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Summary: This paper is concerned with the optimum design of plates with orthotropic
layers under axial compression and shear. The plates considered are the laminates of N
orthotropic layers whose principal material axes coincide with the plate axes. Each layer is
assumed to have the same thickness and an equal number of fibers in the direction of + «;
and —a; with respect to the plate axis. The fiber directions which give the highest axial
buckling stress and the highest shear buckling stress are found by utilizing a mathematical
optimization technique for various aspect ratios of the plates. Inhomogeneity in the direction
of the plate thickness (stacking sequence) is taken into account in this analysis.

NOMENCLATURE

= plate length in the x-direction (Fig. 1)
extensional stiffness of a laminated plate
= plate length in the y-direction (Fig. 1)
= coupling stiffness of a laminated plate
= bending stiffness of a laminated plate

Il

= Young’s moduli of a unidirectional composite parallel and

transverse to the directions of the fibers, respectively
= shear modulus of a unidirectional composite
thickness of each layer
Egs. (17)
= the ratio of N, to N,
number of half waves in the x- and y-directions, respectively
number of layers

applied shear force per unit length
reduced stiffness
= transformed reduced stiffness

I

e Upn = Egs. (14)
= Eqgs. (8)
= displacements in the x-, y- and z-directions, respectively
Won = displacement amplitudes defined by Egs. (10)
= Eq. (18)

Egs. (12)
Poisson’s ratio of a unidirectional composite
= nondimensional critical buckling stress defined by Eq. (9)

[69]
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applied force per unit length in the x- and y-directions, respectively

absolute value of fiber directions with respect to x in the i-th layer
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Y = inverse of nondimensional critical buckling stress; defined by Eq.

(16)

1. INTRODUCTION

Recently, filamentary composite materials have been suggested for primary
structures of aircrafts and spacecrafts. The reason is mainly due to the weight savings
which can be attained. There are many design criteria in applying the composite
materials to structures. One of them is the buckling criterion. Several theoretical and
experimental papers' =7 have been published on the buckling of laminated composite
plates under axial compression and shear. Most of them give their results only for such
special cases as angle-ply or cross-ply plates. Therefore, we do not have enough
information to design the laminated composite plates.

This paper will present a method to design the laminated plates (Fig. 1) with
orthotropic layers under uniaxial or biaxial compression and shear. The design
criterion is the buckling stress. Each layer of the plate is assumed to have the same
thickness and an equal number of the same kind of fibers in the +«; and —«; directions
with respect to the x coordinate in the same type of matrix. Therefore, each layer can be
considered to be orthotropic. Inhomogeneity in the direction of the thickness of the
plate (stacking sequence) is taken into account in the calculation.

The present problem is to find the fiber directions of all the layers that give the
highest buckling stress and, therefore, is an unconstrained maximization problem. The
objective function and the design variables are the critical buckling stress and the fiber
directions respectively. Preassigned parameters are the material properties, the
thickness of each layer, the number of layers, and the aspect ratio of the plates. The
optimization technique used is Powell’s method (conjugate direction technique). This
method is one of the best ones to find the optimum without using the derivatives of the
objective function.

2. DERIVATION OF BUCKLING DIFFERENTIAL EQUATIONS

Extensional, coupling and bending stiffness, which are expressed as 4,;, B;;, and D;;
respectively, are first introduced. They are defined in terms of transformed reduced
stiffness as follows.

t/2

(A;; By, D;)) = j 0.1, z, 22 dz (1)

—t/2

The transformed reduced stiffnesses of each layer are calculated by the following
equations.

Qi1 = 0y, cos*a; + 2(Qy, + 2Q4e) sin’a; cos?a; + Q,, siny, (2a)
0., = (@1 + 0,5, — 4Q¢e) sina; cos?a; + Q,(sin*a; + cos*a;) (2b)
Q,, = Q,,sin*a; + 2(Q;, + 2Qs¢) sin’a; cos?a; + Q,, cos*o; (2¢)
Q16 =0 (2d)
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QzeZO

Qoo = (Q11 + 022 — 20, — 2Q46)sin’; cos’a; + Qgelsin’a; + cos*o)

where Q,;’s are reduced stiffnesses and are defined as
Qi =E;/(1—vi3vsy)

Q1; = viRE,) /(1 — vy,yvyy)
Q.; = E/(1 — viyvyy)
Qee - ze

71
(2e)
(2)

(3a)
(3b)
(3¢)
(3d)

In Egs. (2) O, and Q,¢ are equal to zero, because the number of fibers in the +o; and
—o; direction are the same. Extensional, coupling and bending stiffnesses are

calculated for the present case as

Lo b bbby

e

b 2

»

A

x ¥

FiG. 1. Laminated plates with orthotropic layers.

