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Summary: The phenomenon of the temperature freezing in the source flow expansion
into a vacuum and its dependence on the flow geometries are studied not only qualitatively
but also quantitatively. A significant parameter which provides a measure for the occur-
rence of temperature freezing is introduced based on a dimensional analysis. Numerical
analysis is worked out by means of the discrete ordinate method for three cases; a)
spherical source flow expansion, b) cylindrical source flow expansion, and c¢) cylindrical
source flow expansion of gases consisting of disc-like molecules. The criterion on the
occurrence of temperature freezing, being obtained from the dimensional considerations,
is examined from comparison with the results by numerical analyses.

I. INTRODUCTION

Free jet expansion from an orifice, especially flow along the jet axis, as pointed
out by Sherman [/], can be represented by the spherical source flow which expands
from a point source. Many experiments of the free jet expansion were carried
out (for example, see References [2] and [3]). From those results it was found
that the terminal Mach number measured takes a finite value which is much smaller
than its isentropic expansion value. This fact means that in an actual expansion
flow the temperature does not decrease so much as it does in the isentropic expan-
sion. The analytical treatment for the source flow expansion is much easier com-
pared with that for the free jet expansion. So, for the source flow expansion the
behavior of expansion flow at infinity downstream (the radial distance r— o) was
studied from the kinetic view point [4], [5] and [6]. These analyses dealt with the
gases consisted of the molecules which obey the “power-law” interaction potential,
such as hard sphere molecules and Maxwell molecules. As the results, it was
found that as r—oo the temperature levels off to an asymptotic value which
depends on the source Knusen number; this asymptotic value of the temperature
is termed as “freezing temperature”. The results by similar analyses for the
cylindrical source flow expansion show that the gases in the cylindrical expansion
flow indicate no “freezing temperature”. It was pointed out in References [5] and
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[6] that such difference as above shown, between the spherical and cylindrical ]
source flows, appears to come out from the difference in flow geometry. However,

it should be noted that it depends on the interaction potential as well as te flow
geometries whether the temperature freezing occurs or not, both because the tem-

perature freezing occurs in the collisionless flow, and because the collision fre-

quency depends on the interaction potential. We shall first obtain a physical

picture concerning freezing phenomena based on a dimensional analysis, and

introduce a significant parameter which measures the phenomenon of temperature

freezing. Then the criterion of the temperature freezing will be clarified. Next

we shall carry out a numerical analysis by means of the discrete ordinate method,

which has previously been proposed by the author [7], for the three cases; a)

spherical source flow expansion, b) cylindrical source flow expansion, and c)

cylindrical source flow expansion of gases consisting of disc-like molecules, which

have only two degrees of freedom of motion. Although in the last case c) the I )
gases are fictitious from the physical point of view, some meaningful results may

be expected to be derived from comparison with the case of real gases. Finally,

the numerical results will be discussed and the criterion on the temperature freezing

will be examined based on the numerical results.

II. DIMENSIONAL ANALYSIS

The problem that we pose is illustrated in Fig. 1; we have a sphere and a cylinder
of radius #* from which gas is streaming with local velocity equal to the local speed

of sound. The gas is allowed to expand radially, so that as r—co the density of gas
will -approach zero; we will specifically be interested in those conditions for
which source flow realizes a supersonic expansion in the range r>¢*. The problem
is one-dimensional in physical space in that the distribution function f(r, ¥ ; t) describ-
ing the state of the system depends on r. The Boltzmann equation with the B-G-K
collision model is chosen as the basic equation. e
In view of geometrical symmetry the basic equation can be written in spherical
coordinates (r, 8, )
of 2+ V2 of V.V, of v,v, of
V,— - 0 — —r =y(F— 1
or r v, r oV, roav, {E=) (D)
and in cylindrical coordinates (r, 6, z)
| of Vi of v,V, of
v, 0 V¥ —=p(F—19). (2)
or + r av, r aVv, V(E=)
Here F is the Maxwellian distribution pertinent to the number density n with mean
‘ velocity U and temperature T, i.e.,
; F=nQ2aRT) ¥ exp {—QRT)'[(V,— U+ V3 +V}1} (3)
| where R is the gas constant. The collision frequency v is given for gases obeying
9
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a) spherical b) cylindrical ¢} eylindrical
{disc-like molecule)
Fic. 1. Source flow expansion.

r*: Sonic Radius
ri: Reference Radius
Vi Velocity Component

viscosity-temperature relation poc T® where the exponent s depends on the interaction
potential, by y=nkT/u, where k is the Boltzmann constant.

