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Summary. The present paper is divided into three parts.

First of all, a phenomenological fracture hypothesis or criterion of polycrystalline metals
was presented in a general form in Part I. A method to predict the fracture stresses under
polyaxial uniform stresses was shown and the experimental fracture results of ductile metals
were well explained. Moreover, qualitative views on the problem of low temperature brittle
fracture and the effects of prestrains were also shown from a consideration of temperature
characteristics of fracture stress surface.

Next, in Part II, the author attached importance to the fact that the difficulties of analys-
ing the stress and strain distributions at the moment of fracture cause much complexity in
practical fracture problems, and carried out tensile fracture tests of mild steel round bars
having hyperbolic notches. After analysing their distributions across the minimum section,
the author explained the fracture stresses together with various fracture behaviors by using
the fracture criterion and presented a qualitative view as to the notch brittleness phenom-
enon.

Lastly, to ascertain the validity and applicability of this criterion to brittle metals, the
author carried out fracture tests on thin-walled gray cast iron tubes under various ratios of
combined tension and torsion in Part III. First, the p'eculiarities arising in elastic and
plastic deformations under combined stresses and absent in ductile metals were discussed
with due account of the notch effect due to the heterogeneous graphites in pearlite matrix.
Secondly, the fracture behaviors under combined stresses were discussed by taking into
account the mechanism of deformation and applying the fracture criterion at the tip of
graphite flake. Furthermore, the findings of other research students under other kinds of
polyaxial stresses are cited and discussed for purposes of analysing the criteria proposed by
others.

From all the descriptions, the reasonableness of the author’s fracture criterion on poly-
crystalline metals seemed to be established.

PART I. FRACTURE CRITERION

1.1. INTRODUCTION

The fact that the nature of fracture has been, as yet, very little understood with
s theory developed for glass etc., results from the incom-
g the effects of various influence variables. These can be
One is concerned with the metallurgical variables and
ms of fracture, and the other with the effects of testing
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100 M. Uemura

variables, which might be called * external variables” on fracture. In the present
paper, problems concerning the latter will be discussed in the fracture criterion of
metals.

The fracture criterion of metals is of very great significance not only for brittle
materials, but also for ductile materials for interpreting the problems of notch
brittleness and plastic working etc. It seems to the author that the various kinds
of laws for fracture suggested so far are not presented in a general form so as to be
applicable commonly to many kinds of materials under general polyaxial stress
states. In view of the above situation, the author has presented here, first of all,a
phenomenological fracture hypothesis or criterion of polycrystalline metals in a
general form. The two effects, that is, of stress polyaxiality and of plastic defor-
mation on fracture, which are particularly dominant in various factors influencing
fracture, were formulated mathematically in this fracture criterion. Here were
assumed the existence of the fracture stress surface such as introduced by Ludwik
[] and the existence of two inherent modes of fracture: ductile shear fracture
and brittle tensile fracture, in engineering metals. The author intends to apply
this criterion without distinction of the so-called ductile or brittle materials defined
by the intuitive fracture behaviors and to predict the fracture stresses under arbi-
trary states of combined stress. These two major factors especially considered here
have been already indicated in previous works and experiments. Such an attempt
at mathematical formulation has been also seen in the excellent study by Profs.
Yoshiki and Kanazawa [2], in which the problem of notch brittleness seemed to
be the main object of their research.

In addition to the presentation of the fracture criterion, the experimental results
of fracture of ductile metals under combined stress have been explained on the
basis of this criterion in this paper, and qualitative views on the problem of brittle
fracture at low temperature and the effects of prestrains are also shown from a con-
sideration of temperature characteristics of fracture stress surface.

1.2. PRESENTATION OF FRACTURE CRITERION

Hitherto, the materials have been intuitively classified by the fracture behaviors
under simple stress state at room temperature as brittle material or ductile material,
and the kind of stress to prescribe the fracture in the criterion has been designated
according to the kind of material in most cases. However, such a distinction be-
tween these two kinds of materials is considered to be convenient and to depend
on the circumstances of stress loading. In addition, the fracture mechanism of
metals can be classified into a number of types according to the metallurgical or
physical factors, as pointed out by Orowan [3]. In such complex circumstances
of fracture, the present author selected especially. the two main types of fracture,
that is, the brittle (cleavage) fracture and the ductile (shear) fracture, under statical
loading at (or below) room temperature, excluding creep fracture under high tem-
perature, fatigue fracture under alternating stress, and other special types of frac-
ture.
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On the Fracture of Metals 101

(1) Two Types of Fracture

It is usual that in the shear type of fracture, considerable plastic deformation
precedes the fracture, while in the cleavage type of fracture, there is little plastic
deformation. The former phenomenon can be usually seen in ductile materials
which are apt to undergo plastic deformation accompanying stress relaxation, while
the latter can be seen in brittle materials, which are not apt to deform plastically
with stress concentration. The meanings of these two modes of fracture will be
simply discussed as follows with consideration of the fracture mechanism.

First, the cleavage (tensile brittle) fracture is considered to be due to a mechanism
similar to the Griffith type fracture. However, it appears probable that the Griffith
cracks in metals as a cause of local stress concentration are of a different nature
from that of truly brittle materials such as glass or ceramics. Even in brittle metals,
small plastic deformation ahead of the tips of cracks have been recognized. Ac-
cording to the microscopic consideration in the dislocation theory, the concentrated
tensile stress is assumed to be produced by the arrays of blocked dislocations lead-
ing to the cleavage fracture, so the slip planes in which dislocations are held up at
grain boundary can be identified with the Griffith cracks (Zener [4]). In addition,
nonmetallic inclusions or secondary metallurgical phases etc. may be considered as
causes of stress concentration in metals (Hollomon [5]). From an engineering sense,
it will be convenient to difine the cleavage fracture of metals in a broader sense by
including them as sources of Griffith cracks. All cleavage fracture are not brittle
fractures, since it is possible to see a cleavage fracture, for instance, under such
testing conditions as under high rate of straining, triaxial stress, low temperature,
or stress concentration due to notch etc. in which it is difficult for further plastic
deformations to occur. '

Secondly, the shear (slip, ductile) fracture is considered to be a process of slip-
ping apart by the linking together of a number of micro-cracks due to plastic
deformations such as slips, twinnings, or kinkings etc. in crystal grains. The shear
is an essential part of ductile fracture and considerable plastic deformations usually
precede the fracture. .

The two modes of fracture considered in the criterion correspond to the dis-
tinguishable fracture behaviors in that the macroscopic fracture surfaces are almost
nearly normal to maximum tensile stress (s,,) or along maximum shearing stress
() as observed in the various experiments. Regardless of the similar micro-
mechanism in the two types of fracture in polycrystalline metals, such a notice-
able discontinuous variation in directions of fracture surfaces is exhibited according
to the differences of testing conditions. This problem is left to be interpreted as
a subject of further study in the future.

(2) Fracture Conditions and Fracture Stress Surfaces

Ludwik [/] introduced a conception of fracture, in which the fracture point is
the intersection of a fracture stress curve with a flow stress curve (stress-strain
curve) in simple one-dimensional consideration. The author’s conception is based
on a similar hypothesis as Ludwik’s, in which the conditions for plastic flow and
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102 M. Uemura

for fracture are independent of each other. As above indicated, the metals exhibit
in common two modes of fracture inherently at or below room temperature. By
taking this into account, the author considered two kinds of limiting fracture
stresses: limiting shear stress r,, and limiting tensile stress o,,, as Davidenkov [6]
did, modifying Ludwik’s conception.

Then, the fracture conditions will be defined as follows. When the maximum
shear stress =,, or the maximum tensile stress #,, during plastic flow (evaluated by
using the law of plastic flow described in (3)) reaches the limiting shear stress .,
or the limiting tensile stress o., on fracture (as will be described later in detail in
this paragraph), respectively, then the fracture takes place in either type, depending
on which intersection is achieved earlier. As a result, the fracture condition will
be given in either of the following equations.

Tm>Tey O 0,20, . (1)

Next, we restrict our consideration to the fracture stress. The two fracture stress
curves in Davidenkov’s hypothesis are expressed in one-dimensional form and the
curve for ductile fracture has a negative slope with increasing plastic strain, being
different from the author’s as will be shown later.

Both types of fractures of metals are always accompanied by plastic deformations
which produce work hardening or cold working. In addition, as Mott [7], Zener
[87, Yokobori [9], and others suggested, using the concept of dislocation, the frac-
ture mechanism is related to tensile stress, not to mention shear stress. For example,

FIGURE 1. Fracture stress surface and flow curve.

if the Griffith cracks are arrays of blocked dislocations, the concentrated tensile
stresses are then controlled by the shear stress acting on the dislocations. The
above two factors are designated as the effects of the entire strain histories preced-
ing fracture and of the stress state at fracture, respectively. These two major
factors were formulated mathematically in the expression of the critical fracture
stress in this fracture criterion, the remaining influence factors, such as strain rate,
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On the Fracture of Metals 103

stress gradient, size effect etc. being neglected as second-order correction effects.

From the above viewpoint, both limiting fracture stresses ., and a., are assumed
to depend on the entire plastic prestrain up to fracture and the triaxiality of stress
at fracture and to be expressed approximately as flat surfaces in the linear func-
tional dependence on v, (octahedral shear strain) and @ (mean stress or hydrostatic
tension). The fracture stress surfaces are shown in Fig. 1 in three-dimensional ’
chart and expressed mathematically as

Ter :a_{_. b@+07n » (23)
o,,=0a"+b0+cy,, (2b) f
where a,---; a/,--- are the material constants which are fuctions of temperature, [

strain rate and metallurgical factors etc. 7, and @ are shown by

Y =(2/3) {(e;— &) 4 (e — )+ (g5 — €, )}, }
@:(U1+02+03)/3 ‘

(3)

respectively.

The ambiguous term “triaxiality > cited in the problems of notch brittleness is
here analytically expressed with the use of the terms of 7. and @, because the cri-
terion should be expressed logically in a function of three-dimensional invariants
on stress and strain.

First of all, the fracture stresses increase linearly with increasing ,. As already
indicated by various experiments (/0] concerning the effects of plastic deforma-
tions on fracture, the resistance to fracture is increased by the strain hardening.
Contrary to this positive slope against plastic strain, Davidenkov [6] introduced a |
negative slope. The author supposes that this was introduced to explain the de-
crease of fracture stress with increasing strain preceding fracture in the ductile
fracture, which can be seen in the curve named ‘““Technical cohesive strength
curve” by Kuntze [//] in the experiments with notched specimens. (This experi- !
mental evidence will be explained later by the author’s fracture criterion in Part
IT). In this criterion, let the slopes of both fracture stress surfaces be positive with
Tespect o v,. v,, as a representing factor of the effect of prestrain on fracture, has
been used also in the work by Profs. Yoshiki and Kanazawa [2].

Secondly, the fracture stresses decrease linearly with increasing ®. While the
plastic flow curve is independent of @, the dependence of fracture stress on the
triaxiality of stress has been well demonstrated in experiments by Bridgman [/2]
and others [/3][14].

The rates of decrease against @ and of increase against v, are thought to be larger
in the g,, surface than in the 7., surface, according to the experimental evidences
indicating that metals are apt to fracture in cleavage accompanying smaller strains
under high triaxial tensile stress states and to fracture in shear accompanying larger
plastic strains under simple uniaxial or low triaxial tensile stress states.

!
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(3) Law of Plastic Flow ,
The plastic flow curve necessary for determining the intersection with the frac-
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104 M. Uemura

ture stress surface may be discussed with basis on the octahedral shear stress theory
according to the plastic deformation theory, excepting in the cases of complicated
loading proceses. It has been shown that the stress-strain relations of ductile iso-
tropic metals under various combined stress states are uniquely described with few
errors and are determined by simple uniaxial tensile tests. This law of plastic flow
cannot be applied as it stands to brittle materials such as gray cast irons which are
far from being isotropic or homogeneous and there is need of some corrections by
taking into account the notch effects of inclusions such as graphlte carbons, as will
be discussed later in Part III.

In the case of ductile materials, the law of plastic flow can be expressed as
follows, with the introduction of the coeffient of plasticity D,
& =[o,—(02+a35)/2]/D,
&=[o,—(03+4,)/2]/D,

&= 03— (01+0,)/2]/D, (4) ¢
where D=f(y,) or g(r,)=37./v., <
7 =(1/3)- {(0,= 0:)*+ (02— 05+ (=)} .

