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Summary. First it is illustrated that the strain, together with its increment, generally
used in the theory of elasticity, which is specified by the change in the geometrical con-
figuration, is not fitted for the description of plastic deformation. That the existing theory
of plasticity, more precisely the incremental strain theory, has recourse to this strain and
its increment, except in some special cases of deformation, is its essential inconsistency,
which manifest itself more remarkably for the finite deformation. The object of the pre-
sent investigation is to bring the theory of plasticity into a perfectly logical system cover-
ing the whole range of the small and finite deformations, by making some essential innova-
tion on the concepts of strain and strain increment hitherto used.

In order to introduce a new concept of strain and its increment legitimate for the descrip-
tion of plastic deformation, we contemplated on the essential characters of plastic deforma-
tion, and deduced some fundamental conditions for them, as well as the stress, to satisfy.
Basing on this apodictic reasoning, the strain increment at a deformed state is defined such
that the deformed current state is at the same time an undeformed state. The strain
for a deformed state is obtained as a result of integration of such strain increment along a
given deformation path, and is shown to be dependent on the path, but not on the geo-
metrical configuration directly. This strain is fegarded as corresponding to the micro-
structural change of the material, and serves not only as the strain tensor itself for de-
scribing plastic deformation, but also as the strain history tensor specifying the history
dependent state as anisotropy. Further, this strain is seen to be reduced to the so-called
logarithmic strain for the special case of simple extension, and accordingly to be history
dependent, generalized natural strain. The plastic deformation is thus seen to be a history
dependent phenomenon in the duplicated sense, that is, first in the strain itself, and secondly
in the stress-strain relationship.

The stress tensor is defined such that it gives for unit of area in the deformed state the
actual force exerted through it. This stress is reduced to the so-called true stress for the
special case of simple tension.

By basing on these definitions of strain increment and strain, together with that of stress,
the principle of virtual work is shown to hold in the same form as for the small deformation
over the whole range of small and finite deformations. In consequence of this, all the re-
lations in this general case such as the equilibrium equations, the mechanical equations of
state and others, are expressed also in the same form as for the small deformation. Thus
the theory of plasticity, i.e. the incremental strain theory, being reorganized from the be-
ginning, is extended.quite naturally to the general case of small and finite deformations.

* Presented to the 32nd Annual Meeting JSME, April, 1955, the 5th Japan National Congress Appl.
Mech., Sept., 1955 and the 33rd Annual Meeting JSSME, April, 1956 in succession.
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162 Y. Yoshimura

1. INTRODUCTION

Of the two rival theories of plasticity, the so-called incremental strain and tota]
strain theories, the former has come to be accepted, after not a few disputation,
as that which holds in general for plastic deformation of metals. This conclusion
seems to be due to rather physical considerations of plastic deformation than
empirical. Namely, it is because the plastic deformation where the final state of
stress (strain) is not determined by that of strain (stress) but by the deformation
history up to the state is regarded as being possible to be described only by the
incremental strain theory based on the mechanical equation of state of the form
of a differential equation with respect to strain and stress.

What matters in this context is the concept of strain increment in the incre-
mental strain theory and the strain as the result of its integration. Not to mention,
the strain used in the theory of elasticity is that which is specified by the change
in the geometrical configuration of the body from the uniquely determinable un-
deformed state but independent of the deformation path, and the strain increment
is the increment of such strain. This is true in itself in view of the nature of the
elastic deformation, but problem arises where the same concept of strain and strain
increment was applied to the description of the plastic deformation whose nature
is quite different from that of the elastic one. In fact, if it be done, various con-
tradictions will be seen to appear. The most confutable among them is that which
is exhibited in the finite plastic deformation of simple shear for an isotropic body.
For the plastic deformation of an isotropic body, it is sure that the simple shear is
caused by the shearing stress which has the constant principal direction kept at
45° with the slip direction of the simple shear, and further that the principal
directions of strain must coincide with those of stress when the latter are kept
constant during the deformation. Consequently, the principal direction of the
simple shear produced by the shearing stress is needed to make the same angle
45° with the slip direction as that of the shearing stress does. We can find that this
does not hold, if the strain for the deformation of the simple shear were assumed
to be specified, as in the case of elastic deformation, by the change in the geo-
metrical configuration produced by it, because the principal direction of such
strain comes to make the angle still smaller than 45° with the slip direction as
the deformation proceeds. This fact is regarded as indicating that the strain reason-
able for the description of plastic deformation should be some quantity other than that
Sfor elastic deformation.

Now that the strain for the plastic deformation is as such, the problem that
confront us is how to define it. The answer to this problem will be given, basing
on critical considerations on the essential features of plastic deformation. The
most essential of them is that the plastic deformation is the deformation due to
the change in the mode of interconnection of particles constituting the material.
Since the microscopic structure, as is represented in metals by the group pattern
of dislocations which are effected by the change in the interatomic connection, is

This document is provided by JAXA.




Theory of Plasticity Based on Legitimate Concept of Strain 163

regarded as dependent on the deformation path, the strain representing the de-
formed state is also regarded as such. That is, in plastic deformation, the strain is
at the same time * the strain history”. It is note worthy that this strain is such
that it gives the logarithmic strain [/] particularly in the case of extension in a
constant direction. It is needless to mention that the strain increment which leads
to such strain, i.e. the strain history, is also one other than that for elastic de-
formation.