By integrating Eq. (1) over (V,,V,,V,), using the weighting functions 1, V,,
(Vi4+Vi;+V?3) /2, and by substituting F for f, we obtain the coservation equations
for the case when f=F,

nUr*=const
dU[dr= —r=*dP/dr (4)
U?/2+5SRT [2=const.

Let us introduce the following dimensionless variables referred to the quantities at
the radius r=ry,

¥=r|r, n'=n/n, U'=U|U,, T'=T|T,, P’=P|P,,

where the subscript 1 denotes at r=r,. Then the conservation equations (4) are
rewritten as follows:

nUri=1
dU’jdr' = — (yM3)~'r' 2 dP’ [dr’
U™+ 5GMD T =1+ 5GMD) ",
where 7 is the specific heat ratio and the Mach number M,=U,/(yRT,)"*. The
solutions of the above equations can be obtained as follows:
F4=T1-T +M;/5)(5/rM3)
U'=Q0—-T+yMi/5)5/rMD"*
n=1 / u'r-.

If the temperature 7’ is much smaller than unity at > 1, then the temperature
T’, mean velocity U’, and number density »’ take the following asymptotic forms,

T,OC r/~4/3
U'=U, (5)
fn’:r"z. | “
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When quite a similar procedure is applied to Eq. (2) for the cylindrical source
flow expansion, we obtain the following asymptotic forms,
T oc /=2
U=U, (6)
nocr L
]‘ —
‘ For the disc-like molecules, which have only two degrees of freedom (V=,, Vi),
we have
T/OC rl—l
U =U, (7)
n o't
Let us introduce the following dimensionless distribution functions f'(=n*V3f) and e
F'(=n;W3F). Then the nondimensionalized collision term of Egs. (1) and (2) be- :
comes
J=AV'(F' —f), (8)
where
V,=@QRT)Y, V=n'T"|
and

F =n'(zT")"%" exp (—[(V,—= U+ V3 + VAT,
Here the nondimensionalized parameter A is
A=ry, |V ,=rnkT,[V . (9)

This A can be related to the Knudsen number Kn,=L,/r,, where L, is the mean
free path at reference radius. If the mean free path is given by

¢
L,=(16/5)p/Imn,(2zRT)""], (10)
where m is the molecular mass, we have
A=n"%|2Kn,. €8
We define the parameter 4* as the A4 pertinent to the quantities at the reference
radius r=r*, then
A|A*=(rn kT, |V )| (r*n*kT | V*u*)
:;1’%1?1/7,\11/2!21, (12)
where the hat means the dimensionless variables referred to the properties at the
sonic radius r=r*. If the gases are obeying the viscosity-temperature relation
¢ o< T’ where the exponent § depends on the interaction potential, then the ratio
can be rewritten as
L
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A/A*:rln,T{”‘s. (13)

Using the asymptotic form (n'ocr’~%, T oor’~#) obtained for isentropic cases before,
the above equation becomes

AJA* =i oo =, (14
=1—a+sp—p/2. (13)

The parameter «, 8, and s are determined for both the molecular model and flow
geometry fixed; these values are summarized in Table 1.
From the definition we have

A/A*=Kn*|Kn,, (16)
and using Eq. (14),
Kn,=(A4]A)Kn*=FKn*. an

The behavior of Kn, as ,— oo is subject to the sign of § (plus, minus, and zero),
namely,
i) for cases 6 <0

Kn, =t Kn*— oo, (free molecular limit)
ii) for cases =0

Kn, = ’Kn*—Kn*.
ii‘i) for cases § >0

Kn,=#’Kn*—0. (collision dominated)

It follows from above relations that when ¢ is positive or zero (6§2>0) the collision
terms in Egs. (1) and (2) play an important role still at infinity downstream
r—oo. On the other hand, for cases when § is negative (6<0) the effect of
collision terms in Egs. (1) and becomes negligibly small as r—oo. In case i) the

TAaBLE 1. Values of parameters «,3,d, and s.