After an analysis of the stress and strain distributions by the use of the above
law of plastic flow, the flow curves of r,, and ¢,, are represented schematically in
Fig. 1 as OP and OP’ curves, respectively. The location and the mode of inital
fracturing will be determined by the intersection of the fracture stress surfaces and
the corresponding flow curves, which will occur first.

As a summary, if we take into consideration both mechanisms of fracture and
define o,, and =,, not as constant values, but in a general functional form as done
in this criterion, each of the previously proposed criteria can be included as a
special one of this criterion. And we can settle the disagreements with experi-
mental results pointed out when these criteria such as the maximum tensile stress
theory or the maximum shearing stress theory, etc., are used. Moreover, the
mathematical derivations for fracture stresses become easier as will be indicated
in the next chaper.

Finally, a suplement on the directions of microscopic fracture surfaces is added.
They are not always consistent with the directions of ¢, or 7,,, for the mechanism
of fracture is not governed by g,, or 7, as already explained from the concepts of
dislocations, and the meaning of this fracture is that the fracture is merely deter-
mined according to whether or not ¢,, or r,, is equal to o, or 7., given in a form
of functional dependence of v, and @. These correspond to the analogous argument
that in the Mohr’s theory in plane stress, there is not necessarily real contact be-
tween the stress circle for fracture and the envelope, therefore the criterion should

be given in the functional dependence of =, on the mean stress, which is to be
determined by experiments and, further, the failure would take place in the direc-
tion corresponding to the real contact point between them [/5]. These arguments
were ascertained in the relation between the yield criterion and the direction of

slip bands observed in the yield of mild steels in experiments carried out by the
author [/6].
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On the Fracture of Metals 105

1.3. APPLICATION OF FRACTURE CRITERION — METHOD OF DETERMINING
LIMITING FRACTURE STRESS SURFACES AND FRACTURE STRESSES IN
DUCTILE METALS, AND COMPARISONS WITH EXPERIMENTAL RESULTS

If the effects of @ and vy, in Egs. (2) are neglected as small quantities, then the
criterion reduces naturally to maximum shear stress law or maximum tensile stress
law. The ductile materials such as brass (see Fig. 2), Mg alloys (see Fig. 3), Al
alloys etc. fracture in shear in all fields of biaxial stresses; however, the brittle
materials such as cast irons exhibit two types of fracture, which will be discussed
in detail later in Part III. In this chapter, as an example of application of this ,
criterion, the ductile isotropic materials exhibiting shear fracture will be first con-
sidered.

Taking into account the experimental evidences indicating that the values of ,
at fracture are not much different in ductile materials and the flow curve (r, versus
v, curve) can be approximated by a linear line near the fracture point, the flow
curve can be written as

Ya=ar,+8, (5)
then Eq. (2.a) reduces to
T, =(a+¢B)+ b0 +car, . (6)

Three coeficients; (a+c¢B), b and ca in the right hand side of Eq. (6) can be ex-
pressed in terms of three experimental fracture stresses f,, —f, and f, under simple
tension, compression and torsion, respectively, after =, ® and =, have been ex-
pressed by these fundamental material strengths and the three algebraic equations
of first order have been solved. Experiments under combined stresses are usually
carried out in thin cylinders under axial load and internal pressure which produces
a nearly biaxial field of stress. In such a fracture experiment, whose results are
shown in Fig. 3, the ratio of the radial stress o; to the tangential stress o, can be
taken as constant (—k).

oslos=—k. (7)

Then =, in Eq. (6) can be finally expressed as
Ter=[22—V3 )enfi+ 23 )1 =Emoy (14 p—kp) +2{ —5(1+E)}H o, | X
VTR — I —F) 7 11/2(26—V3 n(1+6))

where §=f./f,, n=F/f:» p=a./a,, 6,=the axial stress. _
The shear fracture stresses under arbitrary combined stress states will be calcu-

lated from the following conditions by taking into account the different directions
of maximum shear stress in each field of stress (A), (B) and (C) in Fig. 3, and taking

7., equal to 7,,.
Tor=(01—09)2=a,(1+kp)/2 - - - field  (A), O=pxl
:(0'2_0'3)/2:0'1#(1‘*‘]5)/2 R (B), —kégl//l«él (9)
‘:(‘72'_01)/2:01(/‘"1)/2 T O, —1/k=p=0

(8)

|
|
|
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under biaxial combined stresses tubular specimens under biaxial combined
(McAdam) and analytical re- stresses (E. G. Thomsen & J. E. Dorn) and
sults. analytical results.

By equating Egs. (9) to Eq. (8), the fracture stresses in each field under combined
stress states can be predicted by the following equations.

gy __ 2(2_\/5_)577
fo 2€E—(1—E+3E) )+ ul2k{E—(/3 —1+E)}+(2—43)E—1)y]

— 2= (1 +OWLA+h+A)—(1—k)ut 1> " 10 the field  (A)

2(2—+3 )y ¢
ﬁ T AE—(1—E V3 O+ 2kE— (V3 — 118+ (2—v3)E— D)o (10) :
22— (I + WA Fh+ ) —(1—kptr? > " in the field (B)
2 = 22—+3)snp

fo r2E—(1—E+3Em}—kn(2—V3)E-DI—2{6—(V3 —1+Em}

+2{E—’7(1+E)}\/#2(1+k+k2)—(1—k),u+1’ -+« in the field (C)
where v=g,/0,=1/p.

As an actual example, the results of experiments with brass [/4] are shown in
Fig. 2. We can put k nearly equal to zero in the case of very thin cylinders.
Strictly speaking, it will be necessary to analyse the stress distributions along the
thickness to determine what value of k& should be taken. These experimental
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On the Fracture of Metals 107

results shown in Fig. 2 agree fairly well with the solid line obtained theoretically
by using Eq. (10) if k=0, §=1.25, »=0.518.

Similar experimental results with FS_, Mg alloys [/7] are shown in Fig. 3,
where the agreements between experimental results and theoretical calculations
shown by a solid line are also very good. This solid line is obtained by putting
k=0.05, §=1.2, »=0.5.

In the analytical derivation of Eq. (10), the flow curve near the fracture point
was assumed to be linear, however, in the cases of materials having curved stress-
strain relation, the fracture stresses can be obtained graphically. That is, both
curves of ., and , can be plotted in the same +~@ diagram by taking v, (or =,)
as a parameter, then the shear fracture stress can be obtained from the intersection
point of these two corresponding curves of the same value of v, (or 7,).

As shown above, the experimental results can be well explained, and these
agreements have been seen also in Al alloys [/4] and mild steels [/8]. It seems
that the experimental results will be explained better, if the effects of anisotropy
neglected here are taken into consideration.

The fracture stresses for u=0, 1 and o are comparatively high, presenting cusps
in the fracture stress curves in Figs. 2 and 3, which can be attributed to the effects
of plastic strains or strain hardening; and the fracture stress for p=11is lower than
that for u=0 and o, which can be attributed to the effects of hydrostatic tension
6.

Maximam Shear Stress Theory
Distorsion Energy Theory

- Flow Stress Surface
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6 , / y —pl Tm= 575 Tn~Tn
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2005+ | ay /
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Maximam Tensile \
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FIGURE 4. Fracture stresses on 0.612 FIGURE 5. Diagram for obtaining fracture
carbon steel under triaxial com- stresses under triaxial stresses, of which
bined stresses. 4 two principal stresses are equal.

As an example of purely triaxial stress states, the experimental fracture results
for 0.619 carbon steel [/4] in a special case of o,=0; are shown in Fig. 4. It
seemed that the fractures took place in shear fracture in the range of x=0~0.6
and the fracture under pure hydrostatic tension took place in tensile fracture at
u=1, therefore, the former is considered here. The fracture stresses can be also
obtained analytically or graphically in a manner similar to that above. However,
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108 M. Uemura

the trends of shear fracture can be easily understood from the following consider-
ations.

In this special loading condition (s,=0;), there exists a following relation be-
tween 7, and T,.

T =370/ 202 =(0,—0,)/2 . (11)

The flow law (7,~v,) being independent of @, the flow curve of =, can be ex-
pressed by a curved surface parallel to the axis of & as shown in Fig. 5. Adding
the shear fracture stress (r,,) surface also in the same figure, the fracture stresses
can be graphically defined as the intersecting line of both surfaces. The fracture
strains decrease with increasing § showing embrittleness and the decrease of shear
fracture stresses (=7, =(g;,—a,,)/2, suffix “r” denotes the value at fracture) can
be well explained in agreement with the experimental results in Fig. 4. It is clear
that these results cannot be explained by other proposed criteria for fracture as
shown in Fig. 4. Even though the differences between this criterion and other
proposed criteria are not quantitatively distinguishable in biaxial stress states, the
differences in triaxial stress states become distinguishable showing greater decrease
of shear fracture stress and ductility than in biaxial cases. Therefore, the signi-
ficance of these fracture problems under polyaxial stress states is to be appreciated
in connection with the tests on notched (or necked) tensile specimens as will be
shown later in Part II. The fracture stresses in hydrostatic compression will be-
come extremely higher, and the experimental indication that the fracture does
not take place in pure hydrostatic compression also can be easily understood from
the above discussion.

1.4. A VIEw As To THE Low TEMPERATURE CHARACTERISTICS OF
LIMITING FRACTURE STRESS SURFACE

Steels which show the ductile fracture at room temperature show cleavage brittle
fracture at low temperature. A quantitative treatment of the effects of temperature
was excluded from this criterion by including them in the material constants in
Eq. (2). A view concerning the brittle fracture phenomenon at low temperature
will be qualitatively discussed here by considering the low temperature charac-
teristics of limiting fracture stress surfaces.

The yield stress increases and the elongation decreases with lowering temperature
in tensile tests of steels, while the fracture stress also increases, but much less
than does the yield stress. J. H. Hollomon [/9] suggested the dependencies of
yield and fracture stresses on temperature under constant strain rate by the follow-
ing formulas,

oy (yield stress)=AeS'7T, } (12)

o (fracture stress)=Be”’",

where T'=absolute temperature, A, B=material constants in function of strain
rates, S, U=material constants (S > U).
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The rise of the fracture stress at low temperature can be due to the major reason
that occurrence of plastic deformations becomes difficult, as a result of which
micro-cracks as sources of fracture are not produced.

The flow stress-strain curves become steeper under low temperature, whereby
the reduction of fracture strain can be easily understood. Even though the low
temperature characteristics under simple tensile tests can be expressed in practice
as in Eq. (12), it is doubtful whether or not the dependencies of fracture stress sur-
face on temperature under combined stress can be simply expressed in a form of
e™" independently of v, and 6. It seems convenient to consider their depen-
dencies on 7., and o,, surfaces due to different fracture mechanisms separately.

To the author’s regret, he has no experimental data under polyaxial stresses
over a wide range of temperature; as a result, he is forced to be contented with
qualitative conjecture because of the difficulties of quantitative treatments. The
rise of fracture stress surface with lowering temperature seems to be smaller in
the field of large @ and small , compared with other fields. This tendency is
considered to be remarkable in the o surface, because the cleavage fracture is
caused chiefly by the notch effect due to cracks and the propagation velocity of
cracks is so fast that the phenomenon cannot be discussed as a rate process and,
consequently, the fracture is independent of thermal activation and is not greatly
influenced by temperature.

Small Notch (1)
Sharpness,

(B)[ Large Notch
Sharpness

Energy Absorbed

(c)

Temperature
FIGURE 6. Notch brittleness phenomenon.

The typical trends of temperature dependency of energy absorbed in impact
tests are shown in Fig. 6 in reference to notch brittleness. A rapid drop of energy
absorption in the narrow interval of temperature referred to as ““ transition temper-
ature” may be explained as follows: It is due to the existence of discontinuity in
the gradients of both fracture stress surfaces accompanied by the change of frac-
ture mechanism on greater parts of fractured surface of specimen from shear to
cleavage fracture. With sharp notches, v, is small under high hydrostatic tension
6 not exhibiting plastic deformation, and the o,, surface is especially low at low
temperature, so the fractures are chiefly caused by cleavage fracture in the range
denoted (C) below transition temperature, while in the range denoted (A) above
transition temperature accompanying plastic deformation is due to the low Ter
surface under higher temperature. In the intermediate range called transition
temperature, both modes of fracture coexist in the same order. This consideration
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may be admitted as reasonable from the fact that the relation between the depth
of shear fractured part in the notched specimen and temperature shows a closely
similar trend to that as shown in Fig. 6.