4i; = h{(Qipr + Q)2 + - + (Qin-1 + (Qijn}
2B;; = h?[(Qi)i{ — N + 1} + (@il — N + 3§
+(Qi)sl = N+5} + -+ (Qi)y-1{ — N + 2N — 3)}
+(Qivi = N + 2N — 1}]

(4a)

(4b)
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+ (Q,-,-)NH -5t N} - { -5+ (N — 1)} }} (4c)

where A is the thickness of each layer, N is the total number of the layers, and the
subscript of (Q;;) is the number of each layer.

Whitney and Leissa[/] derived equilibrium equations for the general laminated
plates. These equations are now simplified for the present problem as follows.

o]z

AgUyy + Agelsy, + (A1 + Age)sr, — By Wieey — (Bys + 2BgeW,,,, = 0 (5a)
(A1z + Agelhsyy + Agelsrx + Az, — (Byy + 2Bge)W,yyy, — Byaw,,,, = 0 (5b)
Di1Wirexx + 2Dy + 2Dg)Wisnyy + DppW,yyy, — Biilhyyy

— (By2 + 2Bgelu,,,, — (By, + 2Bg6)Vsxxy

— By, + Now,.. + Now,, ., — 2N _w,., =0 (5¢)

3. CALCULATION OF AXIAL BUCKLING STRESS

For the present case N,, in Eq. (5¢) is equal to zero, and the buckling deformations
are assumed as

u=iu cos (mnx/a) sin (nmy/b) (6a)
v="0 sin (mnx/a) cos (nmy/b) (6b)
w=1w sin (mnx/a) sin (nny/b) (6¢)

These deformations satisfy the simply supported boundary conditions at x=0, a and
y=0, b (S2 of Ref. 9). Substituting Egs. (6) into Egs. (5) and letting N,=kN, give the
following buckling formula.

12N _b? 12(b/a)? [

4

33

n°Q,,  m*Qy,{m* + kn’(a/b)*}

2T, 53Ty — T T — T11T'223] o)
T\, Ty, — T
where
T, = Ay m’n? + Agen’n’(a/b)® (8a)
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Ty, = (A;; + Aeg)mnn(a/b) (8b)
T, = B, ;m*n® + (B,, +2Bgs)mn?n’(a/b)? (8¢)
T,, = Agem?n? + A,,n*n*(a/b)? (8d)
T,; = (B;, + 2Bgs)m*nn*(a/b)+ B,,n*n*(a/b)? (8e)
T,; = D, ym*n* + 2(D,, +2D¢s)m?*n’n*(a/b)* + D,,n*n*(a/b)* (80)

To get the critical buckling stress the smallest value of Eq. (7) must be found by a
searching procedure involving integer values of m and n. The critical buckling stress is
denoted by (N,),,/t and a new notation ¢ is introduced.

¢ = 12(N,),b*/(n*1°Q5,) ©)
For isotropic plates ¢ is equal to 4, when a/b=1 and k=0.

4. CALCULATION OF SHEAR BUCKLING STRESS

For the present case N, and N, are equal to zero, and the plates are assumed to be
simply supported (S2 of Almroth) at four edges. The following deflection function
satisfy the boundary conditions.

u = Z Y 4, cos X sin 1Y (10a)
m=1n=1 a b
b= 3 Y 5, sin o cos (10b)
m=1n=1 a b
w= 3 3 W, sin 77X i 1Y (10¢)
m=1n=1 a b
Substitution of Egs. (10) into Egs. (5a) and (5b) yields:
where
O(“ = A11m2 + A66n2R2 (12&)
alz == (A12 -+ A66)mnR (12b)
o3 = B;ym® + (B, + 2B¢,)mn*R (12c)
0y, = Agem® + A,,n*R? (12d)
0(23 - (BIZ + 2B66)m2nR + Bzzn3R3 (128)

In the above expressions R is the aspect ratio a/b of the plates. From Egs. (11a) and
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(11b) 4, and 7, can be expressed in terms of w,,,.

d,, = % Z’: W, (13a)
n T,, _
= G (13b)
where
Smn = 013035 — 012053 (14a)
T, = 0103 — 045043 (14b)
Upn = #11%; — 2157 (14¢c)

Now Egs. (13) are substituted into Eq. (5¢) and Galerkin’s method is applied. Then we
get the following expression.