Though the differences between the strains and strain increments for elastic
and plastic deformations geometrically identical are of small quantities of the
second order for small deformation, they become finite for finite deformation.
After all, the plastic deformation is regarded as a hysteresis phenomenon in the double
meaning, i.e. on the one hand in the non-holonomic character of the differential state
equation and on the other hand in the dependence of the strain on the deformation
history. Thus, by means of the introduction of the concept of strain history as strain,
and its increment, the theory of plasticity will be seen to be not only formulated with
both the physical and mathematical self-consistencies, but also extended quite naturally
to the whole range of small and finite deformations. Finally it must be remarked
that we can not further extend the plasticity theory to the case where the strain history
phenomena such as anisotropy and the Bauschinger effect are present, without basing
on the concept of strain and strain increment introduced in the present paper. And
such extended theory will be proposed in the paper which will be published in
succession. '

2. How TO DEFINE PLASTICT STRAIN,
STRAIN INCREMENT AND STRESS

It was deduced in the Introduction, taking as an example the case of the de-
formation due to simple shear, that the strain, hence the strain increment too,
valid for the description of plastic deformation is quite other one than that reason-
able for elastic deformation which can be specified by the difference of the geo-
metrical configurations of the body before and after deformation. And further it
was touched there in brief that the strain for plastic deformation, viewed from
its essential character, is such that it depends on the deformation path from the
undeformed to the deformed state*, and therefore it is regarded as a strain history.
In order to proceed to the main subject of defining strain, to say more precisely
strain increment, it is necessary for us to begin with confirming the validity of
the above statement.

In general, a plastic deformation of a polycrystalline aggregate is realised as
the result of a sequence of successive infinitesimal slips, by which the group pat-
tern of dislocations in crystalls usually undergoes successive variation. For this
reason, the group pattern of dislocations in the final state, even if its configuration
may be geometrically identical, is different according to the process of slip, or the

* The term “state ”” is used to mean, as usual, what is specified by the geometrical configuration,
that is, nominated, so to speak, geometrical state.
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deformation history, up to the state. Not only the group pattern of dislocations,
in the crystalline matrix, but also the microscopic structural change in the inter-
crystalline amorphous layer will necessarily depend on the slip process. And what
is important is that it is not the geometrical configuration of the body in deformed
state but its microscopic structure such as the group pattern of dislocations what
specifies the mechanical properties concerning plastic deformation. To say more
precisely, the grade of work-hardening is regarded as dependent on the density of
dislocations, and anisotropy and the Bauschinger effect on the way of their ar-
rangement. The strain as a mechanical quantity should be such that it can re-
present the mechanical state which specifies the mechanical properties, accordingly
is dependent on the deformation path up to the state. And for this purpose, the
strain must be a quantity specified not by the geometrical configuration of the
deformed state, but by the deformation path up to the state. Thus it is concluded
that the strain reasonable for the description of plastic deformation is something de-
pendent on the deformation history, and such strain we will, in the present paper, de-
nominate “ plastic strain or “ strain history”.

Here, it will be desirous to remark that, the elastic deformation being the de-
formation due to the change in the interatomic distances of the material, the de-
formed state, and therefore the strain representing it, is specified by its geometrical
configuration.

That the plastic strain is dependent on the deformation history means that the quanti-
ty introduced primarily concerning plastic deformation is not the strain itself, but the
strain increment from a current state t to a consecutive state t+dt, t being the time
or some parameter representing the extent of deformation. Although it will be
seen later that the origin of the parameter ¢ is permitted to be taken at any state,
now we may suppose it is tentatively chosen at the annealed state.

In order to deduce the definition of strain increment, the above condition alone
is insufficient, and some other conditions, too, have to be taken into account. The
first of them is that the strain increment is a tensor. This is because the mechanical
equation of state for plastic deformation, just as the case for other physical laws,
is to be expressed by a tensor equation of an invariant form, hence all the mechani-
cal quantities such as strain increment, stress, etc., involved in it are needed to be
tensors. Since the strain increment is a tensor, it is regarded as one associated with
the change in the metric, from t to t+dt, of the space which deforms in conformity
with the body.

The second requirement isthat the strain increment from t to t+dt should be measur-
ed, assuming the current state t as the state of no strain, i.e. as the state t=0. This
is a matter of course in view of the nature of plastic deformation. That is, plastic
deformation being caused by a sequence of slips which brings about the mere re-
placement of the atoms on one side of the slip plane with others, the deformed
state is quite equivalent to the undeformed state, apart from the change in the

plastic properties such as work-hardening and anisotropy, in respect that the atoms

‘are situated at the potential trough of the same lattice field, unless there exist no
external forces. This means that the current deformed state t can also be regarded
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as the undeformed state t=0 with no strain, only the mechanical properties being
different according to the state. In fact, in plastic deformation, we cannot known
in any way, from the mechanical consideration alone, the strain of a given state
of a given material or its annealed virgin state, so that cannot but treat, in the
mechanical theory, the given state as the state of strain zero, without having the
complete knowledge about its previous history of deformation. It is required,
however, in doing so, that the initial values of the mechanical properties are chosen
as those where the strain is originated. To take the annealed state as the standard
is necessary for the physical considerations of the process of plastic deformation,
but not for its mechanics. The possibility for the origin of strain to be selected
at any state will be illustrated later for the case of simple extension.

