units. Thus the adopted potential function
becomes

V=1.1x10"*exp [—1.87(R—6.4)] - 0-41(;?93 _ 11-2?76 _ 1}186
+ {1.1>< 108 exp [ —1.87(R—6.4)]— 0-82301

R6

n _0%123_81} [P,(cos y,) + Py(cos y,)]
L 0.0;364 + 0.2;;114 }PZ(COS 2 (8)
-
L[ 0.;6618 + 2.8;?56 ] P,(cos 1,)P(cos 1,)
+ 0.3;376 _ 3.%6524 ] P,(cos %,)P,(cos y,)P,(cos 3)
for R>2.5
_ for R<2.5,

where cos y=F#,- #,.

In order to see the relative importance of the long-range part of the orientation-
dependent interaction in the rotational excitation, some cross sections are calcu-
lated with the following potential, which is derived from (8) by averaging the long-
range terms over the molecular orientation.

V=1.1x10"* exp [—1.87(R — 6.4)] — 10};64 _ 116

R8
+1.1xX 1078 exp [-1.87(R—6.4)1[P,(cos y,) + Py(cos y)] (9)
for R>2.5
= oo for R<2.5.

3. CALCULATION OF THE EXCITATION CROSS SECTIONS
AND THE REACTION RATES

The mathematical formulation of the distorted-wave method for our problem has
been well established [2][7], so that only the basic formulae will be shown in the
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following. The distorted waves g(ll,(L)jJ |k, R) are obtained by solving the radial
equation of the form

[ C e J0ED o e (@i |V LD

dR? R? (10)
(DL VDI |9 |, R=0,
with the usual boundary conditions
g(L1(L)iJ | k, R=0)=0, (112)
I [y R ke sin (kR — bir+ 7.(K), (11b)

where z=1,+1,— L +j, n=(ll,(L)jJ), and

Ell)=1/2 for I,=1,
=1 for 1, +#1,.

Because of the hard core in our potential (8), the condition (11a) is replaced in the
present calculations by

g L(L)jJ | k, R =2.5)=0. (11c)

The symbols /, and [, are the rotational quantum numbers of the colliding molecules
before collision, and L indicates the magnitude of the resultant rotational angular
momentum (L=|l,—1], - - -, ,+1,). The other symbols j and J represent the angular
momentum of the orbital motion and the total angular momentum of the whole
system, respectively (j=|J—L|,---,J+L). When [,=I,, only the combinations
L —J=even are allowed. The distorted waves for the relative motion after the
transition are similarly calculated with appropriate change of I,,1,, L, j, J and k.
The effective cross section for the collisional transition

H(1)+H,(l,)—H,(l)) + H,L) 12)

is then obtained by the formula

0(1112_’111;) =

4r k'
GiDeLLD k Y29 u@+D

X ‘2u f TgULINTTI R, R{WEELOT |V LD (13)
0
2
+(—D¥GEANDFT V| LL(D)iD}gLl(L)j] |k, R)dR| ,
where k and k&’ are the wave numbers for the relative motion before and after the

transition and g is the reduced mass of the colliding system. The conservation of
the energy of the system requires
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2 72
K +E, +E;,= K
2u 2p

+E,;+E;, (14)

where E; is the rotational energy of the molecule in the lth state.
The matrix elements of the intermolecular potential } are defined by

BLANIT V| L))

. A A A A A . A A A ol A A (15)
= f@”,(l{l;([/)]’ | R, 7y, rV(R, iy, ¥ ;y(LLL)Jj| R, F,, rz)derldrw

where

Y u(LL(DJ| R, #yy )

=3 > (LImm,|lLL,L m +m)(Lj m,+m, M —m,—m,| LjIM) 16
X Y (j M —m,—m,| RYY (Im, | )Y (I, | 7).

The quantities (I,l,m,m,|l,,LL m,+m,), etc. are the Clebsch-Gordan coefficients
and Y’s are the normalized spherical harmonics. It is noted that the integral (15)
does not depend upon M. These matrix elements can be calculated by a method
described in the Davison’s paper [7].

It is important to notice that the above formulae are applicable to para-para
collisions only. For para-ortho and ortho-ortho collisions, slight modifications are
necessary [2].

The rate coefficient K(I,l,—11;) is derived from the cross section (13) by averaging
over the Maxwellian velocity distribution of molecules.

