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Summary. This paper is concerned primarily with the problem of flow in which the

viscous layer is so thick that the flow field behind the shock wave is no longer distinctly

divided into the viscous and inviscid regions. A theoretical method is presented on the
basis of the simplifying assumptions that the flow is incompressible downstream of the
shock wave and furthermore the radial distance # is nearly equal to the distance x measured
along the surface from the stagnation point. These simplifications may be considered to
lead to good approximation, so far as the ratio between the densities ahead of and just
behind the shock wave is sufficiently small and the field under consideration is restricted to
the vicinity of the nose. Then the method yields the solution of the Navier-Stokes equa-
tions, both of conditions at the shock wave and on the surface being satisfied. Due to the
method, however, the solution can be evaluated only by the numerical integration. The
alternative method is presented, yielding an analytical expression of the solution, but being
applicable only to the case where the Reynolds number is large. The results due to both
methods were found very close to each other down to the lower Reynolds number than
anticipated.

The main results are summarized as follows:

(1) There exists a similar solution consistent with the conditions both at the shock wave
and on the body surface.

(2) The surface pressure coefficient obeys the modified Newtonian law independently of
the effect of viscosity.

(3) The distance of the shock wave from the body increases with 1/VR, (R.: Reynolds
number based on the uniform velocity and radius of curvaturs of the shock wave) and
the rate of its increase becomes small as B, decreases.

(4) The skin friction increases almost linearly with 1/+/R,, at least, over the range of R,
where the present analysis may be applied.

1. INTRODUCTION

The problem of a high speed flow past a blunt-nosed body has received a con-
siderable amount of attention from a practical point of view, because the use of a
blunt-nosed body is more profitable than that of a sharp-nosed body concerning
surface heat-transfer rate near the nose. In the present paper we will consider a
flow near the nose of a spherical body placed in a hypersonic flow. In this case
the shock wave is detached from the body and the disturbed flow region occurs
between the shock wave and the body. This disturbed region is termed “shock
layer™ because of its similarity to the boundary layer.

[189]
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190 H, Oguchi

If the thickness of the viscous layer along the wall is thin enough to be ignored
as compared with that of the shock layer, then the influence of the viscous layer
on the disturbed flow field is so small that the entire flow field except the im-
mediate vicinity of the body may be treated as an inviscid flow. Then the viscous
layer can be analyzed within the framework of the boundary-layer approxima-
tion under the external condition obtained from the inviscid flow analysis. In
fact, based upon this consideration, Mark [/] and Naruse [2] have investigated
the effect of the vorticity induced by the bow shock wave on the viscous layer.

Evidently the above consideration is not appropriate to the case where the
viscous layer becomes so thick that it plays a significant role in the shock layer,
because the interaction phenomenon between the shock wave and the viscous
layer becomes considerably complicated and the distinct division of the flow field
into the inviscid and viscous regions is no loger permitted. This paper is mainly
concerned with a theoretical approach to such a case of the flow around a

spherical body placed in a hypersonic flow.
Let us assume that the shock wave itself is thin enough to be regarded as a

discontinuous surface and that the effect of the viscosity may be ignored near the %’;{
shock wave. Then the shock-wave condition may be prescribed by the usual %
shock relations. Moreover, the ratio, k, of the density ahead of the shock wave ~f
to that just behind it may be assumed to be small for the following reason: For f
the perfect gas of constant specific heats, the well-known Rankine-Hugoniot re- ;;
lations give %

y+1L (y—1DMZ :
where v is the ratio of specific heats and M., the Mach number of the undisturbed z%
flow. It follows from the above equation that, for the diatomic gas with constant £
specific heats (y=1.4), the value of & tends to 1/6 as M, becomes infinitely large. %

In fact the temperature of the flow behind the shock wave increases so anoma-
lously that such chemical reactions as dissociation and ionization occur there.
According to the Moeckel’s analysis [3] in which the effect of the dissociation of
gas is taken into account, £ may attain certain lower values than the extreme
value of 1/6 for the diatomic perfect gas. For this reason the density ratio k may
be considered to be small in a hypersonic flow. ‘

According to Lighthill [4], the Mach number M, of the flow just behind the
shock wave is given, under the strong shock-wave approximation by

an/k2+ cot*
v(1—k)k
where @ is the angle of inclination of the shock wave to the axis (see Fig. 1).
Since in the vicinity of the nose 6 ==<m/2,

Mz"’o(\/—k—)
there. Therefore, the disturbed flow region behind the shock wave may be as-
sumed to be incompressible near the nose as applied in many literatures (see, for.:j

%
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Hypersonic Flow Near the Stagnation Point 191

example, [/], [4], [5] and [6]). Furthermore, let us assume that the transport
properties such as viscosity are constant.

g

FStock

FIGURE 1.