It was already shown that the elastic and plastic strains are distinguished in their
dependency on the deformation path. And now it must further be remarked that
they are distinguished from each other also in the point that the former is measured
from the uniquely determinable undeformed state, contrasted with the latter whose
origin is allowed to be chosen at any state, annealed or deformed.

From the preceeding statement, it can be concluded that the quantity capable of
being introduced primarily as for plastic deformation is not the strain, but the tensor
of strain increment which is specified by the change in the metric, of the space deform-
ing in conformity with the body, measured from the current state t to the state t+dt,
assuming the state t as an unstrained state t=0. In the next section, the strain in-
crement will be seen to be defined apodictically from these conditions, for both
small and finite deformations.

The plastic strain is obtained by integrating the strain increment thus defined along
a certain path of deformation which is determined by the process of application of
external loads. And it will be shown later both theoretically and practically that
the plastic strain thus obtained is, as was deduced in the above from the microscopic
viewpoint, none other than a quantity called ** strain history >, which assume different
values according to the path of deformation, even if the geometrical configuration
in the final state is the same. Thus the notion that the strain depends on the de-
formation history, so that is at the same time the strain history, is seen to be
justifiable from all of the physical and mathematical viewpoints, although it
might appear somewhat strange for us who are accustomed to the use of the strain
specified only by the change in the geometrical shape.

The definitions of plastic strain increment and strain will be found to be given
with no ambiguity, basing on the underlying principles mentioned above. But it
must be remarked here that these definitions are not yet given their final validity,
until it would be confirmed that they, together with the definition of stress, con-
stitute a reasonable mathematical theory of plastic deformation. We will now
proceed to this last problem. It is sure that the stress, as well as the strain and
others, must be a tensor. But from this condition alone it can not be defined
uniquely, any tensors which have one to one correspondence with, and derivable
from, the state of forces in the material element, will not be in conflict with this

~condition. We need further conditions for the stress tensor to be defined uniquely.
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That is, the stress tensor is required to describe on one hand the equilibrium con-
dition of the body, and on the other hand the mechanical equation of state, i.e.
the process of plastic deformation, in a fashion reasonable as a mechanical theory.
And for the latter purpose it is further required for the plastic potential to exist,
and accordingly for the stress and the strain increment tensors to satisfy, over the
whole range of small and finite deformations, the principle of virtual work of the
same form as that for the case of small deformation

Work= f (Stress tensor) . . (Strain increment tensor)

= f Spur [(Stress tensor) (Strain increment tensor)] (2.1)

where the dots ““..”” mean the double scalar product of two tensors. From this
condition the stress tensor can be defined uniquely corresponding to the strain
increment tensor which has already been given. And it will be seen later the
stress thus obtained is what is most natural among those derivable from the state
of forces. Thus the plastic strain increment, accordingly the plastic strain, and
the stress defined in the line stated above are seen to be justifiable from all the
viewpoints. ‘

The reason we must pay such a special attention to the validity of the virtual
work principle of the form (2.1) as the condition for the stress tensor is that, for
finite deformation, it is not always fullfiled by the strain increment and the stress
which seem legitimate. In fact, for the elastic finite deformation, it has been
shown by F. D. Murnaghan [2] and also by the present author [3] that the stress
defined in a natural way from the state of forces, together with the strain incre-
ment reasonable for the elastic deformation, does not satisfy the virtual work
principle of the form (2.1). And in order for the principle to be satisfied, the
stress, not the strain increment, is needed to be modified. For this reason the
stress for the plastic deformation also should be examined about its validity in
the light of the virtual work principle.

3. DEFINITION OF THE STRAIN INCREMENT TENSOR

The deformation of a body is composed of the two parts, i.e. the elastic and
the plastic deformations, which are to be described by the strain quite different
in their mathematical definitions, as was mentioned in the preceding section.
Hence, in the following, we will assume the body to be plastic-rigid, the elastic
deformation being so small as to be negligible.

As was stated in the preceding section, the plastic strain increment should be
defined as a tensor which is an invariant. Accordingly, it ought to have no effect
substantially on its definition what coordinate system may be used. But in view
both of the necessity of following one and the same material element, in such
hysteresis phenomenon as plastic deformation in which the mechanical properties
of the element depends on its deformation history, and of the fact that the subject
of our investigation covers small and finite deformations, the so-called Lagrangian
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method, in which the coordinate system is considered to deform in conformity
with the body, is regarded as most fitted. While this method has the merit to
suffice for the theoretical purposes, it shows, on the other hand, the shortcomings,
in dealing with practical problems, that it can provide no means to represent
analytically the position of a material point in space, and that the coordinate
system becomes deprived of its orthogonality and normality with the increase of
deformation. And these defects will be supplemented by introducing the Eulerian
method and others later on.