In the previous research work on notch brittleness, most of the information
available is in terms of transition temperature in notch impact tests from the
practical point of view, and the relations with width or thickness of plate or notch
sharpness in addition to metallurgical factors have been discussed as the object of
study. Nevertheless, the main factor in this phenomenon is considered to be the
: triaxiality of stress besides the rapid strain rate under impact loading; so a study
of analysing the stress and strain distributions in addition to the temperature de-
( pendency of limiting fracture stress surface becomes necessary. The former part
| of the problem will be considered in Part II.

5 1.5. THE EXPLANATION OF EXPERIMENTS ON THE EFFECTS OF PRESTRAINS

Now let us restrict the problem to the case of unnotched specimens under simple '
uniaxial tension. The fracture stresses of the specimens prestrained are the same
as those of unprestrained specimens under the same loading condition and at the
same temperature [20]. Asan example of these experimental evidences, the results
on polycrystal copper [2/] subjected to various degrees of prestrains are shown in
Fig. 7. In this case, the total strains up to fracture after initial loadings are almost
the same regardless of the amounts of prestrain. As a result, the effects of pre-
strains can be included in the criterion by taking the total plastic strain as r,,
excepting in the case of complicated loading processes.

The folloWing experiments have been carried out to see the effects of prestrains;

3 that is, after being subjected to various degrees of tensile prestrains at room temper-
ature, the specimens have been subsequently pulled to fracture in tension under
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extremely low temperature sufficient to prevent further additive plastic strains
[19][20]. Asan example of this experimental process, the tensile fracture test
results on pearlitic alloy steels [22] under extremely low temperature (—190°C)
after they were subjected to tensile prestrain at room temperature (20°C), are
shown in Fig. 8. The intersection point of the flow curve at room temperature and
the hypothetical fracture stress curve at the same temperature indicates the frac-
ture at the room temperature which is shown as the value on the ordinate at zero
prestrain. Higher values of the fracture stresses under low temperature at the
higher prestrains were obtained, and the fracture stresses after small prestrains
are rather lower than those at room temperature. It is likely that such well-known
experimental results are due not only to effects of prestrains, but also mainly
to the temperature characteristics of fracture stress surface discussed in Section 1.4.
Since the fracture is caused by brittle tensile fracture at low temperature, these
results can be accounted for by taking into account the temperature characteristics
of the o,, surface as shown schematically in Fig. 9.

When the specimens are prestrained at room temperature, the flow curve is on

—>
the flow surface at room temperature through the course of OP. P denotes the

Limiting Tensile Stress / Flov':/ Stress
Surface at Extremely : S.;f: ace (;t Room
Low Temperature . \ emperature
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P
g \
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\

FiGURE 9. Diagram for explaining fracture stresses at low temperature.
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fracture point which is the point of intersection with the fracture surface; then
PP’ denotes the value of fracture stress at room temperature. If the specimen is
unloaded after being prestrained up to the A; point, it remains at B,, exhibiting
permanent strain (=OB,). The flow curve under reloading at low temperature
takes a straight course B,A,P,, where no new plastic strains are exhibited and then
intersects at P, with the fracture stress surface under low temperature, presenting
an entirely brittle tensile fracture behavior. Then P,P; denotes the fracture stress
at low temperature. P,P}in the case of larger prestrain is larger than PP’, because
the surface at extremely low temperature is higher in the range of larger v,. On
the other hand, P,P/ in the case of smaller prestrain is smaller than PP’, because
the flow curve intersects with the o,, surface at extremely low temperature in the
range of smaller v,, even though the ¢,, surface increases with decreasing temper-
ature.

Although the fracture at room temperature is accompanied by shear ductile
fracture in the outer part of fractured cross-section, the above discussion was based o
only on the consideration of the o, surface. This is because of the consideration
of the fact that the fracture commences in tensile fracture at the central axis (to
be shown in Part II). And, as the distribution of o, in the axial direction along
the necked cross section is not uniform, let PP’ denote the mean stress.

The above explanation is certainly not so much quantitative as qualitative;
however, it seems that the experimental results on prestrains are well interpreted
with this criterion and the supposed temperature characteristics of fracture stress
surface.

PART II. TENSILE FRACTURE TESTS OF MILD STEEL ROUND BARs HAVING
HYPERBOLIC NOTCHES AND NOTCH BRITTLENESS

2.1. INTRODUCTION

It has been well known that notched specimens of ductile metals show brittle
fracture because of the resulting polyaxial stress state, especially under low temper-
ature. In view of these experimental evidences, the fractures in all-welded ships
or aeroplanes flying at high altitude have been the subject of much attention in
recent years in practical engineering fields. The problems of notch brittleness
have been hitherto discussed chiefly from the viewpoint of practical necessity, the
transition temperature in impact tests being stressed as the subject for research,
and the fundamental problem remains unexplained quantitatively. The difficulty
of analysis results from unknown stress and strain distributions at fracture in ad-
dition to the ambiguous fracture criteria and many parameters involved in this
phenomenon. To the author’s regret, the stress and strain distributions in notched
tensile specimens of metals with strain hardening have not been analysed so far.

With this background, the author attached weight to the analysis of stress and
strain distributions in this study and carried out tensile fracture tests of mild steel
round bars having hyperbolic notches so that the analysis might be relatively easy.
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After measuring minutely the average axial stress and strain across the minimum
section at the moment of fracture with electric resistance wire strain gauge devices,
the author analysed both distributions approximately and explained the fracture
stresses together with various fracture behaviors by applying the fracture criterion
to them and presented a qualitative view as to the notch brittleness phenomenon.

2.2. TEST PROCEDURE
(1) Test Specimens

The dimensions and the shapes of cylindrical tensile specimens having circum-

ferential hyperbolic notches (Neuber type) are shown in Fig. 10 (a). The radius

of curvature at the notch bottom has different degrees of size shown in Table 1,

the minimum section being kept as constant. a, and b, denote the lengths of major

and minor axes of the hyperbola, respectively. Further, unnotched tensile cylindri-

cal specimens of uniform cross section (2a,= 12 mm¢) such as shown in Fig. 10 (b)

’ were used for conventional tensile tests to obtain the inherent static strengths of
this material.

=25+

r——QO—ﬁ

2%():
P 12mn

.
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=12 mm
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FIGURE 10. Tensile test specimens.

TABLE 1. RADIUS OF CURVATURE AT THE NOTCH BOTTOM AND VARIATION
OF NOTCH SHARPNESS DUE TO TENSILE LOADING

E Initial Tadius Notch sharpness

Type of curvature initial at moment of
00 (mm) Ao=a0/ o fracture 1=a/p

(0) oo 0 0.84

(i) 6.000 1 1.40

(ii) 1.500 4 1.75

(iii) 0.667 9 2.25

(iv) 0.375 16 2.80
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Several specimens were tested for each one of the above five kinds of specimens.
These specimens were taken from commercial low carbon steel bars (22 mmdo),
and, after machining, they were annealed in a furnace at about 870°C for one hour,
then cooled in a furnace to eliminate the effects of machining. The chemical com-
position of mild steel used for this test was as follows:

C 0.189, Si0.119, Mn 0.43%, P 0.036%, S 0.55%, Cu 0.289%.

(2) Test Machine and Test Procedure

" The scheme of the entire experimental arrangement is shown in Fig. 11. In a
10-ton Amsler hydraulic testing machine for loading, spherical seats were used to
eliminate the bending moment due to eccentricity. It seems that the values at
fracture, such as the fracture loads by the load index of the testing machine and
those of strains up to fracture obtained by measuring diameters after fracture, are
wanting in accuracy because of the sudden fracture phenomenon. For the above
reason, the real instant of fracture was detected by the electrical measurements

FIGURE 11. Schematic diagram of testing
apparatus and procedure.

through the use of resistance wire strain gauges, by which the fracture load and
the diameter at the notch section at the instant of fracture were determined. For
the former measurement, a mild steel bar of larger diameter in series connection
with the specimens was used and for the latter measurement, a thin plate cantilever
was used as deflection gauge. The cantilever was set in a deflected state and made
vertically movable, so that the top end of cantilever may be always in contact with
the notch bottom regardless of its vertical displacement. The deflection is measured
from the resistance wire strain gauges bonded on either side of the cantilever near
the fixed end.

2.3. TENSILE FRACTURE TEST RESULTS

(1) Loads (Stresses) and Strains at Fracture
From the loads (P) and the diameters (d) at notch section measured as described
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above, the curves of P versus dy/d (d,=initial diameter) are shown in Fig. 12 and
the curves of average axial true stress 4,, versus average axial logarithmic strain
€., defined as follows, are shown in Fig. 13.

0,,=P/|A=P|mra?,
€0=21n(d,/d). } (13)

The diameters of notch section at the moment of fracture and after fracture are
compared as compiled in Table 2. The differences between these two values are

o
X
Q,

80

o

0

6000

4000

2000 P S —
011 12 1314 15 16 17 13
o,/ d.
FIGURE 12. Flow curves of loads versus diameters
in notch section.

TABLE 2. DIFFERENCE OF DIAMETER OF NOTCH SECTION BETWEEN AT
MOMENT OF FRACTURE AND AFTER FRACTURE

Diameter (mm)
- 4d_d;—d,,
ype at moment of after fracture 4. d (%)
fracture, d; de ! 4
(0) 6.67 6.56 1.65
(i) 7.98 7.7 3.38
(ii) 8.71 8.14 6.54
(iii) 9.64 9.37 2.80
(iv) 10.17 — —

unexpectedly great, especially in the intermediate (ii) type of specimen. This may
be attributable to the reason that, when the fracture begins at the center or at the
notch bottom, additional stretching occurs at the notch bottom or at the center,
respectively, as fracturing proceeds. Moreover, as the notch sharpness 2,=a,/p,
increases, the fracture, after the maximum load is reached, occurs suddenly and
tends to embrittle metals. Therefore, the fracture loads measured by the electrical
devices differ from those measured by load index of the hydraulic testing machine
according to the time lag in abrupt fall of load just before fracture. The calcula-
tions of fracture stresses and strains due to the radius after fracture and the load
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FIGURE 13. Flow curves of average axial true stresses versus
average axial logarithmic strains.

index of the testing machine would lead to their inexact values.

The stresses o,, and o,,, the strains ¢,,, and ¢,, (suffixes “m” and “r” denote
the instant of maximum load and fracture, respectively) are plotted against 4, in
Fig. 14. The yield stress decreases with increasing notch sharpness because of the
stress concentration [ 23] [24], while the load P, and P,, increase on the contrary

8000 -

2000

FIGURE 14. Variations of loads, stresses and strains at maxi-
mum load and at fracture with notch sharpness.

because of the elastic constraint of a comparatively large volume on either side of
the notch. The fracture stress o,, has a maximum value at 4,=9 and, further,
tends to decrease with the increase of the notch sharpness.

The contraction of minimum cross section will now be considered. 2, causes no
difference in ¢,,; however, ¢, decreases with increasing 1,, showing a tendency
toward notch brittleness.

i
4
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(2) Behaviors of Fracture Surfaces and Locations of Initial Fracturing

The figures of specimens sectioned along the longitudinal axis after fracture are
shown in Photograph 1.

For unnotched specimens, the fracture surfaces present the well-known cup-
and-cone behaviors and the starting point of fracture is on the center as previously
indicated by the X-ray or other methods. On the other hand, for sharply notched
specimens, the fracture surfaces present nearly horizontal cleavage behavior, and
the fractures start clearly from the notch bottom. For specimens having inter-
mediate sharpness, for instance in the type of (iii) (2,=9), it is impossible to dis-"
tinguish between the kinds of fracture and there are samples in which the fracture
seemed to start from the intermediate range between both extremes. The boundary
at which the fracture stress begins to decrease because of notch brittleness with
the increase of notch sharpness seems to correspond to the change of the starting
point of fracture from center to notch bottom. This can be also observed in
Brown’s experiment on mild steel [257 and Dana’s experiment on duralumin [26].
The color of fracture surface is grayish-black, and considerable plastic deformation
on the whole for less sharply notched specimens is shown; while, for sharply

(0) 2,=0 (i) Zo=1 (ii) 2o=4 (i) 2,=9 (iv) 2,=16
PHOTOGRAPH 1. Figures sectioned along the longitudinal axis after fracture.
notched specimens, only the outer part of the fracture section has grayish-black

color, and the remaining central part has gray-white color which shows that the
plastic deformation is restricted to the notch bottom.