As in the case of the axially symmetric boundary layer, it is convenient to in-
troduce the coordinates (x,%) in which x is measured along the surface from the
stagnation point and y perpendicular to it into the fluid. The curvilinear coordi-
nates (z,y) are related near the nose to the cylindrical coordinates (7, 2) in which
r and z are the radial and axial distances, respectively, as follows:

r>=z(l+xy), }
z>~y,

(1)

where « is the curvature of the body at the nose and its sign is taken positive
when the body is convex to the oncoming flow. Let us denote the radius of cur-
vature of the body at the nose by R, then

kY = Y[Ry,
its maximum value being d/R, where 4 is thé thickness of the shock layer. Since,
as will be shown from the result, 6/ R, is of the order of magnitude of %, the term
£y may be neglected as compared with unity. This approximation leads to

r~r, z>~y.

2. FUNDAMENTAL EQUATIONS AND SHOCK-WAVE CONDITIONS

On the basis of the assumptions made in the preceding section, the basic equa-
tions of motion governing the flow near the nose of axially symmetric body

become [7] ,
ou , ou 1 ap <82u 1 ou wu 'azu)
—_— —_—— T+, 2
uax +vay o ox t ax2+x ox x* oyt (2)
ov ov 1 ap (azv 1 ov 82*u>
U—+vr—=—_"2 —t——7), 3
ax+ oy o oy t aw2+ac ax+ay2 (3)

where u, v are the velocity components in the z- and y-axes, respectively, and p
is the pressure, p the density and v the kinematic viscosity. The continuity equa-
tion is

d(xu) , a(xv) _
P + P =0. ’ (4)
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192 ' H. Oguchi

Eliminating the terms concerning p from Egs. (2) and (3), we get

2 2
u_a_‘i_H;a_“’ “ —p[ﬂ+iﬂ__%+aa_;”§:l, (5)

—=

ox oy ox® x ox x
where o denotes the vorticity defined by
ov _ ou

=97_° =, ‘ 6

¢ or oy (6)
Now we assume that w and v can be expressed in the form

u=2zf"(y),

_ } (7)
V=— Zf(y) ’

so that the continuity equation (4) is satisfied. In general u will be expressed in
a power series for small values of , as follows:

u=Ccy+ex+ca -+ .
Due to the symmetry of « the terms of even powers should be removed and, since
u=0 at £=0, ¢, must vanish. Therefore, if only the leading term is retained, %

takes just the form of Egs. (7).
Substituting Eqgs. (7) into Eq. (5) we obtain the ordinary differential equation

vfl///_'_zf /IIZO’ (8)
where the numbers of primes represent the order of differentiation. The integra-
tion of this equation leads to

vf//l+2ffl!_f12+K2=O’ (9)
where K is an integral constant. For the three-dimensional case of the incom-
pressible flow impinging on a wall perpendicular to it, the velocity components
are also written in the form of Eqgs. (7) and K? in Eq. (9) is found to be unity
from the conditions at infinity [8],

flzl, f/l:flllzo'
For the present case, however, the disturbed flow region is bounded by wall and
shock wave, and K2 in Eq. (9) must be determined so as to be consistent with the
conditions prescribed on the shock wave. The value of K* will be in general
different from unity.

Next we proceed to obtain the conditions imposed on f at the shock wave. As
mentioned before, our consideration is restricted to the case, in which the shock
wave itself is thin enough to be regarded as a discontinuous surface and the
viscous effect of the flow just behind it is negligibly small. Then we can obtain
the flow condition just behind the shock wave by use of the usual shock relations.
The conservations of the mass flow and of the velocity component tangential to
the shock wave are specified by the following relations, respectively,

PoslUoo SIN 0= P5q; sin (0 —a) , (10)
Uo, cOS =@, cos (0 —a), (11)

where subscripts co and 2 stand for the quantities ahead of and just behind the
shock wave, respectively, and ¢ is the velocity, ¢ the inclination of the shock
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Hypersonic Flow Near the Stagnation Point 193

wave to the axis and « the turning angle of the flow direction across the shock
wave (Fig. 1).
From the above relation we can express the velocity components % and v in

terms of k, u, and the radius of curvature, R, of the shock wave. From Eqs.
(10) and (11)

9=V (k. sin0)*+ul cos? 6 . (12)