As was stated in the preceding section, in plastic deformation any state is per-
mitted to be chosen as the undeformed state, i.e. the state t=0. Accordingly, in
the following, we will measure ¢, assuming an arbitrary state, whether annealed
. or work-hardened, as the standard state t=0. As shown in Figs. 1a and 1b, we

0
FIGURE 1a. FIGURE 1b.

suppose that a material point represented by the Lagrangian coordinates* x* oc-
cupies the positions P,, P and P’ successively, at t=0, ¢t and ¢4 d¢, whose position
vectors are F, r and r’ respectively. Then

F=r(z' % 2% 0), @3.1)
r=r(', 2% 2% t), (3.2)
r'=r(x', 2% o*, t4dt) . (3.3)

As mentioned in the preceding section, the quantity to be introduced primarily
concerning plastic deformation is the strain increment tensor associated with the
infinitesimal deformation from ¢ to t+d¢, when the state ¢ was assumed as the
undeformed state. Accordingly, what matters is the deformation from r to r/,

f\f'; C . :
* In the present paper, the Lagrangian coordinates, by which each material point is identified, are
written as * with Greek index representing 1, 2, 3.
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referring to r. Putting ”
D=dt-2, (3.4)
ot
the variation of r and the displacement during dt, from ¢ to t+d¢, are written as
Dr and Du respectively. Hence
r'=r+Dr=r+Du (3.5)
or
Dr=Du. (3.6)
Indicating the position of a material point adjacent to the material point P, at
t=0 by Q,, and its positions at ¢ and ¢t4-dt by Q and Q’ respectively, the relation
between I_’Ei:dr and 1;’_(3’=dr’ is given by
dr'=dr+d(Du) ' 3.7
from (3.5), where
d=dz'a,, (3.8) Y-
] W
a,za_wl . (3.9
Now introducing the base vectors
' e,=ao,r, e,=a,r (3.10)
for the Lagrangian coordinate system at ¢ and ¢+dt respectively (Fig. 1b), we
have :
dr=edx*, dr'=e\dx?, (3.11)
Accordingly, by means of (3.11) and
d(Du)=0,(Du)dx*, (3.12)
(3.7) is written
e,=e,+d\(Du) . (3.13)
Preparatory to the main subject of defining the strain increment tensor, we will
now give recapitulation of the fundamental relations necessary for the subject.
To begin with, the vectors e* reciprocal to e, are introduced by the relations
| e, e =4, (3.14) )
or by ’
A “
e;\p,e"=f‘2—:-c%-, ghw yziéé% , (3.15)

where ¢€,,, is the e-system. Then the fundamental metric tensors are defined by
gu=6ee,, g*=e*.e", gr=0d; (3.16)

according to the co- and contra-variant and mixed components. Denoting the

determinant consisting of the elements g,, by g, we have the relations

gzlglﬂl3 zlg)\”l3 (3.17)

Vg =[eee,], =[e'e’e’]. (3.18)

S~ « |~

)

wti
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And if the co-factors of |g,,| with respect to g,, are indicated by G*, and those

of |g**| with respect to g* by G,;, it follows that

G
g .

It will be needless to mention that e, and e* are transformed to each other by the
relation

9,=9G,., 9*= (3.19)

e'=g¥e,, e€,=g,e€". (3.20)

After these preliminaries, we will now go back to the main subject, and intro-
duce the operator of gradient

V=e'o,. (3.21)
Then
d=dr.V (3.22)
from (3.8), (3.11), (3.21) and (3.16). Hence
d(Du)=dr-V(Du), (3.23)
and (3.7) is written
dr'=dr.[1+V(Du)], (3.24)
I representing the unit tensor
I=ee'=¢€'e,=g,.e'e"=g*e.e,. (3.25)

From (3.24), we obtain

(dr')?=dr-[I+V(Du)]- L(Dwyp +1]-dr,
and therefore

(dr')*—(dr)*=dr- [V (Du)+(Du)r]-dr, (3.26)

neglecting the second order small quantities as regards (Du). (3.26) shows that
the change (dr')*—(dr)® in the metric, from ¢ to ¢-dt, of the space deforming in
conformity with the body is derived from the elementary vector dr of the space
for ¢, by means of the symmetric tensor V(Du)+(Du)P, namely that the tensor
V(Du)+(Du)l satisfies the conditions for the plastic strain increment, deduced in

the preceding section. It is, therefore, justifiable to define the plastic strain incre-
ment tensor by

DEz_;_[V(Du)+(Du)I7:] . (3.27)

By means of (3.27), (3.26) can be rewritten as
(dr'y?—(dr)’*=dr-2DE-dr. (3.28)

We have made use of the Lagrangian method in order to derive the definition
(3.27) of the plastic strain increment DE, but once it has been obtained as a tensor
of the form (3.27), it does not matter with coordinate system may be used for its
analytical expression. In the subsequent sections, we will give some expressions

appropriate for practical purposes, as well as that for the Lagrangian coordinate
system.
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4. ANALYTICAL EXPRESSION OF DFE BY MEANS OF THE
LAGRANGIAN COORDINATE SYSTEM

It is possible for any coordinate system to give analytical expression of the
plastic strain increment DX obtained as a tensor, i.e. an invariant, in the preceding
section. We will now begin with the case of the Lagrangian coordinate system
which is most fitted for the theoretical purposes.

In this case, V and Du are needed to be expressed by (3.21), i.e.