P, — I’;—q S Y HpWopn = 0 (15)

pgm=1n=1

where p and g are the number of half waves in the x- and y-directions respectively; ¥,
H,, and V,, are defined as:

1
¥= N., 324’R (16)
H,, = — e 33 " 5 Wwhen p + m: odd and g + n: odd (17a)
p°—m°q* —n
=0 when p + m: even or g + n: even (17b)

Vog = {Dy1p* + 2Dy, + 2D¢6)p*q*R* + D,,q*R%}
— {By;p®> + (By, + 2366)pq2R2}Spq/qu
— {(By, + 2Bs¢) P*qR + B,,q°R*Y(T,,/U,,) (18)

Eq. (15) is a system of homogeneous linear equations in w,,,. This system can be divided
into two groups, one containing w,,, for which m+n are odd and the other for which
m+n are even. Two buckling forces are obtained from these two groups and the lower
one corresponds to the critical buckling force of the laminated plates.

A computer program to solve Eq. (15) was written, and was checked for the case of
isotropic plates by comparing with the results obtained by Stein and Neff [/0].

5. METHOD OF OPTIMIZATION

The problem is to find the fiber directions which give the maximum critical buckling
stress without any constraints. Therefore we can apply one of the unconstrained
optimization techniques. Since the objective function for the case of axial compression
is the rather complicated function of the design variables and the objective function for
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TABLE 1. Material properties

Property Boron/Epoxy
E, 2.11 x 10* kg/mm? (30 x 10° psi)
E, 2.11 x 10® kg/mm? (3 x 10° psi)
Via 0.3
G, 7.03 x 10% kg/mm? (1 x 10° psi)

TABLE 2. Optimum fiber directions for 3-layered plates
(a/b=1, k=0) under axial compression

Fiber directions Critical Number of

Case (in degree) stress half waves
oy o 0y ¢ m n
| S 0.0 0.0 0.0 12.921 1 1
F 45.0 45.0 45.0 22.000 1 1
5 S 0.0 90.0 0.0 12.921 1 1
F 45.0 135.0 45.0 22.000 1 1
3 S 45.0 0.0 45.0 21.664 1 1
F 45.0 0.0 45.0 21.664 1 1
4 S 0.0 45.0 0.0 13.258 1 1
F 45.0 449 45.0 22.000 1 1
5 S 30.0 30.0 30.0 19.730 1 1
F 45.0 45.2 45.0 22.000 1 1
6 S 90.0 0.0 90.0 9.671 2 1
F 135.0 45.0 135.0 22.000 1 1
. S 45.0 45.0 45.0 22.000 1 1
F 45.0 45.0 45.0 22.000 1 1

S: Starting values, F: Final optimum values.

the case of shear is not obtained explicitly, optimization methods without using the
derivatives are suitable for solving the problem. Powell’s method [/]] (conjugate
direction technique) is selected for use, since it is one of the best methods to find the
optimum without using the derivatives [/2]. This method is intuitively explained by
Fox [13] as follows: “Given that the function has been minimized once in each of the
coordinate directions and then in the associated pattern direction, discard one of the
coordinate directions in favor of the pattern direction for inclusion in the next
minimizations, since this is likely to be a better direction than the discarded coordinate
direction. After the next cycle of minimizations, generate a new pattern direction and
again replace one of the coordinate directions.”

Powell’s method is now applied to find the maximum value of ¢ and the minimum
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TABLE 3. Optimum fiber directions for 4-layered plates
(a/b=1, k=0) under axial compression