3/2
K(Ll,—LE) =L)AL ( S )
17

X fm exp (— puv*/2eT)dra(ll,— 1) v dv,
0

where ¢ is the Boltzmann constant, v the relative velocity before collision (=k/y),
and T the absolute temperature of the gas. The number of the process (12) taking
place in unit time interval in unit volume of gas is given by

where N(I) is the number density of hydrogen molecules in the Ith rotational state.
The factors &(1,1,)é(ll;) are introduced in (17) to take account of the indistinguish-
ability of the colliding molecules when they are in an identical state.

4. TULTRASONIC DISPERSION AND ABSORPTION

The experimental informations on the rotational transition probabilities under
consideration come from the ultrasonic dispersion and absorption. The (complex)
velocity ¥V of sound in a gas is given by [20]
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2
AL T (11

T (19)

I dB )}
T dr /)’
where R is the gas constant, M the molecular weight, T the temperature, p the
pressure, B the second virial coefficient of the gas and 7,=273°K. The heat
capacity C per mole at constant volume is a function of the temperature and the

frequency of the sound f. The real part of V' gives the propagation velocity of the
sound wave and the coefficient of absorption a due to rotational transitions is given by

a/f=—2xlmV. (20)

Im stands for the imaginary part. The experimental absorption coefficient corre-
sponds to the sum of this rotational contribution and the classical absorption
coefficient.

In this paper, we consider the pure para-hydrogen gas. The following transitions
are taken into account.

H,(0)+ HO/=2H2) + H(0) @1
H{0)+ H(2)=r= Hy2) + H(2) 22)
H,(D)+ B H,0) + Hy(d) 23)
HL(2)+ H(O) H,(4) + Hi(0) 24)
H,Q)+ B H) + H. 25)

If the number of molecules in the Ith rotational state is n, per mole, we have
ny+1,+n,=6.02 X 10%, molecules in the 6th and higher rotational levels being
neglected. Then the rate equations are

%’%4_ = — kg, — kg, — kgnn, + Kind + Kinong + kin2, (26)
dny, _ _ dny _ dn, Q7
dt dt dt

%’:—“— = —kin§— kingn, — ksngn, + kingn, + k,nt + kin, (28)

where the rate constants k’s are easily obtained from K’s as

K =K(0,0—2,0)—PTo
Voo T
T
k,=K(2,0—0,0)_P~ro 29
=K( )VopoT (29)
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334 H. Shimamura and K. Takayanagi
K=K(©0,2-2,2)-PTo_ etc,
Vo T

where p,=1 atm, V,=2.24 X 10* cm®/mol. From the principle of detailed balanc-
ing, we have

ki _ Kk

k___.km:S exp [—(E,—E)/cT1=£,(D), (30)
ki ks 9 _(E —
—]E:——k:——s—- exp [—(E,—E,)/kT1=1AT), (31
Ko 9 exp [—(E,—2E,+E)/¥T1=f,T) (32)
k3 25 4 2 0 3 ’

E,=2.69% 10-(I+1). (33)

When a sound wave with a small amplitude propagates in the hydrogen gas, we have
T=T"+ATe** (34)
n,=nl+ dn,e**, w=2rf. (35)

Substituting (30)—(35) into (26)—(28) and neglecting all the terms higher than the
first-order ones with respect to 47 and 4n;, we obtain

iwdn,= —k, (nOAm +n,dny—2n,An,f,—n3AT. j;f )

y (36
J— (k4n0 + k5n2) (Al’l4 —_ AanZ— nszfz) 5
ar
ia)dnz.:: —Ano"—An4 (37)
iwdn,= —k, (nodnr“ ndny—2n,4n,f,—n3AT ;i];f >
' (38)

d
+ (kuny + kznz) (Anz'“dnoﬂ‘nod d;;t ) .

After solving these equations to obtain 4n,/dT, 4An,/AT, the rotational contribution
to the heat capacity is given by

' — E,An,+ E,4n, .