(3) Surface Contour Radius at Fracture

The notch sharpness 2=a/p (a=radius of notch cross section at fracture, p=
contour radius of notch bottom at fracture) necessary for analysing the stress and
strain distributions will now be considered.

The initial configuration of surface contour at notch bottom before test is a
hyperbola shown by

(/o) —(y/bo)’=1. : (14)
Then the notch sharpness 4, can be defined by the following expression.
Ao =ao/po=(a,/b,)" . (15)

The configuration after fracture is not hyperbolic as shown in Photo. 1 and the
true configuration at fracture moment is presumed by correcting the configuration
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after fracture and by taking into account the radius at the notch cross section
measured by electrical devices. The corrected configuration of surface contour is
assumed to be a hyperbola approximately at each point on the surface contour,
and (a/b) is calculated by the following equation after measurment of (y¥/a) against
(x/a).

a/b=+(z/a)’—1-(a/y). (16)

The apparent notch sharpness 2 can be defined as 1=(a/b)? according to Eq. (15)
and the distributions of A along the surface contour are plotted against (x/a) in
Fig. 15. By exterpolating each curve to the ordinate (x/a=1), 2 at the notch bottom

e
"'\ o=y
'L/Jhg\
0

1°0 1'5 20 x/0
Notch Bottom

FIGURE 15. Distributions of apparent notch
sharpnesses along the distance from
notch bottom.

can be determined, and the variations of 1 at the notch bottom are as compiled in
Table 1. It will be seen from Fig. 15 that the curvature of surface contour increases
towards the notch bottom in (i) type of specimen, presenting the necking pheno-
menon is a manner similar to that of (0) type of unnotched specimen. As the notch
becomes sharper, however, the curvature of surface contour decreases towards the
notch bottom, indicating that the axial plastic deformation occurred at the notch
bottom.

2.4. APPROXIMATE ANALYSIS OF STRESS AND STRAIN DISTRIBUTIONS
ACROSS THE MINIMUM NOTCH SECTION AT FRACTURE

The values which can be determined directly from notch tensile tests are only
the average values of axial stress and strain over the notched or necked section.
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This is one reason why the explanation of notch brittleness-is merely qualitative
and not sufficiently quantitative.

The stress distributions in a necked cylindrical bar have been analysed so far
by Siebel [27], Bridgman [ 28], Davidenkov [297] and Aronofsky [30] etc., under
the assumption that the axial strain ¢, is uniform and the tangential strain ¢, equals
the radial strain ¢, over the entire cross section. However, because the contour

s 2l Lo

~— Q —

FIGURE 16. Equilibrium of stresses in the neighbourhood of notch.

of the neck is developed by the strain itself, while the strain distribution in a
notched specimen is governed by the contour of the notch, these conclusions can
not be applied to sharply notched specimens. For this reason, the author analysed
the stress and strain distribution across the minimum notch section approximately
by extending the Davidenkov’s method.

(1) Equilibrium Equation

The following will be restricted to the notch section, and the equilibrium con-
dition of stresses in an element along the trajectories of principal stresses as shown
in Fig. 7 will be considered, T,,, do,/0z being neglected as infinitesimal quantities.

The neglecting of the small quantities in the following equilibrium equation
s —(o,+do,)RAO(r+dr)dp+a (R+dr)do-r-do
—a, dr(r+dr/2)dep-d0+¢,dr(R+dr/2)d0-de =0,

finally leads to the following equation.

o,=a,[1—(R/r)]—(do,/dr)R+a,R|r. (17)

The radius of curvature of fiber along the axial principal stress (R) is assumed to
be

R=(a/r)"p (18)

across the minimum section of the notch. 7 nearly equals 1 in the case of 4,=0
as assumed in the previous papers. However, n will take gradually larger values
with increasing notch sharpness. In this analysis, the following values of # for
each type of notched specimen are used for convenience in analysis.
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for the (0) type ----- n=1,
» o (1) type .- n=3/2,
»  (i1)~(iv) types - - - n=2.

Then, the equilibrium equation in Eq. (17) can be written as follows, respectively:
o,=0,+(0,—0,)2*—(1/20)do,/d - -- for the (0) type,
o,=a,+(o,—a )X =1/ )do,/dC- -~ ,, (i) type, (19)
o,=c,+(o,—a,)A—(1/2CVds,/dC -+ ,, (ii)~(iv) types,
where Ai=a/p, (=r/a.

(2) Compatibility Equation

Let “u” denote the radial displacement. The natural strains €, and ¢, can be

defined as
g, (radial natural strain)=1n (1+du/dr), } (20)
g, (tangential natural strain)=1In (14u/7).

Eliminating % from both equations in Eqgs. (20), we obtain the following compati-
bility equation

et =1+ (de,/dC)C . @n

(3) Condition of Volume Constancy

The condition of constancy of material volume during the plastic deformation
can be written as

e, +e+¢€,=0. (22)

(4) Stress versus Strain Relation

Based on ““the plastic deformation theory”, we use a strain hardening function
expressed by the octahedral shear stress v, and the octahedral shear strain ¢, as
stress versus strain relation, in which the effects of anisotropy and loading process
are neglected. For convenience of correlating it to the simple tensile test, 75, and
v, obtained by correcting the constant terms in 7, and +y, are used as follows.

T:':J(a'r —,-at)z_*—(dl —‘0'2)2‘!“ (0’2 _07)2/‘/51
7:12 ‘/(57 _sc)2+' (st _82)2""(82 - sr)2 ° J3/3 .

Putting B=+,/v,, the equations between stress and strain components can be
written as follows by taking into account Eq. (22)

Be,={o,—(o.4a.)/2}, |
Be.={o,—(0,+0,)/2}, (24)
Be,={o.—(o,+a.)/2} .
The relation of 7/, versus v, for plastic flow can be obtained from the flow curve
in an unnotched specimen. It is natural that

(23)

Th=0,0, V=& (25)

This document is provided by JAXA. :



LA
o

On the Fracture of Metals 121
before the neck develops. However, after necking, the state of triaxial stress is
produced, resulting in

Ta=0,./(1+2/4), m=¢, (26)
according to the correction by Davidenkov. Bridgman [28] has given an empirical
relationship for 4 in terms of ¢,, after necking as shown by the solid line in Fig. 17,

101
Average Curve
by Bridgman
N
" X
,//\ The Specimens
0.5 .Used
1
.5 10
0 0. £2a

FIGURE 17. Relation between notch sharpness at notch
bottom and average axial logarithmic strain.

which is almost similar in many metallic specimens. The author used the relation-
ship for this material as shown in a broken line in Fig. 17, after correction by
taking into consideration the datum at the moments of maximum load and frac-
ture obtained in this experiment.

(5) Boundary Conditions

The average axial stress o,, can be written by

1
0,,=Pmal=2 f o.CdC @7)
0
and the boundary conditions for stresses in the minimum cross section are
(ar)r=a=03 (”r)r:():(at)r=0:‘70 . (28)
On the other hand, the following relationship between ¢,, and ¢,
€za - 26&1 (29)

(suffix “1” denotes the surface) can be obtained by eliminating u,/a from the
following two equations due to Egs. (13) and (20).

&..=In (ay/a)’=21n [ay/(a,+uy)],

U, =a,(en—1).

(6) Analysis of Stress and Strain Distributions

For the unnotched specimens, we utilize the analytical results of Davidenkov
concerning to stress distributions as they stand. However, for the notched speci-
mens, we consider as follows.

First of all, o, is assumed as expressed in Eq. (30) by referring to the boundary
conditions of Eq. (28) and by adding the correction term (the third term in the
right-hand side in Eq. (30)) into the solution obtained when ¢,=o, is assumed in
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Eq. (19) under the consideration that the stress distribution will approach the
elastic one because of the existence of the notch.

o,/oo=1—CE44CE(1—(2)- - - for the (i) type, }

o loo=1—CC+C%(1—-C%) --- ,, (ii)~(iv) types.
Similarly, o, is also assumed as expressed in Eq. (31) by taking into account the
occurrence of tangential tensile stress on the notch bottom.

(30)

o,Jo0=0,]co+aC? -+ for the (i) type, } 31)
0‘5/00:0',/0‘0 +aC3 trt ”» (ll)~(lV) types.
Then, ¢, can be obtained from Eq. (19) as follows.
ailoy=1—CE ol H(1 =00+ a/2+5/22— (5 = 9C3)/(24)
.-« for the (i) type, (32)

0:loy=1—C+o0%(1 =) +af2+3/2—o(3—5C7)/2
.-« for the (ii)~(iv) types.
For approximate analysis of the stress and strain distributions, there are two pro-
cesses, that is, one starting from the axial average fracture stress s,, and the other
starting from the axial average fracture strain ¢,,. Here, the former one will be
adopted as follows.

First, the values of 2 at the notch bottom in each type of notch are determind
as shown in Table 1. If appropriate values of v and « are assumed, then s,/0, is
obtained together with o,/s, and ¢,/s,, thus ¢, can be obtained by Eq. (27). Then,
after determination of the distribution of 74, that of 8 across the notch cross sec-
tion can be obtained from the curve of 75, versus ry,. Next a is corrected so that
the distribution of ¢, due to Eq. (24) may agree nearly with the following distri-
bution of &, due to the compatibility equation,

100
£
& e— 80
o e T TS
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- —— A=2780
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i 1 | 1
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FIGUrE 18. Distributions of ¢,,0, and o, across
the notch section.

FIGURE 19. Distributions of ¢, across
the notch section.
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1
cr=eat [ (oo —1)dcC (33)
0

and v is corrected so that the value of ¢,, may nearly agree with that due to Eq.(29).
By repeating the above processes, finally the converged distributions of stresses
and strains can be approximately obtained. The distribution curves for o, 75, and
g, between the notch bottom and the axis of bar, thus evaluated for each value of

O | 1

1°0 08 06 04 02 0
&=r/a

FIGURE 20. Distributions of ¢, across the notch section.

2, are shown in Figs. 18, 19 and 20, respectively. In the above analysis, the ap-
propriate values of n are conveniently assumed for analysis, therefore it will be
supposed that these distributions are not exactly equal with the true distributions,
but at least approach these, and the true distributions will be given by the complex
functions of » and (.

(7) Comparison of the Stress and Strain Distributions and the Fracture Behaviors

The distributions of stresses tend to approach the elastic one with the increase
of notch sharpness, resulting in embrittleness, and the plastic deformations occur
chiefly at the notch bottom. The fracture surface of a sharply notched specimen
presents a circular distinction line in color between outer and inner parts in the
minimum notch cross section as already described in Section 2.3 (2). The value
of 7/ on the line where the color changes abruptly corresponds to that of =, in the
flow curve of =5 versus «, in Fig. 13 where ¢/, increases abruptly. The gray-black
color of almost the entire cross section in types (0), (i) and (ii) can be attributed
to the large values of 7, over the entire area.
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2.5. EXPLANATION OF NOTCH BRITTLENESS BY THE FRACTURE
CRITERION PROPOSED BY THE AUTHOR

The above tensile fracture tests of notched specimens will be explained by the
fracture criterion proposed in Part I. The gradients of plastic stress distributions
are not so sharp as in the elastic state. Therefore, the fracture criterion in which
the effects of stress gradient are neglected can be applied to each point on the
entire cross section. Based on the stress distributions at fracture just analysed
above, the maximum shear stress r,, and the maximum tensile stress o,, on each
point on the minimum cross section are plotted against @ at that point in Fig. 21
in fine and bold-face curved lines, respectively. The values shown in parentheses
at the right and left ends of each curve denote the values of 7, at fracture on the
center and at the notch bottom, respectively.

'Zm (Tm
kg/mm? | kg/mm? &< gp Tensile Fracture
60 4120 :N\ Stress Line
’ ‘ g ’ \
+110  Tn=gp = /{
501100 -
=70 P> <89 :
+ 90 =_i0x< @ ~<_ : :
)
4 ‘--------=h‘< ..... --_\-.

401 80 @ \(63) Shear Fracture
1 70 to Notch @ 73)\ Stress Line
Bottom (63) \

301 60 to Center it
/
4 i A= = /
50 A=084 (N=0) (50
204 40 T A=140 (Ro=1) .
—— A= 176 (Ng=4) !
T30 ——— A=225 (7g=9) /( )i Values of Tn
0 20— A=280 (X=16) . kg/mm?
(22)
+ 10
0 ! [ | | ! ®
20 30 40 50 60 70 kg/mm?