Fiber directions Critical Number of

Case (in degree) stress half waves
&y 23] o3 %y ¢ m n

I S 0.0 0.0 0.0 0.0 12.921 1 1
F 45.0 45.1 45.0 45.0 22.000 1 ’ 1

) S 30.0 30.0 30.0 30.0 19.730 1 1
F 45.0 45.1 45.1 45.0 22.000 1 1

3 S 45.0 45.0 45.0 45.0 22.000 1 |
F 45.0 45.0 45.0 45.0 22.000 1 1

4 S 90.0 90.0 90.0 90.0 8.421 2 1
F 135.0 135.0 135.0 135.0 22.000 1 1

s S 90.0 0.0 0.0 90.0 12.640 2 1
F 135.0 45.0 45.0 135.0 22.000 1 1

6 S 45.0 0.0 0.0 45.0 20.865 1 1
F 45.0 45.1 45.0 45.0 22.000 1 1

7 S 0.0 45.0 45.0 0.0 14.056 1 1
F 45.0 45.0 449 45.0 22.000 1 1

8 S 10.0 20.0 30.0 40.0 14.431 1 1
F 45.0 45.0 449 45.0 22.000 1 1

S: Starting values, F: Final optimum values.

value of . Starting values of fiber directions (a,, a, * - -, «,) are necessary to begin the
calculation, and the new fiber directions which give the higher buckling stress are
obtained after each iteration. Powell’s method requires that the objective function be
unimodal. But we do not know if the function is unimodal or not. Therefore, trials with
several starting points are desirable.

6. NUMERICAL RESULTS FOR THE CASE OF AXIAL BUCKLING

Numerical calculations were made for the laminated plates with three, four and six
layers. The plates considered have the various aspect ratios and are under uniaxial or
biaxial compression. Seven or eight different combinations of fiber directions are used
to start the calculation. Computer code developed by Powell was combined to the code
written for the present problem.

Convergence limits for all the design variables were set to be equal to 0.1° and
maximum step size multiplier [/4] in single variable search was set to be equal to 10.0.
The materials considered are Boron/Epoxy and the properties [8] are shown in Table 1.
The thickness of each layer is assumed to be 0.254 mm (0.01 in.). The buckling formula
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TABLE 4. Optimum fiber directions for 6-layered plates
(a/b=1, k=0) under axial compression

Fiber directions Critical  Number of

Case (in degree) stress half waves
oy o, ' oy o o ¢ m n
) S 0.0 0.0 0.0 0.0 0.0 0.0 12.921 1 1
F 45.0 45.1 45.1 44.9 45.1 45.0 22.000 1 1
5 S 30.0 30.0 30.0 30.0 30.0 30.0 19.730 1 1
F 45.0 45.0 45.0 44.9 45.0 45.0 22.000 1 1
3 S 45.0 45.0 45.0 45.0 45.0 45.0 22.000 1 1
F 45.0 45.0 45.0 45.0 45.0 45.0 22.000 1 1
4 S 90.0 90.0 90.0 90.0 90.0 90.0 8.421 2 1
F 135.0 135.0 135.0 135.1 134.9 135.0 22.000 1 1
5 S 90.0 0.0 90.0 0.0 90.0 0.0 12.272 1 1
F 135.0 45.0 135.4 44.8 135.0 45.0 22.000 1 1
6 S 45.0 45.0 0.0 0.0 45.0 45.0 21.664 1 1
F 45.0 45.0 45.0 45.1 44.9 45.0 22.000 1 1
7 S 0.0 0.0 45.0 45.0 0.0 0.0 13.258 1 1
F 44.9 44.9 474 454 45.1 45.1 21.999 1 1
p S 10.0 20.0 30.0 40.0 50.0 60.0 11.711 1 1
F 45.0 45.0 44.8 45.3 44.6 44.9 22.000 1 1

S: Starting values, F: Final optimum values.

is a function of half waves in the x- and y-directions. Therefore, the numbers of half
waves in the x- and y-directions were varied from 1 to 10 and from 1 to 5, respectively,
to get the buckling stress for the assigned fiber directions.

The results for three- and four-layered plates with a/b=1 and k=0 are presented in
Table 2 and Table 3, respectively. These two tables show that the results obtained do
not depend on the starting values of fiber directions except in Case 4 of Table 2. This
case shows that the calculation converged to local maximum. To show the numerical
convergence two examples are shown in Figs. 2 and 3 for Case 4 of three-layered plates
and for Case 8 of four-layered plates, respectively. In these figures the abscissa is the
number of iteration. Each iteration includés many function evaluations. From these
figures and tables it can be concluded that this method of finding the best fiber
directions works well. Then, the method was applied to six-layered plates and some of
the obtained results are shown in Tables 4, 5 and 6. Table 4 is for the case of a/b=1 and
k=0. This table shows that the present method also works well for six-layered plates.
Almost all the fiber directions obtained are close to 45°, but some of the directions are
not close to 45° because of the slow convergence of the numerical calculations. Table 5
is for the case of a/b=0.5 and k=0.5. The table shows that the final critical buckling
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TABLE 5. Optimum fiber directions for 6-layered plates
(a/b=0.5, k=0.5) under axial compression