Since, for the flow near the nose under consideration, § ~r /2, @;~ku.. The velo-
city component v, is given by v,~ —gq,. Therefore, we get v,~ —ku,. From the
definition the velocity component u, can be expressed in the form
Uy =q,cos(0—a). (13)
Now, let R take the positive sign when the shock wave is convex to the oncom-
ing flow, then
a0
Ry=—1 /_ ,
§ 0s
where s is measured along the shock wave from the axis. Carrying out the limit-
ing procedure for Eq. (11)
lim £980—a) _ ;1 z«»_(__ai) ,
850 s >0y Js
Using the above relation, we obtain from Eq. (13)
U8 Uk
Up=(COs (—a) = == ~ 7= | 14
2 =0z ( ) R, R, (14)
Also, as shown in Appendix, the vorticity » induced by the shock wave is ex-
pressed in the form .
—I.\2
w_"'_——-———(l k) ———u°°.x . (15)
k R%
The above-obtained expressions of ,, %, and w just behind the shock wave near
the nose are rewritten in terms of f by using Egs. (7), as follows:

f(5):kuoe/2 b f(a) ::ucc/RS )
f//(a): (1——]6)2 ?I/o: , (16)
k 5
where the shock-wave location is given by y=4. Here it is worth noting that, as
seen from the derivation of the expression of vorticity, the above equations are
valid only when the shock wave may be regarded as a discontinuous surface and
furthermore the viscous effect may be neglected in the flow just behind the shock

wave. Since the viscous effect is represented by the term v in Eq. (9), the avove
argument leads to the conclusion that the relation

S">=0 (17)
must be valid near the shock wave in order to ensure the validity of Egs. (16).

Then the function f should be expressed near the shock wave in a quardratic
equation with respect to ¥, that is,

This document is provided by JAXA.



194 H. Oguchi
~u.| Co+C, L C(——?L)j, 18
F) = Cot i +C - (18)
where C,, C, and C, are the constants to be determined by the shock-wave con-
ditions (16). Substituting Eq. (18) into Egs. (16), we get

Co+01'i+02( o >2= “k“ s

0 0 g_i
Ci'ﬁ; +202<—R—S> = R, ) (19)
1—k)?
=8
2k

whence we obtain

R, 2k \Rg
1—k)? &
—1_J o
G kR (20)
_ (1=Fk)
2 2k

Substituting the external conditions (16) and (17) thus obtained into Eq. (9), we
obtain

K= %Wk(zw) ) (21)

N

3. MATHEMATICAL FORMULATION AND METHOD OF SOLUTION

It is now convenient to introduce the following transformation

VKv ¢(n) =f(y),

7=+VKvy. i -

Then Egs. (8) and (9) are rewritten in the form
§ 268" =0, (23)
& +26¢" ~ ¢ +1=0, (24)

respectively. It is evident from the analysis in the previous section that the in-
tegration of Eq. (23) and subsequent application of the shock conditions lead to
Eq. (24). Eq. (24) is quite the same as the Homann’s equation for the three-
dimensional case of the incompressible stagnation flow. For the case of the in-
compressible stagnation flow the region considered covers the range, in terms of
», from zero to infinity. In the present problem, however, the region to be solved
is confied within the range between the wall and the shock wave, whose location
can be determined only after the solution has been obtained. Due to the above
circumstances, a different approach from that to the incompressible stagnation

flow problem becomes necessary.
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Hypersonic Flow Near the Stagnation Point 195

The corresponding 7-coordinate, 5, to the shock-wave location y=4¢ is given
from Eq. (22) by
7s = [k(2—k)]"*VR.oRs, (25)
where R, is the Reynolds number referred to the undisturbed velocity u., and
the radius of curvature, R, of the shock wave—i.e.,

R, = u.Rylv. (26)

Since the function f(¥) can be expressed near the shock wave in the form of Eq.
(18), the function ¢ takes the following form there

oo /. 7\
~==1C,+C,-L +C. (—)], 27

#(1) «/Kv[ UL \L 27
where L denotes the value of B measured in the »-coordinate—i.e.,

L= \/TI‘D{__RSa

or, using Egs. (21) and (26),

L=[kQ2—k)]VR,. (28)
K and L from Egs. (21) and (28), respectively, are now substituted into Eq. (27),
thus yielding

¢(7) == AVR, +Bn+Cr*/JR,, (29)

where
A=[kQ2—Ek)]"C,,
B=[k(2—k)]"'*C,,
C=T[k(2—k)]*C,,
or, by using Eq. (20), '

A=k £ 4 2 (kR (R‘?—)] ,

2 TR, 2%k
] _ _ -1/2 _(l—k)zi (30)
* B=[k(2—Fk)] [1 LB Rs]’

C=[k(2—k)] (1 — )Y/ 2k .

Although, rigorously speaking, the viscous effect will never vanish at finite
distance from the wall, it may be considered, from a physical point of view, that
it becomes insignificant at the region far from the wall. Under the above con-
sideration the asymptotic solution of Egs. (8) or (9) for large ¥ may be approxi-
mately representedy by the solution of Eq. (17), which results from disregarding
the viscosity term. Therefore, the asymptotic solution of Eq. (23) or (24) can be

written from the solution of ¢’’~0, in the form

¢ ~ a+by+cn?, (31)
where a, b and ¢ are constants. In the present problem these constants should be

determined so as to fulfill the conditions to be imposed at the shock wave (p=1s)
and then the function ¢ is found to be given by Eq. (29).
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196 H. Oguchi @