39
T (39)

The total heat capacity C, appearing in (19), can be obtained by
c= %R +C, (40)

where R is the gas constant.
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5. NUMERICAL CALCULATIONS AND RESULTS

Our programme for the numerical calculation of cross sections consists of three
parts: Main programme, subprogramme A and subprogramme B. The values of %,
l,1,0l;, and I, are initially put into the computer. Then the main programe
calculates &’ from (14). For each value of J(=0, 1, 2,...) a finite number of sets
(J,J', L, L") are allowed by the selection rules. The subprogramme B is then called
up. This programme calculates the matrix elements (LI(L)j'T |V | LI(L)j])
and the result is stored in the computer memory. The subprogramme A is for the
solution of (10) by the Runge-Kutta method. The radial functions f’s thus obtained
are stored in the memory. These calculations are repeated at 300 points for the
intermolecular separation R from 2.5 to 17.5. Then the product of the matrix
element and g’s is integrated over R by the Simpson method. Finally, the cross
section (13) is obtained by taking sum over J, L, L’, j and /. The summation over
J is truncated at J, when the contribution for this value of J is found to be less
than 1075 times the sum up to J=J;—1. In order to save the computation time, we
skipped calculations for some values of J and later estimated those omitted contri-
butions by interpolation. As a check of the programme, a calculation has been
made with the Davison’s “exp-six” potential (2). Our results agree with his values
within a few percent.

In order to determine the adjustable parameter 8 in our potential (8), low-

au.
1073
x107
3.0
2.81 = s
B=0.11 =107
2.6 /\ 2
= a
£
S 24 5
8 ©
222k % 3 S
- g
5ok 10
s
18 _—~F-013
B=0.12
1.6
1.4 l I L 10° L I !
30 100 150 200 4 5 6 Ta.u.
T (°K) R
Fic. 2. Dependence of the rotational relaxa-  FiG. 3. Comparison of the short-range part
tion time on the anisotropy para- of interaction adopted in the present
meter 8 at lower temperatures. The work (solid curves) and the theoreti-
triangles with error bars are taken cal potential of Evett and Margenau
from Jonkman [22]. [5]1 (dashed curves) for the two rela-

tive configurations of colliding mole-
cules, as indicated in the figure.
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temperature ultrasonic absorption data were used. At sufficiently low temperatures,
our problem practically becomes a two-level problem and the reactions (22)-(25)
The relaxation time z

can be neglected without introducing an important error.

is thus obtained by

1

T

—=NK(0, 0—0, 2) + NK(0, 2—0, 0),

(41

where N is the number density of collision partners, most of which are in the /=0

TaBLE 1. §(Lb)e(l{l)o(ll;—1)l}) in atomic units (a3=2.8X 10-7cm?) calculated
with the potential V in eq. (8)

Kol E ] 00002 0,202,2) 0,200,4) (2,2-2,4) (2,2-0,4)
2.5 | 0.046| 0.038 0.064

3.0 | 0.067| 0.288 0.516 0.0065
3.5 | 0.091| 0.675 1.22 0.0443
4.0 | 0.118| 1.15 2.02 0.107
4.1 | 0.124 0.0118

4.4 | 0.143 0.0349

4.5 | 0.150| 1.70 2.81 0.054 0.186
4.7 | 0.164 0.077

5.0 | 0.185|  2.30 3.58 0.134 0.16 0.26
5.3 | 0.208 0.210

5.5 | 0.224] 2.95 0.34

5.6 | 0.232 0.308

5.9 | 0.258 0.424

6.0 | 0.267 0.54

(k, wave nnmber; E, kinetic energy of relative motion before collision)

TABLE 2. &(hl)e(li)o(Ll,—1l}) in atomic units (a2=2.80% 10-17cm?)

calculated with the potential ¥ in eq. (9)

L E 00002 0,202,2) (0,2-0,4) (2,252,4)
2.5 | 0.046 |  0.0604

3.0 | 0.067| 0.447 0.448

3.5 | 0.091| 1.04 1.06

40 | 0118 177 1.78

41 | 0.124 0.015 0.015
4.5 | 0.150| 2.59

4.6 | 0.157 0.077 0.077
5.0 | 0.185| 3.47 3.50

5.1 | 0.193 0.20 0.20
5.6 | 0.232 0.46

6.1 | 0.276 0.85
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FiG. 4. Effective cross sections ¢(0,0—0,2), Fic. 5. Effective cross sections ¢(0,2—0,4)
a(0,2-2,2) and ¢(2,2—0,4). Solid and ¢(2,2—2,4) for the potentials

curves are obtained with the poten- (8) and (9). For the potential (9),

tial (8) and dashed curves are ob- these two cross sections coincide

tained with the partially averaged within the accuracy of the present

potential (9). For the potential (9), calculations.