Source type Molecule type s a B 5
Maxwell 1 2 4/3 —1/3
Spherical
hard sphere 1/2 2 4/3 -1
Maxwell 1 1 2/3 1/3
Cylindrical
hard sphere 1/2 1 2/3 0
Maxwell (disc) 1 1 1 1/2
Cylindrical -
hard sphere (disc) 1/2 1 1 0
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Fi6. 2. Values of parameter d vs s.

expansion flow becomes collisionless as r— oo, and the temperature of gas must
level off and “freezing” occurs. In cases ii) and iii) such phenomenon will not be
expected to occur.

The values of & are given by Eq. (15), and plotted against s in Fig. 2. In the case
of cylindrical source flow, as can be seen from Fig. 2, the parameter § is always
non-negative for s>>0.5. On the other hand, in the case of spherical source fllow
the parameter § is non-negative for s>1.25, while it is negative for s<1.25. For
inert gases the values of exponent s are ranged between 0.5 (hard sphere molecules)
and 1.0 (Maxwell molecules). Therefore, for the case of spherical source flow ex-
pansion, the temperature of gas will always freeze as r— oo, while for the cylindrical
source flow expansion, of either three-dimensional or two-dimensional (disc-like)
molecular gases, the temperature of gas will not freeze even at the limit r—oo.

III. NUMERICAL ANALYSIS

The basic equations (1) and (2) are rewritten in terms of the dimensionless
variables in spherical and cylindrical coordinates, respectively, as follows:

vaLvE of VWL of _ ViVe of _ qup—p) (1
_ Y _V —AV(F—f) (1
T . ¢ v, ¢ oV, VE=f) (1D

Y7
y Of

!
r

o Ve o _ ViV, of

:A / F/__ A . 2/
or’ r v, r | g £ (2)

In the present analysis three cases will be treated; a) spherical source flow expan-
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sion, b) cylindrical source flow expansion, ¢) cylindrical source flow expansion of
gases consisting of disc-like molecules. Although in the last case the gases,
which have only two degrees of freedom of motion, are fictitious from the physical
point of view, some meaningful results may be expected to be derived from com-
parison with the case a) or b). The macroscopic moments are obtained as follows:

n’::fffwf’dV’de;V’,
_ f f f Cyrgavidviav,

_(2/3)fff (V] =S U+ Vi VIV, dV . dV' (18)
(spherical)
&) » T'=(2/3) f f f [(V,—S,UY + VE+ VAFAVidVIdV,
(cylindrical)

f f f (V. —S, U+ Ve dv'av,

(cylindrical, disc-like molecules)

Detail of the analysis is discussed in Ref. [7].

a) Spherical source flow expansion
By integrating Eq. (1") over (V,V,), using weighting functions r* and #*(V3 + V),

we obtain
' 09" L N e
|44 =AY (G’ — 19
=~ +— 3V v'(G'—9') (19)
on | 2T, oW
|44 L =AV(H -} 20
1ar’+ ) 48 Y ¥) (20)
)
where g’ and /i’ are modified distribution function [&]
g =r" f f “raviavi,  W=r* f f “WRevRrdviav.. Q1)
These functions were first applied by Chu [9] in analyzing the unsteady plane shock
problem, and afterwards by other investigators [/0]-[/3] in analyzing varipus
rarefied gas dynamic problem. The functions G’ and H’ are the Maxwellian dis-
tribution functions:
G =n'(zT") V. exp [—(V.—=8,U)|T'].r?, H =G'T'r.
In the derivation of Eq. (20), we assumed the following relation
2 Uf (V2 VP dv,dv,]=2T, (gﬁ ), (22)
{
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where T/, is the perpendicular temperature defined by