Since the asymptotic solution of Egs. (23) or (24) for large » has the form of
Eq. (31) as its most predominant part, generally it can be expressed in the form

¢ = a+bpt+er’+o(n), (32)
where ©(7) represents a function of » only and is a first-order small quantity.
Then substituting Eq. (32) into Eq. (23) and neglecting the cross-product term
with respect to ¢, we obtain

¢""+2a+by+er)e" =0. (33)
Moreover, integrating this equation and applying the condition that ¢ tends to
zero as 7 increases, we get

7 7 9
Sozdfff exp[—2((177”’+%77”’2—}-%v"'aﬂdr]'dv”dv"', (34)

where d is an integral constant. Thus the asymptotic solution of Eq. (23) or (24)
for large 7 is given by Eq. (32) with ¢ of Eq. (34).

The foregoing discussion may lead to the conclusion that Eq. (31) is approxi-
ately valid near the shock wave p=7;, only if the value of ¢ which represents
the viscous effect is small enough to be neglected there. For this case only, the
constants a, b and ¢ can be determined, as mentioned before, from the shock-wave
conditions and then Eq. (32) becomes

¢=AVE,+ By+By+Cp/[VR.+ ¢, (35)
where ¢ is given by Eq. (34). Then, since ¢=C/JR, and, from Egs. (30), C>0,
we can see from Eq. (34) that ¢ rapidly decreases with increasing 7.

Let us assume tentatively that, although the values of 7 still remain unknown,
it is sufficiently large so that ¢ in Eq. (32) may be neglected as compared with
the quardratic part, at the point »=7s. Then it is evident that the values of ¢
for p>7n, are also negligibly small. Hence, as seen from the form of Eq. (35),
the condition

¢" (1) ~ 2C/YR,= const. (36) :
should be imposed for large values of 7. On the other hand the conditions at the
wall are specified by

d=¢'=0 at 7=0. (37)
The boundary conditions (36) and (37) are complete for the solution of the third-
order differential equation (24).

We now proceed to the solution and, then, to the determination of the shock-
wave location, »=17g. Consider the case where the values of k and R, are initially
given. Then, since all the constants involved in Eq. (36) are known, the solution
of Eq. (24) can be numerically determined. After the solution, the value of 7, (or
from Eq. (25) the value of §/Rg) remained as the only unknown can be determin-
ed from the second equation of Egs. (30) by using the value of B evaluated from
Eq. (35) to be the asymptotic value of ¢'—x¢" for large ». If the value of 7, thus
obtained is large enough that the solution ¢ may be represented by Eq. (29) near
the point 7=y, then the solution may be accepted as a consistent one.
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Hypersonic Flow Near the Stagnation Point 197

~ In the present problem, there exist four parameters k, R,, 6/Rs and ¢"’(0), any
two of which can be assumed independently. For the case where k and R, are
initially given, many iterations are required to solve Eq. (24) under the conditions
(36) and (37). If, however, k and ¢”(0) are initially given, then such a tedious
labor is possibly avoided, because the solution can be determined by only the
boundary conditions specified at the wall and, therefore, the solution can be
readily found by step-by-step integration starting from the wall. The values of
¢" and ¢ —n¢” approach to the constant values of 2C/vR, and B, respectively,
with the increase of 7. By using these values together with Eq. (30), the values of
R, and §/Rg can be determined. Actual calculations have been carried out for this
case. For the initial choice of ¢”(0)=1.5, 1.7 and 2.0, the results of the numerical
integrations of Eq. (24) are shown in Figs. 2, 3 and 4, respectively. We can see
from these figures that the values of ¢’ and ¢'—»¢"’ rapidly approach to the re-
spective asymptotic values as 7 increases. The results are presented in the upper
lines of each columns of Table 1 and, ¢"(0) and 6/R; are plotted in Fig. 5 against
the value of 1/JR,. The discussion on these results will be made in Section 5.

TABLE 1.
k 0.10 0.15 0.20
¢”(0) 1.5 1.7 2.0 1.5 1.7 2.0 1.5 1.7 2.0
VE 103.0 51.8 30.5 45.9 23.2 — 24.4 _— —_—
¢ 102.0 51.2 30.3 45.7 23.0 e 24.1 _ —
3 0.0769 | 0.0822 | 0.0878 { 0.113 | 0.124 | —— 0.150 | — —_—
Rg 0.0768 | 0.0824 | 0.0880 | 0.113 | 0.124 —_— 0.151 —_ —
5.20 2.81 | 1.77 3.76 2.08 —_— 2.83 —_— ——
| 519 | 279 | 1.76 | 3.15 | 2.07 | — | 2.81 | — | —
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4, ANALYTICAL METHOD OF SOLUTION FOR CASE
WHERE Viscous LAYER Is THIN

The method of solution presented in the preceding section is applicable even to
the case where the viscous layer is considerably thich, so far as the viscous effect
may be negligibly small near the shock wave. However, this method is not con-
venient for an analytical examination of the behavior of flow.