the difference between ¢(0,0—0,2)
and ¢(0,2—2,2) is too small to be
shown in the figure.

state. The relaxation time r is calculated for §=0.11, 0.12 and 0.13 and the
results are compared with the experimental data [21][22] in Fig. 2. The high-
temperature part of the curve for $=0.12 is not so accurate since the simple
formula (41) becomes inappropriate as the temperature rises. As is seen in Fig. 2,
the best value of 8 is about 0.12. This is compared with the Davison’s value g=
0.14 which he has estimated with his potential (2). The short-range part of our
potential thus determined is compared with the theoretical calculation by Evett and
Margenau [5] for two relative orientations in Fig. 3.

The calculated cross sections are shown in Tables 1 and 2, and in Figs. 4 and 5.
It is clearly seen from these tables and figures that the potential (8) and the poten-
tial (9) give considerably different cross sections. In other words, the direct con-
tribution of the van der Waals interaction to the rotational transitions can not be
neglected.

Another interesting feature of our result is that the excitation cross section
becomes large when the collision partner is in an excited state of rotation. This is
in agreement with the conclusion of a qualitative argument by Crawford [/6].
According to the present calculation, however, this effect of the rotation of collision
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partner practically disappears when the potential (9) is used, i.e., when the transi-
tions are caused by the short-range interaction only.

The simultaneous transitions (2, 220, 4) are of the higher order from the view-
point of the perturbation theory. Nevertheless, it is found that the cross sections
for these processes are fairly large. In fact, the process (2,2—0,4) is the most
important process for the production of the /=4 state in the intermediate energy
region, provided that the number density N(2) of molecules in the /=2 state is not
too low.

6. COMPARISON WITH EXPERIMENTS. DISCUSSIONS.

The rate coefficients K(ll,—kl;) are calculated from our cross sections by the
integration (17). The results are presented in Table 3. The ultrasonic absorption
and dispersion curves are now obtained as was described in §4.

At 90°K, where we empirically determined S, the only adjustable parameter in
our work, the rotational absorption curve from the theoretical calculation agrees
very satisfactorily with experimental values [2/] as is seen in Fig. 6.

TaBLE 3. Rate coefficients K(ljl,—/{l}) in cm3/sec

“~__temperature
proces; e 90°K 197.1°K 293°K 298.4°K
(LL—11) T~ -
(0,0—-0,2) 9.6(—15)* 4.7(—13) 1.7(—12) 1.8(—12)
(0,2-2,2) 7.5(—15)  8.0(—13)  2.8(—12) 2.9(—12)

(0,2—0,4) 1.6(—15)  2.2(—14)  2.4(—14)
(2,2-2,4) 1.7(=15)  2.5(—14)  2.8(—14)
(2,2-0,4) 2.4(—14)  1.2(=13)  1.3(—13)

*) (—15), etc. stand for x10-15, etc.

In Fig. 7, the calculated absorption due to the rotational relaxation at 293°K
(solid line) is compared with experimental data of Sluijter [2/]. The agreement is
fairly good, but a slight difference is noticeable at lower frequency side of the
absorption maximum. In this respect, we may consider that the two largest cross
sections ¢(0,0—0,2) and ¢(0,2—2,2) have been overestimated in the present
calculation, since the distorted-wave method is a perturbation method where all the
transition probabilities are assumed small. Thus we arbitrarily replace the corre-
sponding rate coefficients K(0,0—0,2) and K(0,2—2,2) by somewhat smaller
values and obtained the dashed curve in Fig. 7. The agreement with experiment is
now very good at lower frequencies, but the agreement at higher frequencies is lost.