FIGURE 21. Diagram for interpretation of fracture behaviors and
notch brittleness.

Both of the fracture stress surfaces, and hence of the fracture stress curves cor-
responding to each value of 7/, or o, have not been determined quantitatively by
the fundamental polyaxial stress fracture tests on this material. Therefore, the
assumed tensile and shearing fracture stress curves for each value of =7, are also
shown against @ by continuous fine and heavy straight lines, respectively, in Fig.
21. Such assumed fracture stress curves are consistent with the experimental results
previously obtained. The intersection point of the a,, or 7, curves and the s, or
T., curves, respectively, under the condition of the same value of 7/, indicates the
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fracture stress and the location of initial fracturing. The fracture will be initiated
in either of cleavage or shear fracture type according to whichever intersection will
be achieved earlier.

For less sharply notched specimens, the maximum tensile stress o,, at the center
is very large under high hydrostatic tension @ due to the triaxial tensile stress state.
Consequently, the o, curve first of all comes in contact with the o, curve in the
range of larger ®. Thus the cleavage fracture first occurs at the center. The tensile
stresses across the cross section decrease from center to periphery, while the shear
stresses increase, on the contrary, causing the growth of shear fracture toward the
center, which would be expected to result in the formation of the cup-and-cone
type fracture surface. Orowan [3/] asserted that the ductile tensile fractures
should not be governed by the maximum tensile stress criterion in the case of the
tensile tests of specimens having various grades of notches. Of course, the maxi-
mum tensile stress criterion based on the average tensile stress in the fractured
cross section would not be consistent with the experimental evidences as shown
by the author’s experiments. However, if it is corrected by the effects of «, and 6,
and applied to each point on the fractured cross section after analysis of the stress
and strain distributions, then such a maximum tensile stress criterion will be use-
ful. The fact that the tensile fracture is initiated at the center under high hydro-
static tension is convincing with reference to the Photograph 1. The cup-and-cone
type fracture surface presenting a discontinuous boundary may be attributed to
the coexistence of two modes of fracture.

For sharply notched specimens, the stress distribution at fracture approaches
the elastic one under small plastic deformation, for which the shear stress at notch
bottom is large due to the stress concentration. Under these circumstances, the
T,, curve first of all comes in contact with the 7., curve, the shear fracture first
ocurring at the notch bottom. The shear stresses along the cross section decrease
suddenly from the notch bottom to the center, while the tensile stresses, on the
contrary, increase, causing the propagation of tensile fracture to the central part.
In this case, it may be considered that the cleavage brittle fracture is promoted by
the concentrated tensile stress at the tip of crack produced by the initial shearing
slip. The shear fracture range at the notch bottom presenting oblique ductile

fracture surface is so small that a flat cleavage tensile fracture can be seen across
almost the entire remaining fracture surface.

For the intermediate specimen of (iii) type (4,=9), the behavior intermediate
between the above two behaviors can be seen; that is, either of them occurs, or
the fracture seems to start from the intermediate point between center and notch

bottom. The latter behavior seems to result from the greatest value of o,, in the
intermediate range and the contact with the o, curve.

From the above description, the notch brittleness phenomenon can be expressed
as follows. The triaxial stress state is firstly produced by the existence of the
notch. However, the plastic deformation in the central part is small because of
the decrease of =, especially for sharp notches, introducing the stress concentration
at the notch bottom as in the elastic state. So the shear fracture starts at notch
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bottom in a limited range and, further, the tensile fracture propagates to the center
rapidly, when there is no time to spare for the plastic deformation. In fact, in the
brittle fracture of all-welded ships, there has been seen the presence of a thin
plastically deformed layer at the notch bottom, from which the crack originates.
The decrease of the energy absorbed in a notched specimen with increasing the
notch sharpness is considered to be due to the larger percentage of area of fractured
surface caused by the cleavege fracture, and it is worthy of note that the major
type of fracture dominating the cross section is different from the type of fracture
as the cause of initiating the fracture. The greatest value of fracture stress in the
intermediate (iii) type as shown in Fig. 14 appears to result from the absence of
both extreme possibilities of cleavage fracture at the center for less sharp notches
and of the shear fracture at the notch bottom for sharp notches.

The problem of propagation of a crack after initiation of fracture is a dynamic
one accompanying the rapid change of stress distribution and there is a need for
further rigorous study on the propagation of cracks. The above interpretations
concerning the fracture behavior should not be concluded as completely reasonable,
but it appears to agree, in part at least, with the start of fracture.

PART III. DEFORMATION AND FRACTURE OF GRAY CAST IRONS
UNDER COMBINED STRESS

3.1. INTRODUCTION

The author has, in order to ascertain the validity and applicability of his cri-
terion to brittle metals, carried out fracture tests on thin-walled gray cast iron
tubes under various ratios of combined tension and torsion loads. The author
made these experiments with due consideration of the intrinsic importance attached
to the fracture occurring in brittle metals and the significance, which these experi-
ments would offer in the study on the fracture criterion, in view of the greater
assurance of determining the state of stress at fracture and reduction of the strain-
hardening in brittle metals by virtue of their limited ductility and absence of the
necking phenomenon. Moreover, the use of thin-walled tube specimens subject
to combined tension and torsion loads offers an approximate stress state, which
eliminates the effect of a stress gradient. Gray cast iron, although inherently of
heterogeneous polyphase structure was selected as a typical brittle metal common
in the engineering field.

Division A describes the deformation behavior before fracture. The peculi-
arities arising in elastic and plastic deformations under combined stresses and
absent in ductile metals are discussed with due account of the notch effect due to
the heterogeneous graphites in the pearlite matrix.

Division B deals with the discussion on the fracture behavior by taking into
account the mechanism of deformation as proposed by Fisher and application of
the fracture criterion at the tip of the graphite flake. Lastly, the findings of other
research students related to the study of fracture under other kinds of polyaxial
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stresses are cited and discussed for the purpose of analyzing the criteria proposed
by others.

3.2. TEST PROCEDURE
(1) Specimens
Gray cast iron specimens used in this study were carefully produced in the form
of cylindrical bars (30 mm in diameter and 150 mm in length) to eliminate blow-
hole or foreign inclusions as much as possible. The chemical composition of the

material was as follows:
C 3.259 (graphite carbon 2.39%, combined carbon 0.95% ),
Si 1.859%, Mn 0.629, P 0.0909,, S 0.106%.

PHOTOGRAPH 2. Microphotograph of metallurgical structure
of this material, at 150 x magnification.

The cast iron was cooled slowly after casting and most of the carbons were
mostly included in the form of graphite flakes. A microphotograph of the metal-
lurgical structure is shown in Photo. 2. .

(a) Specimens for tension and torsion and combined tension and torsion.
Specimens were machined from bars into thin-walled tubes as shown in Fig. 22 (a)
by removing the central and peripheral parts of the bars so as to produce speci-
mens of comparatively uniform structure. Two specimen sizes were used in which
the diameters (d,) were as follows:

Type I: d,;=12mm; TypeIl: d,=13 mm.
The deformation data in Division A relate to Type I specimens, and the fracture
data given in Division B relate to both types of specimens.
(b) Specimens for compression.
The specimens used for compression were solid prisms having a square cross sec-
tion as shown in Fig. 22 (b). These specimens were tested in the as-cast condition.

(2) Testing Machine and Test Procedure

Specimens were loaded with a testing machine as shown in Fig. 23 which is an
Olsen universal testing machine modified for biaxial stressing with the addition
of an apparatus for torsional loading. The tensile load is applied by pulling down
@ on the machine, while torsional loading is applied by rotation of a handle @
actuating a worm gear @, both being mounted on a vertically movable block
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FIGURE 23. Schematic diagram of testing machine
and for explanation of testing procedure.

supported by a thrust ball bearing @. A block ® supported by a thrust bearing
is pulled down by a tensile load, the amount of displacement being measured by
a lever type apparatus on the machine. The torsional load is transmitted as tip
loads on two cantilevers (@ through an arm @ mounted on a fixed block ®, the
amount of torque being measured as the sum of the deflections of two dial gauges
® after calibrations. Both ends of a specimen @ are grasped by grips provided
with conventional V grooves and the grips totally enclosed grip holders @. The
swivels @ and @ serve to eliminate the bending moment due to eccentricity. The
torsional moment resulting from the friction in the thrust ball bearing under
tensile loading and the factor of tensile load arising from the friction between
the plane of contact between @ and the shaft resulting from the application of
a torsional moment were duly considered, but these factors were, upon precise
calibration, neglected because of their negligible magnitude. The tensile load (P)
and the torsional moment (7') were applied in a manner such that the ratio of
tensile stress (o) to shear stress (+) would be maintained constant in biaxial plane
stress in the tube. The principal tensile stress (¢,) was adjusted and applied at a
rate of 1.8 kg/mm?/min.

The compression load was applied with a 10-ton Amsler hydraulic testing ma-
chine.
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(3) Estimation of Stresses

As the strains up to the point of fracture are small, the tensile stresses are de-
fined by nominal stresses based on the original cross section and in accordance
with the following equation.

c=4P|m(d}—d?}) (34)
where d,, d,=outer and inner diameters of tube respectively.

The shear stress is non-uniform along the radius; the average shear stress (7) is
taken as the shear stress, because the wall of the tube is thin and a considerably
uniform stress distribution is obtained during plastic deformation. The shear stress

can be defined according to Eq. (35) from Tsz"’z,,r,,.,,,.,d,,.

r=12T/n(d3—d3). (35)
The equations for the two principal stresses o, and ¢, (0,>0,) are given as
follows.

o,={o+a*+47%/2, o, ={o—Vo*+47%}/2. (36)

The experiments were carried out by maintaining the following stress ratios
constant. ‘

§=a,l0,, Or 2=7/o. (37)

Table 3 gives the five values of ratio used in the experiments.

TABLE 3
3 0 —1/4 —2/4 —3/4 —1
2 0 2/3 VI 23 inf.
Simple tension Combined tension and torsion Simple torsion

(4) Measurement of Strains

In the tests of & ranging from O to — I, mirror extensometers were employed
in measuring the tensile axial strain (g,) and the shearing strain (y) as the strains
involved are of small magnitudes. v is defined as the value at mid-thickness which
corresponds to the use of the average shear stress. The average cirumferential
strain (¢,) and the average radial strain (¢,) are defined by Eq. (38) and determined
by substituting values measured with resistance wire strain gauges bonded circum-
ferentially on the outside and inside of the tube.

&.=(&nte4)/2, }
&, =(&,d,—&,.d)/(d,—d) .
The subscripts “0” and “7” in the above equations refer to the outside and in-
side of a tube respectively.

In the compressive tests, both ¢, and ¢,(¢,) were measured by means of resistance
wire strain gauges.

(38)
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DivisioN A: DEFORMATION BEHAVIORS UNDER COMBINED STRESSES

3.A.1. EXPERIMENTAL RESULTS ON DEFORMATIONS IN TENSION AND
COMPRESSION AND THEIR CONSIDERATIONS

(1) Stress and Strain Diagrams

Typical stress (¢) versus strains (g,, €,) curves under tensile loading are shown
in Fig. 24. Specimens were unloaded a few times before fracture in order to
separate the strain component into their elastic and plastic components as denoted
by the subscripts “e” and “p” respectively in the following equations and the
elastic component was found by the restoring amount.

€, =CEpetE€aps E=E1E,. (39)
6@ 5
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FIGURE 24. Stress versus strains curves under FIGURE 25. Variations of E, and v, under

tensile loading. simple uniaxial loading.

First, the elastic strain components will be considered. A marked characteristic
is observed especially in tension, i.e., the o~¢,, and ¢,, relations are non-linear
presenting concave and convex curves in the lower part respectively which are
phenomena dissociated with ductile metals. If the apparent Young’s modulus E,
and elastic Poisson’s ratio v, are defined by the following equations,

E,=o0les., ve=—¢./c0 -~ (40)
we will find that ¥, and v, will not remain constant with variation of tensile stress
o but actually decrease with the increase in tensile stress. The variations of E,
and v, in relation to the stress ¢ under uniaxial stressing are shown in Fig. 25

which can be represented approximatly by the linear equations noted as follows
in the tensile and compressive fields respectively.