V = e, 4.1)

and
Du=(Du),e*, (4.2)

respectively, referring to €’. It must be remarked here that the components (Du),
of Du are distinguished from the increments Du, of the components of Du, be-
cause e’ depends on ¢. Substituting (4.1) and (4.2) into (3.27), and then applying

o0e'=—1%e", (4.3)

F:p:gvarlmaa

1 (4.4)
Fly,u:‘-z“(algpu +apgul_avgl;‘) >

we obtain the result
DE::-;—[V;(Du),,—i—VF(Du),]e‘e", (4.5)

where V,(Du), means the convariant derivative of (Du),
V (Du)u=0,(Du),— (Dw).I5, - (4.6)

Indicating, therefore, the covariant components of DE by (De),,, (4.5) is rewritten
as

DE=(De),e’e",
} 4.7

<Ds>z,,=§£V;(Du>ﬂ+mwu)zj .

The second equation (4.7) is the analytical expression of the components (De),,
of DE by means of the Lagrangian coordinate system, and what is important is that
the basic tensors to which the components (Dg),, are referred are those for the state t,
e’e”, but not those for the state t=0, é*é*. In connection with this, special attention
must be paid to the fact that the components (De),, of DE are other than the in-
crements De,, of the components &, of DE, as will be shown later, for the reason
of the dependence of e‘e” on t. Although the expression (4.7) is fitted for the
theoretical treatment of the problem, it is not so for the practical purposes because
of the non-orthogonality of e*.

As an alternative to (4.7), we will now introduce its expression by means of
metric tensor, which is more geometrical.

Substituting (3.11) and the first equation (4.7) into (3.28), i.e.

>
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(dr'*—(dr)*=dr-2DE-dr, (4.8)
and then introducing the metric tensor
9= €€, (4.9)

for the Lagrangian coordinate system at the state £+ d¢t, we obtain the relation
(94— 9.0 da*dx* =2(De), da*dx*
so that
(De)zﬂ=%(giy—gzp) ; (4.10)

9., and g%, being the metric tensors at ¢ and t+dt respectively. (4.10) is otherwise
written as

(DS)U:%Dg“,, (4.11)

and consequently, DE as

DE=(Dg), e‘e",
} (4.12)

(De)I/J:—;‘DgM s

referring also to the basic tensors e’e” dependent on ¢. This expression by means
of the metric tensor serves to obtain DE practically, when the change in the geo-
metrical configuration of the body is given.

The first equation (4.12) can be written as

DE:%(gﬁ,.e‘e“—I) | (4.13)

by means of (4.10) and (3.25). In this result, it is seen that the state ¢ is represent-
ed by the unit tensor 1. This fact is consistent with the principle, established in the
first place when deriving DE, that the DE is the strain increment tensor measured as-
suming the state t as an undeformed state.

Although the expression (4.7) of DE has been derived from the definition (3.27),
it is also derivable from (4.10) as follows. That is, operating 3, to the both sides
of (4.2), and applying (4.3) and (4.6), we have

8,(Du)=[7,(Du),Je", (4.14)
so that, from (3.13),
e.=e,+[V,(Du),]e*. (4.15)

Substituting (4.15) into (4.9), and then applying (3.16), we can express (4.10) in
terms of (Du),, and the result is easily found to be the same as (4.7).

The components considered in the above being covariant, the contravariant and
mixed components are obtained from the covariant one given in (4.7) and (4.12),
by the relations

(De)*=g**9"**(De),, , }

(De)t=(De)?,=(De);} =g**(De)., . (4.16)
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5. ANALYTICAL EXPRESSION OF DE BY MEANS OF
EULERIAN COORDINATE SYSTEM

The Lagrangian method used in the preceding section has the defects both of
being impossible to identify analytically the position of a material point in space
and of making the analytical expression of the mechanical quanties as DE com-
plicated because of the non-conservation of orthogonality of the coordinate system,
although it is well-grounded for the theoretical purposes. And to obviate these
defects, we need to use the Eulerian method by means of a space fixed coordinate
system. In the following, we will give the analytical expression of DE by this
method.

As against the Lagrangian coordinates «* (=1, 2, 3), we will now indicate the
Eulerian coordinates by 2 with Italic index, say ¢, representing 1,2,3. Then the
transposition of each material point is expressed by the relation

x' =x(x!, ©, 2%, t), (5.1)
which can be solved reciprocally to give the equations
o =x(al, 22, 23, 1) (5.2)
provided
[a.x"| 0.

The Eulerian coordinates «* of a material point may be coincident or not with
its Lagrangian coordinates x* for ¢=0.
As tensor maintains its form in all coordinate systems, introducing the base
vectors for the Eulerian coordinate system
e, (x', x% 2%, t)=0a,r(x', x% 2%, t) (5.3)
or simply
e, = o,r (5.4)
pertaining to the material point «* in the state ¢, and the base vectors e’ reciprocal
to e,, so that defined by

e'-e;, =, (5.5)
we have, likewise to the case of the Lagrangian coordinate system, the expressions J
V= e'o, (5.6)
Du=(Du),e*, (5.7) :
DE=(De) e'e’,
1 (5.8)
(De)n=—2—[7 {Dw)+V (Du),],
where
7 (Du),=3,(Du),—(Du),I's, (5.9)
fj = gkrpij,‘r ’
- 1 - (5.10)
Fij,k:"z_(aigjk+djgki_akgij) .
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gi_i:ei'ej:gGij s
) X ) 5.11
gzj:em.ejz_l__sz, } ( )
b4
g=|gij'3 N/E:[eu ee], (5.12)

G’* indicating the cofactor of |g,;| for the element g,;, and G, the cofactor of |g*/|
for the element g*/.