Fiber directions Critical  Number of

Case (in degree) stress half waves
oy o, o3 o, os o ¢ m n
I S 0.0 0.0 0.0 0.0 0.0 0.0 34.457 1 2
F 13.2 0.0 0.0 0.2 15.9 0.0 37.011 1 1
) S 30.0 30.0 30.0 30.0 30.0 30.0 32.633 1 1
F 3.0 11.7 35.7 —219 0.1 11.6 36.966 1 1
3 S 45.0 45.0 45.0 45.0 45.0 45.0 26.016 1 1
F 4.0 10.0 36.1 =20 —21.8 2.1 36.934 1 1
4 S 90.0 90.0 90.0 90.0 90.0 90.0 7.486 1 1
F 186.3 179.3 90.5 180.0 189.3 167.9 36.492 1 1
5 S 90.0 0.0 90.0 0.0 90.0 0.0 21.294 1 1
F 173.2 0.2 146.6 0.1 157.2 1.8 36.919 1 1
6 S 45.0 45.0 0.0 0.0 45.0 45.0 26.441 1 1
F 0.0 24 138.7 0.4 —25.3 2.4 36.796 1 1
7 S 0.0 0.0 45.0 45.0 0.0 0.0 35.353 1 1
F 10.7 —-0.9 36.4 39.1 76.9 4.9 36.909 1 1
g S 10.0 20.0 30.0 40.0 50.0 60.0 18.566 1 1
F -179 —-38 22.1 -0.5 —-74 12.3 37.024 1 1

S: Starting values, F: Final optimum values.

stresses obtained for the different starting values are almost the same but the
corresponding fiber directions are not the same. This may be due to the fact that the
objective function is not unimodal for this case. Table 6 is for the case of a/b=1.0 and
k=0.5. Summary of the numerical results is given in Table 7. In this table the rows with
an asterisk show that the final results obtained depend on the starting values and the
values shown correspond to the highest critical buckling stress obtained among 8 cases.
In these cases the critical buckling stresses obtained are not much different from each
other, but the fiber directions highly depnd on the starting values. The fiber directions
in the rows without an asterisk have no decimal, because almost all the directions
obtained for seven or eight cases are close to the values shown.

The computer used was IBM 360/67 and average cpu time to calculate eight cases for
a six-layered plate under k=0 was 158 seconds.
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TABLE 6. Optimum fiber directions for 6-layered plates
(a/b=1, k=0.5) under axial compression

Fiber directions Critical  Number of

Case (in degree) stress half waves
o o, o oy os o )] m n
1 S 0.0 0.0 0.0 0.0 0.0 0.0 8.614 1 1
F 45.0 45.0 45.0 44.8 45.0 45.0 14.667 1 1
2 S 30.0 30.0 30.0 30.0 30.0 30.0 13.154 1 1
F 45.0 45.0 45.3 45.1 44.9 45.0 14.667 1 1
3 S 45.0 45.0 45.0 45.0 45.0 45.0 14.667 1 1
F 45.0 45.0 45.0 45.0 45.0 45.0 14.667 1 1
4 S 90.0 90.0 90.0 90.0 90.0 90.0 7.486 2 1
F 135.1 134.9 134.9 135.0 135.0 135.0 14.667 1 1
5 S 90.0 0.0 90.0 0.0 90.0 0.0 8.182 1 1
F 134.9 44.8 134.9 44.9 134.9 45.0 14.667 1 1
6 S 45.0 45.0 0.0 0.0 45.0 45.0 14.442 1 1
F 45.0 45.1 44.7 44.9 45.1 45.0 14.667 1 1
7 S 0.0 0.0 45.0 45.0 0.0 0.0 8.838 1 1
F 45.0 45.0 45.1 45.1 45.1 45.0 14.667 1 i
3 S 10.0 20.0 30.0 40.0 50.0 60.0 7.807 1 1
F 45.0 45.1 44.7 453 45.0 45.0 14.667 1 1

S: Starting values, F: Final optimum values.