E,=E,—ac, v,=yy—L0. (41)

It is difficult to produce a state of uniform uniaxial compressive stress under
compressive loading because of the barelling effect of specimens. Even when these
effects are admitted, the increase in both E, and v, with increasing compressive
stress seems to be small and especially in E,. The values of the coefficients « and
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B in Eq. (41) under compression are small in comparision with those under tensile
loading. -
Next, the plastic strain components will be considered. If the plastic Poisson’s
ratio v, is defined by the equation
Vp==—E,p[€ap» (42)
then v, will show a variation with increasing tensile stress similarly as found with
v, and it is found to be considerably less than 0.5 for tension, while it is found to

approach 0.5 with increasing compressive stress. The permanent volume change
is defined by the following equation.

(AV]V),=¢up+2e,=6,,(1—2v,) (43)

A gz 0°3 04
0
(T p ¥
FIGURE 26. Plastic volume change during
tensile loading.

0’ 01

The change in volume, for example, in the case of uniaxial tension is shown in
Fig. 26. It has been recognized that v, is nearly 0.5 at all times with ductile metals
subject to plastic deformation and practically devoid of any volume change. While
in gray cast irons, we will find that a permanent increase in volume will always
occur indicating a violation of the assumption of incompressibility.

(2) Considerations of Peculiarities in Deformations by Metallurgical Structures of
Gray Cast Irons

A microphotograph of this material after buff-polishing is shown in Photo. 2
which reveals that the dispersed graphite flakes exist in the pearlite matrix thereby
preventing the polycrystalline grains from binding with each other. The tensile
strength of pearlite is considered to be about 80 to 100 kg/mm?® while that of
graphite is no more than 2 kg/mm? [ 327, wherefrom it is deduced that the brittle
and friable graphite flakes will first be broken down under comparatively low
tensile stress and lead to sharp internal cavities. This deduction can readily be
substantiated by referring to the microphotograph (Photo. 3) taken after fracture
under tension wherein will be noted the development of a fissure in the graphite
flakes oriented normal to the direction of tensile loading.

The graphite flakes are randomly oriented with a length to thickness ratio of
about 12 to 1 and are conveniently assumed as flat ellipsoidal cavities for purposes
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Direction of Tension

PHOTOGRAPH 3. Fractograph of gray cast irons
factured in tensions at 150 x magnification.

of analysis. According to the elastic analysis of Sadowski etc. [33], the stress
concentration factors and displacements around a cavity in an infinite body under
uniaxial stress parallel or perpendicular to the axis of revolution are shown in
Figs. 27 and 28, respectively. These calculated results, however, cannot be used
quantitatively as they stand since they are based on an elastic analysis and because
of the fact that the geometrical figures of graphite flakes are different from those in
the actual state. Nevertheless, these results will serve to explain the peculiarities
of deformation characteristics of cast irons qualitatively. The stress concentration
around the equator under uniaxial tension parallel to the axis of revolution of a
cavity is very great and a considerable plastic deformation will be restricted to
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FIGURE 27. Stress concentration factors around an ellipsoidal cavity
under uniaxial loading in the direction of its axis.
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the tip of a flake as recognized in practice [34]. Although the graphite flakes are
randomly oriented, it is a fair approximation to assume that only the flakes situated
normal to the direction of tensile loading cause the decisive influence on deforma-
tion and fracture, while the remaining flakes have little or no effect on the de-
formation and fracture.

Under tensile loading, the notch sharpness at the edge of oblate flakes normal
to tensile stress becomes considerably smaller and the displacement at the pole A
(Fig. 28) increases relatively to that at the equator B resulting in the decrease of
apparent flatness s=b/a. Therefore, the decrease of E, with an increase in tensile
stress can be attributed to the increase of the displacement at the pole (%,)s., due
to the permanent geometrical change of the graphite flakes. Further, the decrease
of v, can be attributed to the decrease of the ratio; (%,)s- »,»/(%a)s-o due to the de-
crease of s which is shown by the chain line in Fig. 28. The prolate flakes parallel
to the direction of tensile loading will not contribute to the variations of £, and
vy, because of the small stress concentration around the flakes, and therefore, of
the small geometrical permanent change. The presentation of a curve under a
small stress in the course of initial loading for elastic stress versus strain as evi-

denced by the experiment can also be satisfactorily explained by the aforenoted
considerations.
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FIGURE 28. Displacements at the pole and FIGURE 29. Stress concentration factor o3 at

the equator of an ellipsoidal cavity
under uniaxial loading parallel to the
axis of revolution (put the length of

the equator of an ellipsoidal inclusion
under uniaxial loading parallel to the
axis of revolution.

its axis equal to 1).

On the other hand, the compressive strength of graphites is considered to be
less than about 10 kg/mm?® and they will be crushed in compression. However,
such graphite flakes will continue to exist as plastic bodies exhibiting little volume
change as observed in soils and will not act as cavities. The stress concentration
factors (o) at the equator of a flat ellipsoidal inclusion under uniaxial stress
parallel to the axis of revolution are analysed and plotted in Fig. 29, with reference
to the analysis of Edwards [35]. Even in the case where the modulus of shear
rigidity of the inclusion G’ is much less than that of the pearlitic matrix G, the
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stress concentration becomes considerably small in comparison with that in the
~case of a cavity as the Poisson’s ratio of inclusion y' approaches 0.5. Moreover,
the residual tensile stress is expected to occur at the tip of a flake due to the dif-
ference in the cofficients of thermal expansion during cooling. Hence, the flakes
are not assumed to exert a stress raising effect under compression.

When a flake is subjected to compression, the notch sharpness will somewhat
decrease initially because of the restriction of plastic deformation around the edge,
while the overall flatness of a flake will be found to increase with an increase in
the compressive stress after the flake is crushed. Thus, the change of apparent
flatness s will be almost absent or very small even when it occurs. Consequently,
the apparent Young’s modulus E, will be almost invariable under compression.
The apparent Poisson’s ratio v, dose not show any appreciable change such as
found under tension; however, it does show a tendency to increase slightly with
an increase in the compressive stress, which will result from a slight increase in
s and with a plastic Poisson’s ratio nearly equal to 0.5.

As a result, the author considers that the graphite flakes can transmit compres-
sive stress without a stress raising effect as sound and reliable material, while
under tension, it acts as an internal notch, as suggested by Fisher [36]. The gray
cast irons will present compressive characteristics similar to those associated with
ductile materials.

3.A.2. BEHAVIOR OF ELASTIC STRAIN COMPONENTS UNDER
COMBINED TENSION AND TORSION

The elastic strain components in the tests under combined tension and torsion
were found by maintaining the ratio of biaxial stresses constant and by unloading.
The behavior of these components will now be considered.

The apparent Young’s modulus E, and modulus of shear rigidity G, are ex-
pressed by the following equations by using the elastic components of axial strain
(¢,.) and shearing strain (vy,) respectively.

E,=ofse, Gu=r/v.- (44)
The variations in the ratios of E,/E, and G,/G, (E, and G, denote the values of
E, and G, near o=0 and +=0 respectively) are shown in Fig. 30 for each value of
¢:E, and G, decrease with an increase in the shear stress = and the tensile stress
o respectively. On the other hand, the modulis of elasticity of ductile materials
are independent of the state of stress under combined stress. The unusual varia-
tion in gray cast irons will be accounted for as below.

The state of biaxial plane stress under o and = can be replaced and reexpressed
in terms of the principal tensile stress o, and the principal compressive stress o,
according to the following equations as shown in Fig. 31.

o= ST, 7=2(1—JTF4F), tn 20=27 =2;. (45)
g

Now, the principal strains can be written as
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FIGURE 31. Plane stress state under combined
tension and torsion.

Elezﬂ'l/El—Vz(ﬂ'z/Ez): €s. =03/ Ey—v (a,/Ey), }
€3¢— — {V1(01/E1)+V2('-72/E2)}

where, E, and E, are the tensile and compressive Young’s modulis in the direc-
tions of ¢, and a,, respectively, and v, ane v; are the Poisson’s ratios defined similar-
ly as in the above. These values are expressed as functions of stresses and are
assumed to have the same values as under simple uniaxial stresses. This assump-
tion is not true since it must be taken into account the state of stress and the con-
ditions of loading. However, these values will serve convenient for the purpose
of analysis in a first rough approximation with the consideration that only the
graphite flakes normal to the principal stresses have any decisive effect on the
deformation behavior. The reciprocal theorem of Maxwell-Betti will then hold
true based on the above presumption. '

(46)
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v/ Ey=v,/E, . 47)

The elastic strain components in the principal axes of a specimen can be ex-
pressed in terms of the principal strains as follows:

€4, =6, COS? 046, sin% 6,
& =5, sin® f+¢,, cos® 4, (48)
¥e=2(€,—&,) COs G sin G .

Substituting Eqs. (45) and (46) in Egs. (48), then Eqgs. (48) will be transformed as

follows:
o 1 Iy, 14222/ 1 1 ﬂ \
Coe=5 I\t | e [ —— ) |,
2 K E,  E,/) 142 ( E, E,
2 1 1
& e:o’[——v—l——{-":—_- ——*——)] Py
: E,  Jitaz ( E, &, ( (49) ‘
1 1 v 1 1 1
vl g e ()]
E, E, "E/'JI+4Z\E, E, )
Both E; and v, are assumed to be represented approximately as linear functions
of ¢ as given in Eqs. (41) and written as Egs. (50) by using coefficients (material
constants) « and 8 under tension and compression, respectively.
Eleo“-alal, yl':uO_Bldl
Ey=Ey—a;, v;=u,—By0, (50)
(Vo/Eozﬁl/%sz/az) .
E, and G, can be found by substituting Egs. (50) in Egs. (49). If we assume o, =0 -
by taking into account that K, is almost invariable in compression according to
experimental findings, E,/E, and G,/G, will reduce to
B, _1-(1+41 +42*)(a,0/2E,) \
K, V142 —1 e\’
l+ 22( 1
V142 ZEO)
- 51 .
G, _ 1 —(1+V14+42)(ayr/2E,2) ' G a
Go | _ 284y (1+48+V1F48) [ apr ) |
V14+42%(1+4,) \2E2 )

If, as in the case of simple torsion, 1— oo, then G./G, can be written simply as

Ga — 1 ‘(“1T/Eo)
Go  1—(142ve)(ayr/Eo)/2(1 4 )

The numerical results obtained from the above with a,/F,=0.014 (1/kg/mm?) and
v,=0.24 from Fig. 25 are shown in Fig. 30 by solid lines for ratios of combined
stresses. The calculated results can be seen to be in fair agreement with those of
experimental results.

' It is of further interest to note that a circumferential strain g, 1s produced in
simple torsion. Of course, &, =(¢,) is absent in ductile materials in simple torsion.

(52)
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FIGURE 32. Shear stress versus circumferential strain
curve under simple torsion.

However, according to Eq. (49), the elastic components of tensile strains in the
axial and circumferential directions in cast irons are found by the following
equation by putting a,=0 similarly as in the preceding.

trem(en) = S B (53)

2a;, 1—(a;7/Ep)

It can be seen that ¢, will increase more and more with an increase in =. The
curves of r versus ¢,(¢,,) obtained in the experiments under simple torsion are
shown in Fig. 32. The elastic component of the axial strain g,,, which is of the
same order as ¢,,, was also found in the same experiment by the use of a mirror
extensometer. The analytical curve obtained by Eq. (53) using the same value
of a,/E, as in the above, is shown by the broken line in Fig. 32 which is found
to coincide almost exactly with the experimental curve shown by a chain line.

3.A.3. PLASTIC BEHAVIOR IN DEFORMATION UNDER COMBINED
TENSION AND TORSION

When the ratio of combined stress £ (or 1) is maintained constant during load-
ing as in this experiment, it will be found that the axes of principal stresses will
not rotate together with the principal axes of plastic strain increments, thereby
simplifying the analytical treatment on plastic deformation as described in Section
1.2 (3). In the discussion on the flow behavior of ductile metals, the elastic strain
components and the plastic volume change were neglected as negligible quantities.
In such a case, a unique relation between the equivalent stress 75, and equivalent
plastic strain , which are given as below after correcting the constant terms in

T, and «,, was adopted with a considerable success to express the flow curve under
various ratios of combined stresses.

T;.Zx/?"/a'\/dfj'a{j=\/af—0102+a§=\/02+372, }

32 4
Yo=A2[3 Vel ] - P =Ae,+(3) . oY
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The law of constancy of plastic volume is disregarded by referring to this

experiment on gray cast iron and v/, is defined in accordance with the equation.