For this reason, we put forward in the present section an alternative, in which
the solution may be analytically expressed. First, consider the extreme case where-
R, is infinitely large. In this case the viscous layer may be considered infinitely
thin and hence the solution of Eq. (9) is given by Eq. (18) everywhere in the dis-
turbed region. Since v=0 at the wall, from Egs. (7) f(0)=0. Hence C, in Eq. (18)

vanishes. Then, from Egs. (20), 6/R;, C, and C, are obtained in terms of k as C
follows:
C,=V1—(1—k)y=Jk(2—k),
o, ==k}
: 2k (38)
0 _k1-VI=(—k)} _ K1—vkQ2—k)
R (1—Fk)* (1—k)* '

These results are all the same as those found by Li and Geiger [5]. On the
other hand, although the viscous layer itself vanishes at the limit as K, becomes
infinitely large, we can see that there exists the solution of ¢ formally. Substitut-
ing 6/ R of Egs. (38) in Egs. (30), we obtain

A=0, B=l1.
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Hypersonic Flow Near the Stagnation Point 199

Then Eq. (29) becomes '
$(n)=lim AVR,+7.

Ry-poo
The limit in the right hand side may be expected to tend to a finite value. Indeed,
as shown later, this limiting value is found to be —0.5576. Since, from Eq. (25),
ns—>co as R,—>oo, the region under consideration spreads over, in terms of 7,
from zero to infinity. Therefore, the external condition is given by

¢ — const. +7, (39)
or
¢'>1 as p—>oco.

This condition is quite the same as for the three-dimensional case of the incom-
pressible stagnation flow impinging on a wall perpendicular to it. Furthermore,
Eq. (24) and the conditions at the wall are also of the same form for both cases.
Thus ¢ for an extreme case where the Reynolds number becomes infinitely large,
is quite identical with that for the case of the stagnation flow which has already
been solved by Homann [8]. To make it sure we can see from Fig. 5 that the
value of ¢” tends closely to Homann’s value ¢”(0)=0.667 at the limit as R,—oo.
According to the result of Homann,

¢ —>—0.5576-+7

as p-—>oo. Hence the value of the constant in Eq. (39) is found to be —0.5576.
Comparing Eq. (32) with Eq. (35), we can obtain the solution ¢ in the form
” 7" ”I/

¢=AJF¢+B7}+Cv2/m+Dfffe-F(qw)dv/dvudrilu (40)

for large . Here D is an integral constant and

F(7)=2(AYR,+ B1/2+C7[3JR.); . (41)
The differentiations of Eq. (40) lead to

¢ =B+2077/4/E+ foe—F(w/)dr)ldv//, (42)
=0T 4D [ @

On the other hand the solution valid near the wall is assumed in the form
¢= ”Z_}) a. 7" . (44)

Substituting ¢ of Eq. (44) in Eq. (24) and using the conditions (37), the recurrence
formula for a,s will be found and then the coefficient a, is retained as the only
unknown among all coefficients. This was carried out by Homann [8] and the
expressions of a,s from a, to a,; are presented in his paper. In the present analysis
his results are used. From Eq. (44) we get

This document is provided by JAXA;



200 H. Oguchi

#'= S+ gy, (43)
¢ = 33+ 1)+ 2)ap," (46)

Now let us select a certain appropriate point, say 7,, in the intermediate region
in which both expressions for ¢ are valid. Then equating ¢, ¢’ and ¢" from
the asymptotic solution to those from the series solution, respectively, at this point,
we have

. ,70 7/ ﬂl,
S a7 =AVR,+ By +Cri/VE,+D f f f Ty 'y
o 70 7
S0+ )i=B+20pNE+D [ [er o dyay’, (47)
il —_ 70
S au(n+ 1)+ 25 =2CNE,+D f Ty |

As pointed out previously, there exist in the present problem four parameters k,
R,, 0/Rg and ¢"(0). Since, from Eq. (44), a,=¢""(0)/2, we may take a, instead of
¢"(0). Then, if two of the parameters are initially given, we can determine from
Egs. (47) the remaining two parameters and the unknown coefficient D. In
general, a considerable amount of laborious calculations will be required for their
determination. For the case where the Reynolds number R, is large, however,
the above-mentioned procedure becomes feasible under some approximations.
This will be shown in the following.
First, let us consider an integral

I:f%e'“”"dv’,

in which F' is given by Eq. (41). As seen from the numerical results obtained in
the preceding section, the sign of C in Eq. (41) as well as of ¢ may be considered
positive. Therefore, the integrand exp (—F') is much more predominant near
the point 7=z, in the region 7,< < oo, so that the value of the integral I depends
mostly upon the behavior of F' near the point 7=z, It is suggested from the
behavior of F in the extreme case where R,— oo that the function F' given by
Eq. (41) may be approximately represented only by the second term when R, is
large—i.e.,

F(n)~Br*. (48)
This approximation was already made by Homann for the three-dimensional case
of an incompressible stagnation flow and satisfactory results were obtained.