Fig. 8 presents the ultrasonic dispersion curves at 298.4°K. The theoretical
curve (solid line) is compared with experimental values by Rhodes [23] and by
Geide [24]. There is a considerable discrepancy between theory and experiment.
This discrepancy almost disappears (as in the dashed curve in Fig. 8) when we
replace the two largest rate coefficients K(0,0—~0,2) and K(0,2—2,2) by some-
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tional relaxation at 90°K. Solid
curve is the theoretical result calcu-
lated from (19), (20), (40) and circles
are experimental values of Sluijter
[21].
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Fic. 6. Ultrasonic absorption due to rota- Fig. 7. Ultrasonic absorption due to rota-

tional relaxation at 293°K. Solid
curve is the result of theoretical
calculation with the distorted-wave
cross sections. Dashed curve is
obtained by modifying values of the

coefficients as

two largest rate
K(0,0—0,2)=1.320 X 10-12 cm3/sec,
K(0,2—2,2)=2.015x 10-2cm?/sec.

what smaller values, just as we did in Fig. 7. However, we have already seen that
such modifications lead to the disagreement of theory and experiment in the absorp-
tion curve at higher frequencies. Thus, there seems to be some inconsistency
between ultrasonic dispersion and absorption data.

The distorted-wave method, generally, overestimates excitation cross sections.
Even in the neighborhood of the threshold of the rotational excitation, there is an
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@]
T

1.08¢-

1.061

1.04}-

e}
BN
i

Relative Velocity of Sound Wave
i

L1yl !

100

o)
Ke!
S

f/P (MHz/atm)

Ultrasonic dispersion due to rotational relaxation at 298.4°K. The
ratio of the sound velocity to its value at low-frequency limit (f—0)
is plotted against f/p. The solid curve is obtained by using the
distorted-wave cross sections. The dashed curve is obtained by using
the rate coefficients K(0,0—0,2)=1.402 10-12cm?3/sec and K(0,2—2,2)
=2.104x 10-2cm3/sec. Other rate coefficients remain unchanged.
This set of modified rate coefficients is in much better agreement
with experimental data (circles: Rhodes [23]; crosses: Geide [24]).

FiG. 8.
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overestimation by 10-20% (see §1). This defect is partly avoided in the present
work by choosing the anisotropy parameter 5 empirically. However, as the colli-
sion energy increases, the excitation probability increases also. Then the deviation
of the first-order perturbation theory from the correct situation becomes more
serious. On the other hand, the defect of the distorted-wave method should be less
serious at lower energies. From this point of view, it is hard to understand why
the discrepancy between theory and dispersion experiment is still considerable at a
temperature as low as 190°K (figures not shown in this paper).

As was pointed out in the introduction, most previous papers assumed that the
collision partners were in the lowest state of rotation. Or, equivalently, it is tacitly
assumed for simplicity that the rotational transition in a molecule does not depend
much on the rotational state of the collision partner. To see the effect of the rota-
tional state of collision partner, ultrasonic absorption curves are presented in Fig. 9.

10.0

T TTTTT

1.0

a/f (cm-MHz)"

T TTTTT]

Lol oyl
0'11 10 100
f/p (MHz/atm)

Fig. 9. Ultrasonic absorption due to rotational relaxation at 293°K. The solid
curve is the same as in Fig. 7. The dashed curve is obtained by
neglecting the processes (23), i.e., by putting K(2,2—0,4)=0. The dots
are obtained by putting K(0,2—2,2)=K(0,0—0,2)=1.7x 10-2cm?3/sec,
K(2,2-2,4)=K(0,2—0,4)=2.2x 10-14cm3/sec, and K(2,2—0,4)=1.2
X 10-Bcm3/sec.

The solid curve is based on the rate coefficients as in Table 3, while the dots
were obtained by assuming that K(0,2—2,2) is equal to K(0,0—0,2), and that
K(2,2—2,4) is equal to K(0,2—0,4). As is seen in the figure, the simplifying
assumption leads to an appreciable error. Similarly, the dashed curve, which was
obtained by entirely neglecting the simultaneous transitions (23), is quite different
from the solid curve, especially at low-frequency region.

We conclude that, in studying the rotational transitions in molecular collisions,
the quantitatively accurate intermolecular force must be used and all the relevant
processes must be taken into account. Only this kind of full theoretical calcula-
tions can interpret experimental data properly and test the consistency of ultrasonic
absorption and dispersion data. The single-relaxation-time treatment, for instance,
is not appropriate for data analysis except at lowest temperatures. The accuracy
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of the present work is still limited because of the lack of knowledge of sufficiently
accurate intermolecular interaction, especially at short distances, and because of our
use of the distorted-wave method.

The numerical computations in the present work have been carried out on the
computer HITAC 5020F at the Data Processing Center, Institute of Space and
Aeronautical Science.

Department of Space Science
Institute of Space and Aeronautical Science
University of Tokyo

July, 1971
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