=2 (Ear— )+ (€= ) (61— )+ (312) 3 (55)
The average curves of 7/, plotted against 4/ for each ratio of combined stresses
are shown in Fig. 33 (a). It can be readily observed that little uniqueness exists
between 4, and ¢/, for cast irons and that the equivalent stress +, becomes greater
as the values of £ increase.

Next, the equivalent stress 7, will be further considered. The equivalent stress
5, is expressed in terms of the macroscopic average stress. However, due con-
sideration must be given to the fact that large stress concentrations exist as noted
previously around the edges of graphite flakes under tensile loading, which have
a marked influence on the deformation behavior. Accordingly, then, a macroscopic
concentrated stress ko, (k=macroscopic plastic stress concentration factor) will
be used by taking into account the notch effect in lieu of the tensile stress o, and
leaving the compressive stress o, as it stands. For proximate correction, the equa-
tion for equivalent stress +/, in the case for biaxial stress is replaced by the follow-

ing equation for notch equivalent stress 7,* (Eq. 56) as heretofore introduced by
Coffin [37].

¥ =y(ka,)?—(ko,)oy+ ot

(56)

2 S __
:a\/k ;rl+k 5 LTFaz+ 200 +k+1) .

The value of k in the above equation denotes a macroscopic factor of stress con-
centration which in practice will be found to be much greater in value just at the
edge of the notch. Furthermore, it is natural to expect that this value would vary
with the degree of plastic deformation and decrease with an increase in the value
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FIGURE 33. Plastic stress versus strain relationship under combined tension and torsion.
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of v,. However, from the plastic flow curves in Fig. 33 (b) determined with k as
equal to a constant of 2.15 under various combined stresses for 7,*/k versus Yas @
very satisfactory correlation curve can be found as compared with +/, versus Vo
curves shown in Fig. 33 (a) in spite of the use of a specific value of k. For veri-
fication, k is estimated under the assumption that the m*/k versus v/, curves under
simple tension and torsion coincide with each other and is represented by the
chain line in Fig. 33 (a). The plot reveals that k becomes smaller with an increase
in ¢, for a small deformation range i.e., 7, < 0.1, as expected qualitatively. On
the other hand, k is nearly constant after the occurrence of a certain degree of
plastic deformation i.e., 4,>0.1. Moreover, the plastic flow curves for compres-
sion will even be found to coincide nearly with the above noted curves, if A
is replaced by |, |/k.

Although the treatment considered in the preceding is entirely empirical and
approximate, it nevertheless will be found to be of practical importance in con-
nection with the relation between 7, and «/, in ductile metals. The possibility of
taking k as a constant will prove very convenient in discussing the plastic flow
of cast irons in parallel with ductile metals and also in explaining the fracture
stresses as will be given hereinafter.

DivisioN B: FRACTURE BEHAVIOR UNDER COMBINED STRESSES

3.B.1. EXPERIMENTAL RESULTS ON FRACTURES UNDER COMBINED
TENSION AND TORSION

(1) Fracture Stresses

Plots of fracture stresses under various ratios of combined stresses are shown
in Fig. 34 (a) (v, versus o, diagram) and in Fig. 34 (b) (o4, versus oy, diagram).
A rough approximation seems to indicate that gray cast irons fracture principally
in accordance with the “maximum principal stress law”. This law, however, is
not conservative and it would seem that the maximum principal tensile fracture
stress would be lower with the increase in torsion as seen from the dotted line
which represents the average value of fracture stresses in F ig. 34 (b). Even though
the maximum shearing stress on the outer surface is taken into consideration in-
stead of the average shearing stress along the radius, this decrease in fracture
stress can be verified clearly. Although the scattering of fracture stresses is an
inherent characteristic associated with cast irons, this same tendency has been
found existing in tubes, for example, under internal pressure and axial compres-
sion as reported in experiments by research students [371[38] [39][14] and as
referred to hereinafter.

The torsional strength of cast irons has been said to be greater than its tensile
strength by about one and one half times as much which can be attributed to the
effect of the stress gradient in a solid bar under torsion as previously explained
by Professor Dr. Nakanishi [40]. It will be worthy to discuss this aspect in view
of the evidence obtained from experiments, which disclose that the torsional
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FIGURE 34. Fracture stresses under combined
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strength 7, of a thin walled tube is less than the tensile strength g, in spite of a
small stress gradient in the thin wall.

(2) Directions of Fractured Surfaces

A specimen subjected to simple tension fractures into two parts along a plane
perpendicular to the axis, while the surface of fracture under simple torsion forms
a spiral. The spiral fractured surface formed in the initial stage under combined
tension and torsion progresses along the route shown by the chain line in Fig. 35
because of the change of stress distribution in the unfractured cross section there-
by causing the separation into two parts. Accordingly, the direction of the
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fractured surface on the outer surface of a specimen is measured near the point
at which fracture starts. The angle thus measured is denoted by ,. The angle
Omean at mid thickness is calculated in accordance with Eq. (57) and Fig. 36. It
results from the consideration that the average shear stress is taken as the shear
stress and the mean shear strain v,,,, at mid-thickness (7 =7.,,) as the shearing
strain.

tan 0,,,, =tan g,-: (57)

7o
ro—(t/2)
The angle of maximum principal stress in relation to the axis of the specimen
(Buneo.) is given by Eq. (58) in which the fracture stresses =, and o, are used.

Binso, = tan~'( 22) (58)
2 o,
The relation between the calculated angles 6,,,, and the experimental angles 6,
and 6,,,, is plotted as shown in Fig. 37, from which it can be observed that §, is
slightly smaller than 6,,.,, whereas 6,.,, is a little greater. In any case, it can
be concluded that within allowable experimental errors, the surface of fracture
is formed almost normal to the direction of maximum principal stress.

(3) Strains up to Fracture

Table 4 shows those remarkable strain components ¢,, and v, derived from the
experiments under combinea stresses, in which the average values are taken from
several specimens.

TABLE 4. FRACTURE STRAINS (25)

¢ o | -4 | 24 —~3/4 ~1
i
€ar (96) 0.790 0.672 ‘ 0.654 0.566 0.122
7, (%) 0 0.713 ‘ 1.102 1.665 2.269

The table reveals that the ductility increases as the magnitude of = increases in
relation to o. Further, cast irons under compressive loading will exhibit an ap-
preciable ductility as seen in ductile materials.

3.B.2. CONSIDERATIONS ON THE EXPERIMENTAL RESULTS DERIVED
UNDER COMBINED TENSION AND TORSION

The singular behavior of deformation has been well explained with due con-
sideration of the graphite flakes in Division A and in which, Fisher’s hypothesis
is recognized as reasonable. When the principal tensile stress is greater as in this
combined state of stress, it will be found that the graphite flakes oriented normal
to the maximum tensile stress will cause the greatest effect on fracture. Con-
sequently, a fractured surface is formed by the linkage of a number of cavities
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as seen in the microphotograph (Photo. 3) and the direction of fracture established
thereby.

The fracture of gray cast irons will now be discussed with due consideration of
the mechanism of fracture, applying the fracture criterion presented in Section
1.2 around the edge of such a cavity.

(1) Explanations on the Experimental Results According to the Fracture Criterion

The fracture studied in this experiment is one which occurs under biaxial stresses
due to o, (principal tensile stress) and o, (principal compressive stress). On the
basis of experimental evidence that o, (principal tensile stress at fracture) is
nearly constant and that the fractured surface is almost normal to o,,, we consider
the most severe state of stress to exist, where the principal tensile stress acts
normally to the long axis of a flat ellipsoidal cavity as shown in Fig. 38 and apply

_B#s®
%201

AL 740,
wafl e

(a) side view (v) plan view

FIGUER 38. Concentrated stress state around an ellipscidal
cavity under combined tension and torsion.

Eq. (2-b) in determing the tensile cleavage fracture due to a stress concentration
around its tip. From Table 4, it is seen that the fracture strains are considerably
small in comparison with those for ductile materials. Therefore, the strain
hardening effect on fracture expressed by the third term of the right-hand side
of Eq. (2-b) will be neglected which reduces to

o.,=0a +b'0 (59)

The coefficient b, which expresses the weakening effect due to polyaxiality, has
a negative value as noted in Section 1.2 of Part I.

The concentrated stress components around the edge of an ellipsoidal cavity
under biaxial stresses ¢, and o, are shown in Fig. 38 and the elastic stress concen-
tration factors k, (k,>0) calculated in accordance with the analysis of Sadowski
etc. [33], are shown in Fig. 27. The stress component k,s; in the direction of a,,
which is greatest in elasticity, will likewise be so in the plastic range, although
the stress concentration will be reduced by the stress relaxation due to the plastic
deformation around the edge. This deduction will be justified from the facts that
the peculiarities in plastic deformation have been well explained by the use of
ko, instead of &, because of the notch effect of graphite flakes as explained in
Division A. Specific values of &, are not definitely known; however, the local
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factor will be much greater than 2, when it is considered that the macroscopic
average stress concentration factor is about 2 as described in Section 3.A.3. It
will be reasonable to assume that the values of k, correspond to s=6~7 in Fig.
27 when the decrease of notch sharpness is taken into consideration, as will be
explained later. In other words, it is supposed that k, is about 8 to 9, k, and k;
are a little greater than 1, and k,, k,, k; are small (k,>k;>k,). Of course, the
values of k, will differ depending on the degree of plastic deformation. The most
important factor k, will decrease with an increase of #,, but remains almost con-
stant in the neighborhood of the point of fracture after plastic deformation has
progressed to a certain degree as described in Section 3.A.3.

The largest stress component ks, has a decisive effect on the fracture; however,
the small stress component —k,0, Or —kqo, in the same direction will contribute
to the fracture, because it superposes on k,o,. Furthermore, the stress components
k.a,, k5o, and —k,o, in the direction transverse to ¢, will cause a secondary effect
on the fracture strength through the term '@ in Eq. (59). Taking two typical
points A and B around the edge (Fig. 38), we will compare the probability of
fracture at these points. Since k, is greater than k in the direction of ¢,, and
— ko, is tensile, while ko, is compressive in the transverse direction, the fracture
is expected to initiate at the point A whereat the fracture criterion is applied.

If the values of material constants a’ and b’ for a particular material and the
values of k, are known quantitatively, the fracture stresses should be determined
in accordance with Egs. (1) and (59). If the values are not known, the fracture
condition can be derived by using the values of the fundamental strengths (s, and
7o €tc.). In other words, Eq. (59) is rewritten for simple tension and simple torsion
respectively as follows: ' ‘

koo=a +b (ki +k)oo/3, } (60)
(ki +k)ro=a' +b'(ky+ ke +Es+k)r/3 .

Egs. (60) can be solved with respect to @’ and b’ as follows:
o' =(koke,—kks)aoro/ D,
V' =3[k,o0—(ky+k)70]/D, (61)
where D=(k,+k;)oo—(k,+ky+Fks+k)r, .

Substituting a’ and b’ thus obtained and ¢,, and @ given by the following equations
O'm:kla'l—k40'2, } (62)
0 =[(ky+ks)o,—(ks+k)o:]/3

in Eq. (59) after putting ¢., equal to o,, the fracture stresses under combined

stresses can then be predicted by the following equation:

a—noy=a,, where z5n=(ao/T)—1 (63)
or

(T/To)2+(1”"77)(0/00)4"’7("/‘70)2:1 (64)

where k, disappears being included in o, and 7, of the fundamental strengths.
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The line representing 5 equal to 0.1 is shown by the full line in Fig. 34 which
shows a marked correspondence to experimental fracture stresses. Eq. (64) cor-
responds to the “ellipse arc theory” and Eq. (63) resembles the formulas proposed
by Marin [4/] or Sunatani [42]. However, the bases or concepts for derivation
of these formulas are different depending on the investigators. The tensile frac-
ture in this experiment with gray cast irons was determined with due considera-
tion of concentration of tensile stress at the tip graphite flakes and of the state
of polyaxial stress. That is, the experimental evidence that =, is smaller than g,
can be explained by the additional tensile stress k,, due to o= —7, and by the
weakening of material through the superpositioning of the tensile stress in the
transverse direction.