T, = f f J' “Wr VPV ,AVidV,. (23)

b) Cylindrical source flow expansion
By integrating Eq. (2') over (V5, V7)), using the weighting functions , r*V7, and
r'V[?, we obtain

, 09’ 1 oh v
V.= =AV (G — 24
g gy =AY (G =) (24)
oW’ 3T, ok
V- g =AYV(H —N 25
O IR a7 (25) |
'
oi’ T, oK .
V. z =AV{I'-1). 26
T&r’+2r’ T v'(l'—1) (26)
Here g’, /' and i’ are the modified distribution functions similar to those of the
spherical case;
g'=r f f “pavidv, K =r" f f yapdviav,
=y f f “yapaviavi. @7)
The functions G’, H’ and I’ are Maxwellian distributions
G =n'(zT") " exp [—(V,—S,U)|T']-r,
H/:G/TI /Z, I/:G/-
¢
Moreover, we assume the following relations
) ® / / l/
m"’/ : [ f f Vv dvil=G3/2 T, ("a%) (28)
o ff”V”V'ﬂ AVidVil=(1/2 T’( 3”) 29
aV,r[_m,af V=0T ) 29)
where the temperature components T, and T, are written, respectively, as follows:
T/ =2 f f f “ypaviavidvi,  Ti=2 f f f “yapavidviavi.  (30)
¢) Cpylindrical source flow expansion (disc-like molecules)
By integrating Eq. (2") over (V5), using the weighting functions " and r*Vg, w®
obtain ,
&
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og’ I on
V2 4 =AV'(G' —g)), 3n
“or T v g
y ’

" or 2r V",

Here g’ and /' are modified distribution functions similar to those of the spherical
case:

g=r[ravi,  w=rTverav, (33)

-0 —o0

G’ and H’ are Maxwellian distributions,
G'=n(zT")""exp [-(V,—S,UY/T]-¥, H =G'T'r.

Moreover, we used the assumption

_5%7[ f °’Vg,4f'dV{,] —(3/2)T} (_gl’/" ) (34

-

with the perpendicular temperature T, defined by
T)=2 f f “yopayiav:, 35).

It should be noted that the assumption Egs. (22), (28), (29), and (34) made,
respectively, for cases a), b), and c¢) are exactly valid for the equilibrium distri-
bution. The ratios of the second term to the first term in all equations (20),
(25), (26) and (32) are inversely propotional to the square of the flow Mach
number. Therefore, in these equations, the second term becomes negligibly small
compared with the first term at far downstream where the flow Mach number is
very large. With the above fact we expect that the neglection of the second term
causes no significant error for the solutions as a whole. We now summarize
the governing equations as follows:

/

Vil il =Av(Q' - ), 36)
where ¢'=g’, h’ or i’ and Q’,=G’, H'. Here 4, represents the second term of the
governing equations.

Our considerations are confined to the case when the flow is in equilibrium
from the sonic radius to a moderate distance downstream. We now choose a
certain radius r=r, within that region, as the reference. On the other hand, the
density vanishes at infinity downstream. The boundary conditions are thus speci-
fied as follows:

r'=1,  ¢=0i=@@"exp[—(V,—S)]. (37

Following the discrete ordinate method which has already been developed for

This document is provided by JAXA.



272 T. Soga

the analyses of several rarefied tlow problem (for example, see Reference [/2], the
velocity space V7. is represented by finite discrete velocity points, say V, (n=1,2, 3,
--+,m). The application of the method reduces the set of governing integro-
differential equation (36) to a set of ordinary differential equations. That is, the
resulting difterential equations are

4 (1(1:1. p — 4 ’ " . o) 3
VIL“_’_;—_{"A‘I-;L_AD (Qn._qn,) (”"‘ l’ - 35’ T ”l) (38)
ar

where ¢, Q, and 4,, represent q’, Q’, and 4, evaluated at the discrete velocity
points V', (n=1,2,3, - - -, m), respectively.