7. NUMERICAL RESULTS FOR THE CASE OF SHEAR BUCKLING

Powell’s computer code was rearranged into a code for the calculation of the shear
buckling stress. The material considered is Boron/Epoxy (Table 1). The thickness of
each layer is assumed to be 0.254 mm (0.01 in). The buckling stresses were calculated by
taking m=1~3, n=1~3 for R=1; and m=1~5, n=1~5 for R=1.5 and 3. The
numerical errors of calculated buckling stresses for R=1 and 1.5 are less than 3%, and
the error for R=13is 119, when all fibers are in the direction of 90° with respect to the
x-axis. Therefore, the obtained results for R=1 and 1.5 are accurate enough, but the
results for R=3 may not be accurate enough.

Numerical calculations were first made for the case of three-layered plates with R=1
and an example of the numerical convergence is shown in Figure 4. In this figure the
abscissa is the number of iterations, and each iteration includes many function
evaluations. Then calculations were made for the case of six-layered plates with R=1,
1.5 and 3. The results for these cases are presented in Tables 8, 9 and 10. Asterisks in
these tables indicate that the numerical calculation was stopped because of the fact that
a maximum change in a single variable search did not alter the objective function value.
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TABLE 7. Summary of optimum fiber directions for the case of axial compression

No. of
layers alb o A, %3 %y %s o ¢
3 0 1.0 45° 45 45° 22.000
4 0 1.0 45° 45 45° 45° 22.000
6 0 0.5 0 0" 0 0 0" 0° 42.171
6 0 0.8 38 38 38" 38" 38 38° 23.154
6 0 1.0 45 45 45- 45 45° 45° 22.000
*6 0 1.25 499 51.0° 48.6° 48.8 51.0° 49.9° 23.116
6 0 2.0 45 45 45° 45 45 45 22.000
*6 0.5 0.5 7.9 3.8 22,1 0.5 7.4 12.3° 37.024
6 0.5 1.0 45 45 45 45 45" 45° 14.667
*6 05 20 67.1 56.4 56.2° 55.5 64.0° 61.4 12.556
6 1.0 1.0 45 45 45 45- 45 45 11.000
*6 1.0 2.0 71.6 68.1 77.5° 61.2° 71.1 74.1 8.051

¥ x103

1.4

1.3

1.2

11

1.0

No. of iterations

FiG. 4. Variation of «; and ¢ with number of iterations.
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TABLE 8. Optimum fiber directions for 6-layered plates (a/b=1) under shear

Fiber directions (in degree)

Case g x10*
o o, o3 oy s o
1 S 0.0 0.0 0.0 0.0 0.0 0.0 1.9753
F 45.6 0.0 0.2 0.1 0.0 43.7 1.2708
> S 30.0 30.0 30.0 30.0 30.0 30.0 1.2665
F 45.2 44.9 45.0 45.1 45.1 45.1 1.1283
3 S 45.0 45.0 45.0 45.0 45.0 45.0 1.1283
F 45.0 45.0 45.0 45.0 45.0 45.0 1.1283
4 S 90.0 0.0 90.0 0.0 90.0 0.0 1.9011
F 135.0 45.0 134.8 44.4 134.9 45.0 1.1283
S 45.0 45.0 0.0 0.0 45.0 45.0 1.1431
5 *
F
6 S 0.0 0.0 45.0 45.0 0.0 0.0 1.9103
F 44.9 45.3 45.4 45.3 45.2 45.0 1.1283
7 S 10.0 20.0 30.0 40.0 50.0 60.0 2.0520
F 45.1 45.1 44.3 45.1 45.0 45.0 1.1283
S 0.0 0.0 45.0 45.0 90.0 90.0 3.4567
8
F *
S 90.0- 90.0 90.0 90.0 90.0 90.0 1.9753
9 F x
10 S 60.0 60.0 60.0 60.0 60.0 60.0 1.2665
F 45.1 45.0 43.8 45.0 45.1 44.9 1.1283

S: Starting values, F: Final optimum values.

The computer used for the present case was IBM 3033 and cpu time to obtain Table 9
was 1087 seconds.