(2) Comparison with Other Proposed Criteria

Most proposed criteria claim the failure of materials as being determined by
the shear whose critical value is expressed as a linear function of the normal
stress acting on this slip plane. However, the application of such a criteria to
cast irons is questionable in view of the fact that the fracture occurs in cleavage.
According to the criterion proposed by Sunatani [42] on tensile fracture in which
the critical tensile stress is expressed as a linear function of the shear stress acting
on the cleavage plane, the fracture is not expected to be formed normally to the
direction of maximum tensile stress. This concept has been confirmed in prefect
brittle materials such as, for instance, chalk and the like, but not in cast irons
under combined tension and torsion as in this experiment or under internal pres-
sure and axial load as later described, wherein the surface of fracture was found
to form almost normally to the direction of maximum tensile stress. Although
the decrease in the torsional strength compared with the tensile strength can be
explained in the tension—compression field according to criteria heretofore pro-
posed, the behavior of fracture stresses relative to tension—tension field under
biaxial stresses cannot be explained according to a similar viewpoint.

According to the fracture theory of Griffith [43] for brittle materials under
biaxial stress, the fracture is assumed to occur when the highest local tensile stress
around a crack reaches a fixed critical value equal to the molecular cohesion of
the material. Griffith, in employing the elastic analysis of Inglis, deducted that
if 30,4+0,>0, the fracture would occur when ¢,=¢, and the fractured surface
would be formed normally to the direction of ;. However, if the deduction is
derived on the basis of an elastic analysis, the stress concentration due to ¢, should
have a contributory effect on the fracture. The author therefore cannot agree
to the deduction that g, is constant at fracture. If the fracture is analysed in ac-
cordance with Griffith’s theory [44] based on the energy standpoint under simple
tension, the effect due to o, can be reasonably neglected as applied to perfect brittle
materials with finely dispersed cracks, in view of the value of the radius of curva-
ture at the tip of a crack, which is in the order of magnitude of atomic spacing
and the decisive effect of the stress concentration due to g,. However, a stress
relaxation takes place around the cavity of polycrystalline aggregates such as in
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cast irons by plastic deformation wherefrom the polyaxial state of stress must be
taken into consideration in detail in making an analysis of the fracture mecha-
nism.

It is difficult to distinguish our concept from other proposed criteria by experi-
mental results in such a comparatively limited field of combined stresses. How-
ever, a review of our concept will be made to show its reasonableness and justi-
fication through the application of our criteria in determining the fracture stresses
under a wider field of polyaxial stresses. On this view, the experimental results
under other kinds of polyaxial stresses by other research students will be cited
and discussed hereafter.

3.B.3. CONSIDERATIONS OF FRACTURE RESULTS OBTAINED UNDER
OTHER KINDS OF POLYAXIAL STRESSES

(1) Biaxial Tensile Fracture under Combined Internal Pressure and Tension

The experiments carried out by several research students [37] [387] [39] [ /4]
on thin-walled tubes are summarized in Fig. 39. In the case cited, the fracture
under biaxial tension occurs along a plane normal to the direction of maximum
tensile stress. Referring again to the tensile cleavage fracture as derived in our
experiment and as described in Section 3.B.2., and the flat ellipsoidal cavity
located normally to o, as shown in Fig. 40 wherein ¢,> 0, the severeness of frac-
ture is compared at the two typical points A and B. Now, in the case where o,
is tensile, the fracture would be expected to initiate at the point B, whereat the
fracture criterion would be applied since k, is greater than k,, and ko, is tensile,
while —k;o, is compressive in the transverse direction. If the values of k, are
known, the fracture stresses under biaxial tension can be solved by using the
values of a’ and b’ from Eq. (61) according to the same fracture mechanism as
described in Section 3.B.2. However, as these values are quantitatively unknown,
the following fracture condition under biaxial tension can be obtained in the
same manner as in Section 3.B.2. by using the fracture stresses ¢, and o, under
equal biaxial tension and simple tension respectively.

o1+Coy=0,, where (=(ogo/a,)—1 (65)
The lines representing { equal to 0.1 to 0.2 are shown by the dotted lines in Fig.
39 which correspond closely with the experimental fracture stresses in the tension
—tension quadrant. The fact that the principal fracture stresses under biaxial
tension are smaller than ¢, even though the tensile stress at the edge in the direc-
tion of o, is reduced by a superpositioning of the compressive stress —kqo,, can
be explained by the extreme smallness of k; as well as by the major effect on the
fracture by the weakening of the material strength caused by the large transverse
stress component (k,o,+ks0,). It is noteworthy that this description can be veri-
fied quantitatively by using the value of 7 in the tension —compression quadrant
as shown by Eq. (63) and the values of k, corresponding to s equal to 6 to 7 in
Fig. 27.
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(2) Biaxial Fracture under Combined Internal (External) Pressure and Compression

The experimental results of other investigators [37] [38] [39] on thin-walled
tubes under combined internal pressure and compression are summarized in Fig.
39 and the results including the data under external pressure and compression are
shown in Fig. 41. Cornet and Grassi [39] indicated that the distortion energy
criterion modified by the factor of stress-concentration is consistent with the
experimental data, i.e., the prediction of the fracture stress is made with the use
of the constancy of the notch egivalent stress +,* as given in Eq. (56) in stead of
75 and it is shown in the following equation.

20 (a) side view (b) plan view
FIGURE 40. Concentrated stress state around an ellip-
soidal cavity in the tension-tension field.
20
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FIGURE 39. Fracture stresses on thin- ]
walled tubes under internal pres- FIGURE 41. Fracture stresses on thin-walled tubes -
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sion) by other investigators and sion (compression) by Coffin [37] and analytical

analytical curves by the author. curves by the author.
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(ka’l)2—(ko‘l)dg“l—ag:'r.f.*z:ag . ) (66)

In the above equation, k denotes |a,|/ay, i.¢., a ratio of the fracture stress in simple
compression to that of simple tension. By this definition of k, the curves of these
fracture stresses as shown by the dashed lines in Fig. 39 pass thru both points —g,
and o,; however, it can be seen that these curves represent conservative approxi-
mations of the experimental data for various ratios of axial to tangential stresses
ranging from simple tension to simple compression. This criterion is of course
emprical, wherein the fracture mechanism is disregarded and seems to be open
for discussion.

The author suggested in Section 3.B.2. (1) that metals present two main types
of fracture depending on the loading circumstances. As a matter of fact, the two
types of fracture can be seen in this field of combined stresses, and they are dis-
cussed in accordance with the criterion given in Egs. (2).

(i) The tensile fracture will first be considered. In the tension-compression
field of stress ratios ¢,/e, ranging from 0 to —3, the surface of fracture is found
to form in the axial direction normal to the tangential tensile stress ¢, due to the
internal pressure, wherefrom it is made clear that the fracture is caused by the
tensile fracture due to ,. The fracture mechanism in this case is quite similar
to that under combined tension and torsion as described in Section 3.B.2. (2). The
heavy lines representing  equal to 0.1 to 0.2 in Fig. 39 and Fig. 41 seem to coin-
cide in good agreement with experimental data.

(ii) Next, the shear fracture will be considered. Under loading conditions pre-
dominantly compressive in the tension-compression quadrant, and needless to say,
under simple compression or biaxial compression, the cast irons are characterized
by a large ductility, obliqueness of the fractured surface and metallurgical ap-
pearance on the fractured surface similar to those in ductile metals, wherefrom
the deduction is made that the fracture is caused by a shearing process. Accord-
ing to Griffith’s theory [43], the fracture occurring under loading conditions,
where the compression is considerably in excess of tension is basically accounted
for by the mechanism of tensile fracture. Granting that this theory is reasonable
as applied to fracture in perfect brittle materials such as concrete, glass etc., it
is not, however, considered applicable to polycrystalline metals such as cast irons,
since plastic deformation occurs at the tip of graphite flakes in cast irons and
the compressive stress can be transmitted without stress raising effects as explain-
ed in Division A. Consequently, the author wonders the application of Griffith’s
theory to cast irons. According to Griffith’s theory, the compressive strength
should be eight times the tensile strength and the angle @ of the surface of frac-
ture with the direction of o, should be found to change gradually, if 3¢,+a,<O0.
In practice, however, the two distinguishable angles i.e., §=0° in tensile fracture
and §=45° in shear fracture are clearly observable. Under compressive loading
conditions, there exists a danger of obtaining incorrect fracture stresses; however,
the experimental data given in Fig. 39 and Fig. 41 will be adopted as correct and
will be discussed below.
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In this case, Eq. (2-a) will be taken and applied in a manner similar to as ap-
plied to ductile metals. Since the fracture strains v, up to fracture of cast irons
even under simple compression are only about 10 to 15% and are considerably
smaller than those of ductile metals, the third term of the right hand side of Eq.
(2-a) will be neglected for a first rough approximation and the following equation
will be used.

Ty =040 . (67)

Since the values of material constants ¢ and b are unknown, the fracture stresses
will be represented by the two typical fracture stresses in the same manner as
described before. For instance, if —o; and —aj are designated as the fracture
stresses under simple compression and equal biaxial compression respectively,
Eq. (67) can then be written as follows for these two cases.

oof2=a—bloe/3), osl2=a—b20s/3). (68)

Substituting @ and b obtained from Eq. (68) in Eq. (67), the limiting shear fracture
stress T, can be expressed by the following equation.

Tcr:{ﬂ'co"B_(dB‘—"c)(Ul+02)}/2(20'B—”c) (69)

Taking into account the maximum shear stress for each of the different fields of
combined stress, the conditions of fracture can be expressed by the following
equations after taking ,, equal to 7.

Tcr:_'az/Z; 0>0,>0,, } (70)

Tcr:“(GZ—al)/Z; 61>0>02'

From both of Eq. (69) and Egs. (70), the fracture stresses can then be predicted
from the following equations.

o{l —(o¢log))—0os=0¢; 0>0,>02 (71a)
o{3—2(o¢lo5)} —02=0¢; 0,>0>0: (71b)

The theoretical curves based on Eq. (71) for the case of ozloc=2 are shown by
the chain lines in Fig. 39 and Fig. 41. A value of a/o¢ gives a good fit with experi- B
mental results in all fields under shear fracture. It can be noted that the stress
increases with an increase in the hydrostatic compression. If the effect of plastic
deformation which is neglected in this case is taken into consideration, the frac-
ture stress will not be represented by a straight line as would be given by Eq. (71)
but by a curve as shown in Fig. 2 and Fig. 3 in Part I, which would seem to
indicate that more accuracy can be secured.

As described above, the fracture stresses as covered in this field of study in-
volving two types of fractures could be analytically explainable without con-
tradicting the modes of fracture. Further, if the significance of the experiment
on cast iron for the study of fracture criterion is considered as pointed out in
Section 3.1, the resonableness of the author’s fracture criterion seems to be es-
tablished.
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CONCLUSIONS

First of all, in Part I, the general phenomenological fracture criterion of poly-
crystalline metals was presented and the experimental fracture results with duc-
tile metals were chiefly explained. in good agreement with the analytical results.
Next, in Part II, the stress and strain distributions at the moment of fracture in
the minimum section of mild steel round bars having hyperbolic notches were
analysed approximately and the notch brittleness phenomenon, as an example of
application to practical problems, was explained by applying the fracture criterion.
Lastly, in Part III, the fracture tests on thin-walled gray cast iron tubes were
carried out under conditions of combined tension and torsion and it was shown
that this criterion was applicable also to brittle metals. These experimental data
as well as those by other research students under other kinds of combined stresses
could be satisfactorily explained with due reference to the deformation mechanism
in the light of the notch effect of graphite flakes.

Generally speaking, the various kinds of fracture problems could be explained
to a certain extent, without contradictions to experimental evidences by holding
the main two influence factors in the criterion proposed by the author. So, the
reasonableness of this fracture criterion of polycrystalline metals, without dis-
tinction of the so-called ductile or brittle materials, seemed to be established.
However, the author does not think that the complicating fracture problems can
be fully explained by only such a criterion, in which various influence factors,
e.g., the effects of stress gradients, and anisotropies etc., are neglected. To apply
this criterion to various actual engineering problems, it is further desirable to
know the dependence of limiting fracture stress surfaces on the temperature and
the rate of stress, etc., based on the mic;omechanism of metals. Moreover, the
quantitative data concerning the fracture stress surface is scarce. There is, there-
fore, a definite need for further investigation in these respects, which will be
further discussed in the future after suitable preparation of the testing machines
and apparatuses.

This criterion was presented for discussing the statical fracture of metals.
However, we will find, even in ductile metals, that the behavior in fatigue failure
is similar to that in statical fracture of brittle metals, wherefrom we can expect
to discuss the fatigue failure from the same viewpoint as described herein, if we
consider that the cracks formed by repeated stresses have the same effect as that
of graphite flakes in gray cast iron. The author also maintains that a form of
formulation of this criterion could possibly be extended for application to fatigue
failure.
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