Using the above approximation,

I~ f e Py (49)

Integrating Eq. (49) by parts, we get
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I~ f o~y f e 27 dy — f “”’"drz—— [0(WBn)—11,  (50)

where @ represents the error mtegral defined by

O(x)= 7_—_— “e-tdt .

- In the similar manner the other integrals involved in Eq. (47) become after the
same simplification

o 7
%0 70 2 ’
f f e T dy'dy' ~ 1, f e B dy— f ne F""dy

70 1 2
= e Bdy’ —. e B7
%&[ 7+ 2B

" 1 .5
= —— @ B '—1 _— '70’ 51
2x/B770[ (\/_770) :H_ZBe (51)
and
fff e_F(ql”)dv,dv”dv”l: ”ov/f _Bqllld 'dp"—{- —éfvoe"B”’zdn'
B [y L [y
= 2;[6 dy 2 7'%e %" dyp
(L B (g Mo gemy_ LT - Bty
(2B+2>°[e Wt B 4B°.[e 7
— 1 pj) e~ By’ + o - B}
(4B+ 2 f T+
— Jz -1 %o _g-B74 52
(35 %) (OB w11+ Jee o (52)
By using Egs. (49) to (52), Egs. (47) become
\
Za’nvn AJRG+B70 g‘%‘
D ( ) a3 _ %o o- B}
o3 (5Bt 0B~ 1)+ e

" L (53)
4157°+ [VzBno{@JBno)— 1} +e 2747,

53 et D4 2t s= T+ T [0(/Br)—1]. )

Thus, for the case where R, is large, Eqs. (47) have been reduced to Egs. (53).
The joining of the asymptotic solution with the series solution is now made by
the choice of 7,=1.5 so that both solutions are valid at y=7#,. Actual calculations
have been effected for the case where the values of k& and a,(=¢"(0)/2) are in-
itially given. Then the other parameters R, and §/R; (or 7,) and the unknown

g(n—{—l)arnlv{) B+
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202 H. Oguchi

D were determined by solving Egs. (53). Here it is worth noting that the results
thus obtained are acceptable only when the value of 7y is found to be 7> 7,.

The main results are shown in lower lines of each columns in Table 1. The
approximation assumed in the above analysis is valid only where R, is large.
Nevertheless, the results indicate the surprisingly excellent agreement with the
previous ones up to the considerably low Reynolds number. This seems mainly
due to the fact that, as the Reynolds number R, decreases, the above approxima-
tion made in the present analysis certainly becomes inadequate, while the terms
involving the coefficient D in Egs. (53) become insignificant. Indeed, the mag-
nitude of the deviation of ¢ from Eq. (29), which represents the term involving
D in Egs. (40), becomes small with the increase of ¢’’(0) or with the decrease of
R,, as seen from Figs. 2, 3 and 4.

5. PRESSURE DISTRIBUTION ON SURFACE AND SKIN FRICTION

So far, we were not concerned with the pressure p, one of the important flow
variables. Since the expression of v is a function of y only, Eq. (3) becomes

’()_a_’l_{_.z —-._1.__;.;._12. p.@l .
oy p oy oy
Integrating this equation with respect to ¥y, we get

_2—{—_1._1)2~—-y—i1-)—=F(x)+ const. (54)
e 2 oy

where F'(x) denotes a function of  only. Substituting # and v of Egs. (7) and
p/p of Eq. (54) in Eq. (2), we obtain
dFjde=—a(f*—2ff"—vf"").
From Eq. (9) we obtain
SE=2ff"—vf"=K">.
Hence
dFjde=—xK*,

and, from the integration,

F:—i
2

With the above form of F, Eq. (54) becomes

K*x -4 const. .

Pyl gyey Lo 00 _ongt. (55)
p 2 2 0y

The constant in the right hand side of Eq. (55) will be determined from the
condition just behined the shock wave. The relations of the momentum across
the shock wave are

Do+ 023 = U3, sin% 0. (56)

Since, from the definition of v,, v, —g¢, sin (0 —«), we have from Eq. (8)
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Hypersonic Flow Near the Stagnation Point 203

v~ —ku,sin g .
Putting the above form of v, into Eq. (56),
P2 0; = k(1 —k)ul,sin*4 .
Recalling the previous assumption that the viscous effect is small enough to be
neglected just behind the shock wave, we may ignore the term vov/oy when Eq.