In the discrete ordinate scheme, the velocity V7, acts only as parametric vari-
ables. Therefore, the equation (38) can be solved by applying an ordinary dif-
ference scheme to physical space . The reduced distribution ¢/, is conveniently
divided into a a two-sided one: q,* for V,=0. The difference form of Eq. (38),

for g/ becomes

pr du(r) = jf;,("'“""’) + Ay, (V) = AV (NQL) — 2.()), (39)

where 4r’ is radial increment. Rearranging Eq. (39), we obtain

(Vo [ APV — Ar') + AV ()Q(r) + A, () 40)
V51 4r)+ 4v'(r)

q,(r)=

Remembering the assumption that there exists an equilibrium region near the sonic
radius, we may choose the reference radius r=r; where the flow is moderately
supersonic. In the actual calculations, the reference radius r;, was chosen such
that the flow Mach number there is ~2.0. For such a case the contribution of ¢,
(for V7, <0) is much smaller compared with that of g,* even in the vicinity of
the reference radius. In the far downstream region, evidently the contribution of
q,” becomes negligibly small. In view of the aforementioned facts, g/~ was not
taken into accounts in the present paper.

Following the difference scheme specified by Eq. (40), the evaluation for the
reduced distributions ¢, is advanced step by step, starting from the reference
radius. At each step, however, a number of iterations are required to reach a
solution. Suppose that we know all the values of quantities at the radius ' — 4r'.
As the initial estimate of the quantities on the right hand side of Eq. (40), their
respective values at the previous step are employed. Using the zeroth iterate g’
thus evaluated, the new macroscopic moments can be determined by applying the
ten-point Gauss-Hermite quadrature to the integration of Eq. (18). Then, all the
terms on the right hand side of Eq. (40) is re-evaluated. Such a procedure is
iterated until a satisfactory convergence has been assured for all velocity points;
normally, three or four iterations were sufficient to fulfil, for both number density
and mean velocity, the convergence criteria that the departure from the previous
iterate must be less than 10-° times their respective values. The accuracy of the

&

L 3
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calculation was estimated by examining the constancy of mass flux. The error in
the step by step calculation accumulates as proceeding toward the downstream.
The actual computation was stopped at the point, beyond which the value of mass
flux indicates a departure more than 1% from that at the reference radius. This
implies that the maximum error in mass flux is less than 19%. The spatial region,
thus computed with the increment being 4r'=r"/100, was covered from r/r¥=r, /r*
to r/r*=10", where r* is the sonic radius.

1V. NUMERICAL RESULTS AND DISCUSSION

The numerical examples are listed in Table 2. In case a) the source Knudsen
number Kn, is employed, being defined as Kn,=L,/D where D is the orifice di-
ameter, from which an equivalent source blows out, and L, the stagnation mean free
path. In cases b) and c¢) the Knudsen number Kn* is employed, being defined as
Kn*=L,/r* where the radius r* is the sonic radius; by Hamel and Willis it ig
related to the orifice diameter r*=0.680x D. The results will be summarized in
the following.

a) spherical source flow expansion

In Fig. 3 is shown the temperature for the source Knudsen number Kn,=
0.001 for both cases of hard sphere and Maxwell molecules, respectively. Actual
calculations are carried out from the reference radius (see Table 2) to r/r¥~
1.0x10% In that figure the broken lines show the level of the terminal tempera-
ture or freezing temperature. It can be seen that the phenomenon of temperature
freezing apparently occurs for both hard sphere and Maxwell molecules. It can
also be seen that, as expected from the data shown in Table 1, for Maxwell

1 I I T ] I
107~ -
@
_ p |
i /
_ 3 |
107° =
] @ |
Equilibrium — @ 7
L /
107 Ll | [N ] L
© 1 10! 10* 10°

l‘/l’*
Fic. 3. Temperature distributions (spherical); @ T,/T*, ® Tp/T* (hard sphere),
® T./T* @ T,/T* (Maxwell).
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TasLE 2. Numerical examples.