When the Eulerian coordinate system is especially rectangular Cartesian, all
I'} vanishing, the second equation (5.8) is written

(De)yy=—-[0,Dw)+2,(Du).] . (5.13)

The expressions for the case of the cylindrical and spherical coordinate systems
also are easily obtained, and the results are seen to have a form somewhat different
from that usually found in many text books. This is because the basic tensors to
which the components (De),; are referred are those resulting from the natural
reference frame, but not from the normalized one.

The components (De),; expressed for the Eulerian coordinate system are related
to those for the Lagrangian coordinate system (Dg),, through (5.1) or (5.2). If we
put the derivatives of (5.1) and (5.2) with respect to z* and x* as

Ai=0x', Al=dx’, (5.14)
respectively, then
AjA}=0;, AlAi=0d}, (5.15)

that is, A% is the normalized cofactor for the element A? of the determinant | Ail,
and vice versa. By virtue of (5.14), we have

ai::Agala aleflata A (5.16)
e;=Ale,, e,=Ale,, (5.17)
e=Ale’, e'=Ale. (5.18)

That the gradient  is written as (5.6) as well as (3.21) is seen to be based on
(5.16) and (5.18). Owing to (5.17) and (5.18), we obtain

(De),;=AiAj(De), }
(De);,=A3Ai(De),; .
The contravariant and mixed components are obtained by
(De)=g"g"*(De),, ,
(De);=(De)'5=(De);*=g"(De),,

from the covariant components (Dg),;, as in the case of the Lagrangian coordinate
system.

(5.19)
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6. LocAL COORDINATE SYSTEM AND THE EXPRESSION
oF DE BY MEANS OF IT

In the preceding section, we have introduced the Eulerian method in order to
remove the demerit of the Lagrangian method that not only it can not describe
the position in space of a material point, but also the orthogonality of the base
vectors is not conserved. But even in the Eulerian method, there remains the
unfitness that the change in the components of DE, more generally of any tensor,
is effected by not only the change in the tensor itself, but also that in the basic
tensors which is due to the transposition of the material point under consideration.
The Cartesian Eulerian coordinate system is the only case in which the reference
frame does not change with position.

In order to avoid such inexpediency as seen in the Lagrangian or the Eulerian
method, we will now introduce other one which is regarded as a modification of
the Lagrangian method and is more favourable to treat the plastic deformation
in which any material element is needed to be followed. Namely, we consider an
orthogonal, generally curvilinear, coordinate system with respect to which the
coordinates of a particle at the initial unstrained state ¢=0, whether it may be
actually annealed or work-hardened, are represented by * with Gothic index, say
i, representing 1, 2, 3. This coordinate system may be coincident or not with
the Eulerian system or with the Lagrangian one for t=0. Then we suppose
that each portion of the coordinate system in the neighbourhood of a material
point is transported with the point with no distortion of the configuration which
it had in the state £=0. By doing so, not only the coordinates of each particle
but also the form of the coordinate system, hence the reference frame too, belong-
ing to and in the neighbourhood of the particle, is maintained during the deforma-
tion. This can be said in other words such that each material point possesses a
local coordinate system which is attached to, and is convected with, it and which
particularly for the state t=0 being connected with each other with no dislocation,
constitutes, as a whole, the prescribed orthogonal curvilinear coordinate system.
Consequently, in the deformed state ¢, our coordinate system is non-holonomic,
individual local coordinate systems being disjoined with each other. This is shown
in Fig. 2 schematically. In the Figure, P, and Q, are the positions of two adjacent
material points in the undeformed initial state =0, P and Q those in the deformed
state ¢, and the orthogonal parametric curves through P, and Q, are converted to
the oblique ones through P and Q represented by the full curves, the latter re-
presenting the Lagrangian coordinate system for the state ¢ resulting from the
former, i.e. the coordinate system xi for £=0. The local coordinate systems
attached to the two material points are coincident, for the state t=0, with the
full curves through P, and Q,, but for the state ¢ they are represented by the
dotted curves through P and Q which are obtained by the parallel displacement
of the curves through P, and Q, and have dislocations as shown in the figure. By

-dint of the merit that the reference frame, hence its orthogonality too, is kept
unchanged during deformation for the same material element, the method of local
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FIGURE 2.

coordinate system is considered to more than make up for the demerit of its being
non-holonomic.