(55) is applied to the station. Then, the substitution of the above-obtained v,

and p,/p, in Eq. (55) yields

p l s, 1 2 ov D: l o2 1,9
L4 oK t—y— =22 K+ —v
o2 20 Yy e 2 2
2 2
zwf_[sinzﬁ——_xi] ,
2 )5
where 2 is the length measured along the shock wave from the point on the axis.
Since, in the vicinity of the nose under consideration, sin 0~1—(x5/Rs)*/2, we
obtain
k(2—k)us,

Pz _.Lx”K2 __1_1),,~
+2 s +2 s 5

P2

Hence
W _k2-k) s
oy~ 2

Now, we are able to obtain the pressure distribution on the surface by using
Eq. (57). On the surface u=v=0, thus yielding f(0)= f(0)=0. Since, from Eq.
(7), dv/oy=2f(y), dv/dy vanishes there. Applying the above conditions to Eq.
(57), we have on the surface

<£> _ kQ2—k)ul (1___22_>
0 /sur. 2 Ry/’

where the symbol ( )sur, represents the value on the surface. Let us denote the
radius of curvature of the body by Ry, then for a spherical body Bg=~FRz. There-
fore, we obtain the following formula

(57)

_B_ _.1__sz2 _!_7)2_.
p TP R

P\  ~ kQ—kpui ((_ & 58
( o )sur. o 2 ( R2B> ’ ( )
or, since (1 —x?% R%)=~= cos® B,
D ~M cos® 59
<P )sur. o 2 . ( )

By using Eq. (58) or (59) the pressure coefficient defined by
1
C,=(p— D) / Epwu?n

becomes for the surface pressure
2

(€ uue = L= C=h(1- 55 ). (60)

or, .
(Cp)sur.=(2— k) cos® 8.
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204 H, Oguchi

They are quite the same as those obtained by Li and Geiger [5] under the as-
sumption that the flow is inviscid ranging from the shock wave over to the wall.
Here it is worth noting that Eq. (60) is also identical with the result by the
modified Newtonian law put forward by Lees [9]. This law leads to an excellent
agreement with an experimental data [/0], [/2], though derived on the only
empirical basis, as pointed out by Lighthill [4]. We have now provided for it
the theoretical basis even for cases where the viscous effect plays a significant
role.

The experimental data [/0], [/1] and [/2] of the surface pressure on a sphere
are presented in Fig. 6 for the comparison with the theoretical values given by
Eq. (60). Even for the flow of the low Mach number, in which the approxima-
tions made in the present analysis can not always be expected to be valid, the
good agreement between them has been found.

1.9

Cp — THEORY
M Ref.
17 | © 5.8 10
4 [ 4.3 |

1.97 12

"0 8 16 24 32 40 g
DEGREES

FIGURE 6.

We next consider the skin friction r,,, which has a close correlation not only

to the drag of the body, but also to the surface heat-transfer rate. From the
definition ‘

where ¢ is the viscosity coefficient and the symbol ( ), denotes the values at the
wall. According to the present approximation, the viscosity coefficient ¢ may
be considered as constant throughout the shock layer, as will be shown below.

First, let us show that the change in pressure as well as in density is very
small throughout the shock layer near the nose. Here we restrict our considera-
tions to the case in which the viscous effect is negligibly small just behind the
shock wave. Hence, we obtain

‘
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v

oy

a*v

>
= P

Y

) (61)
or, by using Egs. (7),
12771 > vf"].

This condition can be rewritten, by using Egs. (16), as

1
S
= R

It follows from the above arguments that the present analysis is applicable only
to the case where the condition (62) is valid. It can be confirmed for all of the
cases shown in Table 1 that the condition (62) is almost satisfied. As an example,
for the case of k=0.1, the values of R, are found to be larger than 10® and thus
the values of 1/R.k? are smaller than 1/10. On the basis of the condition (62)

(62)

‘ let us consider the order of magnitude of each term in Eq. (3). The terms v and
Q| dv/dy take just behind the shock wave the maximum values of —Fku, and vf’(d)
(=u%/R, from Egs. (16)), respectively. Therefore, we obtain the following in-
equalities :
KPul, > %,
us, v
—_— 2 V.
R, oy

From the condition (62) we obtain the following relations
O(k*ut.) > O(u—al’-) .
0y
Due to the above estimate, we obtain

P~ kg otkur)+0@) .
4 2

It follows from this equation that the change in pressure may be assumed to be

sufficiently small and therefore so is the change in temperature as well as viscosity

? coefficient. Thus the skin friction can be written approximately as

A2,

where p is the value of the viscosity coefficient behind the shock wave and it is
a constant over the disturbed region near the nose. Then, from Egs. (7), (22) and
(21) we obtain successively

o2 1" (0)=2(p0) 2 K*%¢"(0)
:x[k(Z—k)] 3/4(#p)1/2<%£>3/3¢//(0) .

S
As shown previously, ¢”(0) increases almost linearly with 1/VE, (see Fig. 5).
Therefore the skin friction also increases with 1/yR, in the same trend as ¢”(0),
provided that the other parameters are held fixed.
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CONCLUDING REMARKS

The two important assumptions are made in the present analysis, that is, (1)
the flow behind the shock wave is incompressible and (2) in the vicinity of the
nose of the body, r~x. First, we will discuss the latter assumption in more detail
than done in the introduction of the paper.