m?r?jﬁer gef):li?gry Molecule type Knp=Ly/D | Kn*=Ly/r* | M, r/r¥
1| Spherical Maxwell 0.001L 3 1.732
A Spherical | hard sphere | 0.001 s | L
| 3| Cylindrical | Maxwell | oos | 3 3.000
B 4 | Cylindrical Maxwell -— , 0.005 ﬁ 3 3.000
5| Cylindrical hard sphere 0.05 3 3.000

_6_ Cylindrical hard sphere V 7 0.005 ‘TV 3.000

7 | Cylindrical Maxwell (disc) 0.05 2 1.414

c 8 | Cylindrical Maxwell (disc) 0.005 2 1.414
9 | Cylindrical hard sphere (disc) 0.05 2 1.414

10 | Cylindrical hard sphere (disc) \ 0.005 2 1.414

molecules the temperature freezing occurs at farther downstream than for hard
sphere molecules. In all the cases the perpendicular temperature almost coincides
with their isentropic values over a wide range of the expansion. However,_ it
should be noted that at far downstream the perpendicular temperature decreases
in inversely propotional to the radius r, being different from that in isentropic
expansion. Comparison with the result of Eq. (7) for the disc-like molecules
suggests that in the spherical source flow the internal degree of freedom of mole-
cules degenerates to 2 as in disc-like molecules, at the far downstream. Further
detailed discussions should be referred to Reference [7].
b) cylindrical source flow expansion

In Figs. 4 and 5 are shown the temperature and its three components denoted
by T, T,, T, and T,, respectively, for hard sphere and Maxwell molecules. In
the case of Maxwell molecules, the temperature and its three components deviate
slightly from that of isentropic case and all of them decrease as r— oo in inversely
propotional to the radius r with a certain constant power close to the isentropic
value 2/3. When the source Knudsen number Kn* &1 they almost coincide with
that of the isentropic case, and above mentioned power approaches to 2/3. These
fact can be expected from the discussion in Sec. II. That is, for the case of
Maxwell molecules the role of the collision term in Eq. (2) becomes more pre-
dominant than the remaining terms, as one proceeds downstream. On the con-

trary, for the case of the hard sphere molecules the temperature and its com-.

ponents deviate largely from that of isentropic value even if the Knudsen number
Kn*<1, and no temperature freezing occurs anywhere even at infinity down-
stream. However, for the case of the hard sphere molecules with §=0 the tem-
perature indicates somewhat peculiar behavior; the rate of temperature decrease
appears to become smaller as r increases.
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(cylindrical expansion).

In Fig. 6 is shown the comparison with the results of Bird [/4]. The radial
temperature T is nearly equal to the axial temperature T,. This agrees qualita-
tively with the predictions by Edwards and Cheng [5] and by Hamel and Willis [6].

c) cylindrical source flow expansion of gases consisting of disc-like molecules

In Figs. 7 and 8 are shown the temperature and its two components, respec-
tively, for the hard sphere and Maxwell molecules. The behavior of the tempera-
ture shows a qualitative agreement with that for the case of cylindrical source flow
expansion, and no temperature freezing occurs also. From comparison of the
case b) with the case c¢), it is found that in cylindrical source flow the molecular
motion in the axial direction, along which flow variables are unchanged, has no
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F16. 7. Temperature distributions for hard sphere molecules
(cylindrical expansion, disc-like molecules).
significant contribution to the temperature freezing. In conclusion the character-
istic behavior of the temperature in the source flow expansion into a vacuum has
been clarified not only qualitatively but also quantitatively. Furthermore the cri- 3
terion on the temperature freezing in the source flow expansion has been specified
®
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Fic. 8. Temperature distributions for Maxwell molecules
(cylindrical expansion, disc-like molecules).

in terms of the dimensionless parameter §; in any flow geometries, the temperature
freezing occurs only when this parameter § is negative (§<<0), while it does not
occur for non-negative (§>0), for either spherical or cylindrical source flow.
This has been confirmed from the results of the numerical analysis based on the
discrete ordinate method.
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