8. CONCLUSIONS

A method to find the best fiber directions of the laminated plates under axial
compression and shear has been presented in this paper. From Table 7 it can be said
that the best fiber angles in all layers are 45° for the plate with a/b=1 and 2 under
uniaxial compression. For the plates with a/b=0.5, 0.8 and 1.25 under k=0 the best
angles in all layers are 0°, 38° and 50° respectively. It is interesting to note that the best
fiber directions for the case of k=0 is the same in all layers, even if the stacking
sequence is taken into account. For the plates under k=0, simple conclusions cannot
be obtained. From Tables 8, 9 and 10 the following conclusion can be obtained for the
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TABLE 9. Optimum fiber directions for 6-layered plates (a/b=1.5) under shear

Fiber directions (in degree)

Case ¥ x 10°
oy o, o3 oy %s %e
1 S 0.0 0.0 0.0 0.0 0.0 0.0 12.279
F 54.6 54.5 54.4 54.3 54.6 54.5 4.4804
5 S 30.0 30.0 30.0 30.0 30.0 30.0 6.0322
F 54.7 54.4 54.6 54.6 54.7 54.5 4.4805
3 S 45.0 45.0 45.0 45.0 45.0 45.0 4.6801
F 54.5 54.7 54.2 54.3 54.8 54.4 4.4805
S 90.0 0.0 90.0 0.0 90.0 0.0 6.8648
4
F *
S 45.0 45.0 0.0 0.0 45.0 45.0 4.7749
5
F *
6 S 0.0 0.0 45.0 45.0 0.0 0.0 11.516
F 54.5 54.5 55.2 55.1 54.4 54.7 4.4805
7 S 10.0 20.0 30.0 40.0 50.0 60.0 8.3499
F 54.6 54.3 54.6 54.1 54.6 54.5 4.4805
3 S 0.0 0.0 45.0 45.0 90.0 90.0 12.486
F 54.4 54.7 54.1 54.6 125.6 125.5 4.4805
9 S 90.0 90.0 90.0 90.0 90.0 90.0 6.7886
F 126.0 125.4 90.3 90.4 124.9 126.3 4.5004
10 S 60.0 60.0 60.0 60.0 60.0 60.0 4.5425
F 54.6 54.4 54.3 54.1 54.4 54.6 4.4805

S: Starting values, F: Final optimum values.

case of shear buckling. An angle-ply laminate gives the highest shear buckling stress,
even if almost complete freedom is given in the selection of fiber directions. The best
fiber directions for the cases R=1, 1.5 and 3 are 45°, 55° and 60° respectively. These
angles are equal to the ones obtained by Housner-Stein for the case of angle-ply
laminated plates.

This work was done during the author’s stay at Rensselaer Polytechnic Institute as a
visiting associate professor and was supported by NASA under Grant No. NGL-33-

018-003. The author wishes to acknolwedge the helpful advice of Professor Nicholas J.
Hoft.
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TaBLE 10. Optimum fiber directions for 6-layered plates (a/b=3) under shear

Fiber directions (in degree)

Case Y x 108
oy o %) 04 os %
S 0.0 0.0 0.0 0.0 0.0 0.0 23.473
1
F %
2 S 30.0 30.0 30.0 30.0 30.0 30.0 11.261
F 60.6 61.4 61.5 66.9 60.8 59.6 6.5480
3 S 45.0 45.0 45.0 45.0 45.0 45.0 7.5115
F 61.2 58.5 62.3 62.7 61.0 59.6 6.5484
4 S 90.0 0.0 90.0 0.0 90.0 0.0 10.015
F 90.0 35.4 90.0 0.0 90.0 0.0 9.6774
5 S 45.0 45.0 0.0 0.0 45.0 45.0 7.6926
F 60.6 60.6 58.5 57.9 60.7 60.5 6.5469
6 S 0.0 0.0 45.0 45.0 0.0 0.0 21.521
F 60.7 60.5 62.3 66.9 59.8 60.2 6.5477
7 S 10.0 20.0 30.0 40.0 50.0 60.0 13.175
F 60.9 60.8 60.1 69.2 59.8 60.0 6.5484
8 S 0.0 0.0 45.0 45.0 90.0 90.0 18.204
F 59.3 121.0 88.2 58.4 116.8 119.5 6.5558
9 S 90.0 90.0 90.0 90.0 90.0 90.0 8.2017
F 90.0 90.0 90.0 90.0 90.0 90.0 8.2017
10 S 60.0 60.0 60.0 60.0 60.0 60.0 6.5478
F 60.7 60.0 60.0 60.0 60.8 60.4 6.5476

S: Starting values, F: Final optimum values.
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