Using the symbols shown in Fig. 1, the following relations are derived from
the simple geometrical consideration

dr=(1+4ry)cos B-dx|,_conss. »
dr=sin f-dy|._cons. -
These can be written in the form
or

Fw =(1+«xy)cos B,
g—;: sin 3.

The assumption r~= is equivalent to that 9r/ox~1 and 9r/d0y=~=0. This means
that the conditions 14#xy=~1 and S~0 must be valid in order to ensure the as-
sumption r=~x. The relation f~0 is approximately satisfied so far as the vicinity
of the nose is concerned. Moreover, the validity of the condition 14xy==1 is
evidently ensured by the fulfilment of the condition 6/Rg<1.

Therefore, we can assume in the present analysis that 2~ only if the condi-
tion §/Rg<C 1 is satisfied. It will be shown in the following that this condition is
equivalent to that k<Z1. For an extreme case as R,— oo, as seen from the last of
Egs. (38).

(0/Rs)pyr=0(Fk) .
In fact, the values of (§/Es)z,». Obtained for the cases of k=0.1, 0.15 and 0.20
were confirmed to be identical with those obtained from the last of Egs. (38)
(Fig. 5). As seen from Fig. 5, we may consider
0/Rs = O(k)

over the range of R,, to which the present analysis is applicable. As mentioned
before, the value of k is, in a hypersonic flow, small as compared with unity.
The foregoing arguments lead to the conclusion that the assumption r~x can be
made, when the flow field under consideration is near the nose. The assumption
that the flow behind the shock wave is incompressible near the nose can also be
made when the value of k is small, for the reason mentioned in Section 1. There-
fore the simple assumptions made in the present analysis are based on the fact
that the value of k is small.

In the present paper the flow near the nose of a spherical body has been an-
alyzed taking the effect of the viscosity into account. Summarizing, it is con-
cluded that (1) there exists a similar solution consistent with the conditions both
on the shock wave and on the body surface, (2) the surface pressure coefficient
obeys the modified Newtonian law independently of viscosity effect, (3) the dis-

¢
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Hypersonic Flow Near the Stagnation Point 207

tance of the shock wave from the body increases with 1/VE, and the rate of its
increase tends to be small as R, becomes small, and, (4) the skin friction z,, in-
creases almost linearly with 1/VE,, at least, within the range of R, under con-
sideration.
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APPENDIX

The vorticity induced by the curved shock wave in a hypersonic flow

Eq. (56) becomes approximately
0, ~=(1—k)oul sin® @
= (1 —k)0usthcer A-1
where u%.., is the velocity component normal to the shock wave—i.e.,
Uoon = Uioo SIN G .
From the conservation of energy across the shock wave

’%‘u’gon ~ 1+ ’;—ugn .
where 1%, is the enthalpy per unit mass of the fluid behind the shock wave and u,,
the velocity component normal to the shock wave just behind it. Hence
1y~ (1 —k®ul,/2 . A-2
The value of u., changes along the shock wave when it is curved, and there-
fore so do the enthalpy %, entropy s, and pressure p, behind the shock wave.
The change in entropy s, is given by
T,ds,=di,—d p./p,,
where T denotes the temperature. Combining Eq. A-1 and Eq. A-2, we obtain
after simplification
Tods; =~ (1 —k)*UeenQUcc,, . A-3
Neglecting the viscosity terms, Eqs. (2) and (3) can be written in the following

form

1 1
><v+v(—— 2)+—v =0,
(0] 2(] 0 P

where v is the velocity vector and (0, v, w) the vorticity vector. This can be re-
written by using the energy equation, as

onsz’—%Vp: Tvs.

Let us choose «’ in the direction which is tangential to the shock wave at a
point on it in a meridian plane and in which the value of # decreases, and ¥’ is
the direction normal to it into the uniform flow. Let us denote the velocity com-
ponents in the &’ and y’ directions by #’ and v’, respectively. Then from the
above equation we get

ds,
’v,v: bt Tt)'—“‘ .
“n “dax’
Hence
o= — 1 T, ds, —% Ad
vy T dle, dT
Since 00/ox’= —1/R and u{=wu..cosf, we obtain

=
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Uon _ QUon 00 _

ox’ dg ox’ Ry’
By using this relation with ds,/du.., from Eq. A-3, Eq. A-4 becomes

0~ =R %

kR’
Noting u;~u,, the above equation becomes
~ =k u,
@ = k RS .

Consequently the substitution of u, of Eq. (14) leads to Eq. (15). For the three-
dimensional curved shock wave, Lighthill [4] derived the general expression of
the relation between the vorticity and the radius of curvature of the shock wave,

This document is provided by JAXA. §