Since we denoted by «* with Roman index the coordinates of a material point
in the state ¢=0 referred to an orthogonal curvilinear coordinate system, into
which the local corrdinate systems are compounded by getting together for the
state t=0, the local coordinates of any material point with respect, and near, to
a material point &* are represented by da’ for any state &. Now by writing

)
0j= —, 6.1
= (6.1)
the base vectors é; and €’ for the state t=0 are defined by
é; = o;F (6.2)
and
éi'é‘i = 5'; ’ (63)
and the base vectors e; and €’ for the state ¢ by
and
€;-e’ =gi. (6.5)
Then, it is evident that
e.‘ - éi ’ ei == éi ’ (6.6)
hence
De; =0, De=0 (6.7)

for the same material point. This means that the reference frame belonging to a
material point performs parallel translation with the transposition of the point.
According to the method of local coordinate system, we can put
Du = (Du),é! (6.8)
and
V = eiai (6.9)
instead of (4.1) and (4.2), and therefore obtain, from (3.27),
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DE=(De),e'e’
1 (6.10)
(De)i,-=—2—[l7 {Du)+V (Dw),] , }
where
Vi(Du)jZG,(Du)j—(Du),.F:} s (6.1 1)
Fg_‘i=gkrrij.k:
1., (6.12)
r ij,k:?(aigjk_l'ajglgi'—ang) ’
gij=e;-e;, g=e'-e’. (6.13)
If, in particular, the local coordinate system is rectangular Cartesian, then
(De)ij=%[ai(pu),+aj(pu)i] . (6.14)

Now, we will try to get the expression of DE available for practical purposes
by means of the method of local coordinate system, when the process of change
in the geometrical configuration of the material element is given. For this purpose,
we take the Lagrangian coordinate system 2 for the state t=0 so as to coincide
with the local coordinate system «* for the same state t==0. Then the base vectors
for the Lagrangian coordinate system for ¢=0, defined by

é, = 0,F, (6.15)
é,-6"=¢" (6.16)
are identical to those for the local coordinate system for any state ¢ respectively,
i.e. '
€=ea=¢, 1 (6.17)

e°t — é’i — ei I

for the corresponding value of ¢ and i.

We suppose that the geometrical configuration of the material element at the
current state ¢ referred to that at the state £=0, i.e. the relation

e, =cté, (6.18)
is given, then substituting (6.17) into (6.18), and putting
c; = ¢k (6.19)
for the corresponding value of « and k, we have
e, = cke,. (6.20)

Since ¢; in (6.18) is specified by the change in the geometrical configuration, c¢* in
(6.20), which is identical to ¢, is also the case. But, on the other hand, c¥ being
the matrix which transforms the local reference frame e, into the Lagrangian re-
ference frame e, for the same material point at ¢, it is expressed also by

of =27 . (6.21)
The matrix ¢; inverse to ¢} given by (6.21) is defined by
C; = a,-w‘ ’ (6.21,)
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or by
cier =90y, cic) =04, (6.22)
and it follows that
€; = cle,, (6.20")
e =clet, € =cie. (6.23)

We have from (3.16) and (6.20)

ngA == C;C:g" > (624)
where g;; has been defined by the first equation (6.13), and is, together with 9,

equivalent, on account of (6.17), to the metric tensors for the local coordinate
system at {=0

ij= €6, ¢V=¢.¢6 (6.25)
or also to those for the Lagrangian coordinate system at t=0
golﬂ = él 'él‘ ’ gozp = éi'é# . (626)
We have from (4.12) and (6.24)
(De)su=-D(et)gn, (6.27)
because g,, is independent of ¢. Since
(De)iy=cicj(De)sn,  (De)r =cici(De);, (6.28)
by virtue of (6.20), we obtain
DE=(De);ie'e’, }
1 6.29
(DS);,-=EC:C;D(0;CZ)Q,., (6.29)

from (6.27) and (6.28). This is the expression of DE by means of the local co-
ordinate system, convenient for the practical purposes.
Basing on the covariant components considered so far, the contravariant and
mixed components are obtained by
(De)V = g*g"(De)y }
(De)i=(De)l;=(De)}=g"(De),,
similarly to the cases of other methods.

(6.30)

7. PLASTIC STRAIN OR STRAIN HIsTORY TENSOR

It will be needless to mention that, if the strain increment tensor DE defined
in Section 3 is ingegrated along a given path of deformation for a certain material
element, we get the plastic strain tensor

E= f ‘DE (71.1)
[}
for the same element. That this tensor E depends on the deformation path, and
therefore is none other than the strain history tensor mentioned in Sections 1 and
2, will be shown thereafter in general, and then by some examples.
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For practical purposes, it is convenient to perform the integration (7.1) by the
method of local coordinate system. But, the results being the same by any method,
we will now begin the problem with the Lagrangian method which has theoretical
coherency. In this case DE is given by (4.7) or (4.12), i.e. by

DE=(Dg), .e'e", }

7.
(D=1 Dg.u= L17.(Du), 47,00 T, 02

and not only (De),, but also e’e* varies with ¢, and consequently (7.1) is not ex-
pected to be easily integrated. Provided, however, that the integration (7.1) could
have been carried out in any way to give the result
E =¢,e'e", (7.3)
we have, from (7.2) and (7.3),
D(e, e'e")=(Deg),.e'e"
hence
De, e'e* +¢,,(De')e" +¢,.e De* =(Dg), .e'e" . (7.4)
In order to calculate De’ in (7.4), we must begin with De,. The reference frame
for the state t-+dt being e,+ De, as well as d,(r+ Dr), we have
e,+De,=d,(r+Dr), |
hence
De, =d,Dr. (7.5)
On the other hand, from (3.10),
De, = Da,r. ' (7.6)
That the order of the operators D and 9, is commutable is seen by comparing
(7.5) with (7.6). Applying (3.6) and (4.14) to (7.5), we obtain
De,=[V,(Du).]e" . (7.7)
By applying this result (7.7) to the relation
(De*)-e,=—e"-(De,)
which is obtained by operating D to (3.14), we have
(De*)-e,= —e"- [V ,(Du).]e*=—g"V ,(Du),,

so that the relation aimed at

De*=—g*V ,(Du).e" . (7.8)
Substituting (7.8) into (7.4), we obtain the simultaneous differential equations
De,,—g°" (. :(Du), 427 u(Du),] =(De), (7.9)

with respect to the components ¢,,. We mentioned previously that (De),, should be
distinguished from De,,, and the difference between them is seen to be clarified
now. By virtue of (7.9), the symmetrical structure of E, i.e.

Eap = Emx (7.10)
is deduced from that of DE, i.e.
(D) 1u=(DE) s
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which is evident from the definition (3.27). In consequence of this, (7.9) is reduced
to the six simultaneous differential equations with respect to the six independent
components g,,,.

A solution ¢,, of (7.9), satisfying the initial condition €,=0 (t=0), defines a strain
E at each deformed state t. And since the coefficients V {(Dw),, V.(Du), and (De),,
in the equations, being specified by the infinitesimal deformation from t to t+dt,
depends on the deformation path, the solution too is considered to depend on it in
general. Namely, if we denote the strain obtained by integrating (7.9) from the
initial state O to the deformed state C along a deformation path A, shown in

A c

0 B
FIGURE 3.

Fig. 3, by E (OAC), and that obtained for the same state along another path B
by E (OBC), then generally
E (OAC) & E (OBC). (7.11)

This can also be expressed such that the strain after a cycle of deformation OACBO
is completed does not vanish, e.g.

$DE=0. (7.12)

Hereupon we are required to remember what has been stated in Section 2 con-
cerning the essential character of plastic deformation. To repeat the statement
briefly, plastic deformation is the deformation due to the change in the mode of
the interatomic connection, therefore accompanied with that in the microscopic
structure of the material such as the group pattern of dislocations, caused by a
sequence of successive slips. In consequence of this the final state of the same
geometrical configuration reached by plastic deformation is distinguished in its
microscopic structure, hence in the mechanical properties as anisotropy specified
by it, according to the process of slip, i.e. the deformation path up to the state.
Accordingly, in plastic deformation, to specify the geometrical configuration is
not to specify the state of the material, but the state in the true sense of the word
is identified by the microscopic structure which depends on the deformation path.
If this true state of material specified by the micro-structural state we now denominate
““mechanical state”, as against the “ geometrical state” frequently represented by the
term “state”, the state quantity (or variable) representing the mechanical state should
also be path dependent, and hence is supposed quite naturally to be the strain E ob-
tained as dependent on the deformation path, as shown in (7.11), as a solution of (7.9).
In this meaning we can designate the strain E for a mechanical state the ““strain
history”, or the “ plastic strain” in contrast with the elastic strain” for the
geometrical state.

This document is provided by JAXA.



180 Y. Yoshimura

The plastic strain E is generally different, as shown in (7.11), for the same
geometrical state, whereas if we wish to make the plastic strains equal for the
two deformation paths A and B as shown in Fig. 4, the final geometrical state
should be chosen differently from each other, as shown by C, and C, in the Figure.
A Ci

Cz

0 B
FIGURE 4.

Thus the conjecture for the plastic strain to be dependent on the deformation
path, made from the physical view-point of plastic deformation in Sections 1 and
2, is now seen to be realized with mathematical reliability. This accordance be-
tween the physical and mathematical stand points is considered to afford a firm
foundation to our present theory of plasticity.

As against the Lagrangian method, the strain history tensor E' is seen to be

obtained more easily by the method of local coordinate system previously intro-
duced. In this case DE is given by (6.10) or (6.29), i.e. by

DE=(De);e'e’
(De)y= L7 Du) 7 {Du)),

(7.13)
or
1
(De)i.i:—z‘cﬁcf}p(cfcﬁ)gn .
If the integration (7.1) were obtained in any way, as
E = ¢ é'e’, (7.14)
then
De;; = (De)y;, (7.15)

because the basic tensors e'e’ are independent of ¢. That is, according to the method
of local coordinate system, the components of the strain increment tensor are equal to
the increment of the strain components. It is the same as in the case of the Lagrangian
method that the solution of the differential equations (7.15) for the same geometrical
state depends on the deformation path up to the state, because (De);; in (7.15) is given
by the path dependent quantities Vy(Du);, Dc},- - -, as shown in (7.13).

It will be needless to mention that E=¢, e‘e" solved from (7.9) and E=c¢;e'e’
from (7.15) is the same for the same deformation path, i.e. for the same mechani-
cal state, differing only in their expressions. The components are related to each
other by

= cic;{eij s } (7 16)

Eij = CiCi€au s

This document is provided by JAXA.



Theory of Plasticity Based on Legitimate Concept of Strain 181

as in the case of (6.28), where ¢; and ¢} are given by (6.20) and (6.22).
The contravariant and mixed components of E are given by

el# :gllgﬂpe,P N } (7 1 7)
g =¢gf'=¢ef =9,

e =g"g%,, } (7.18)
el=e/=¢eli=g"",,

as in the case of DE. When the local coordinate system is rectangular Cartesian,
the distinction among &¥, ¢4 and ¢ disappears.

8. SoMe ExaMPLES oF DF aND E

- We will now apply the results of our general theory concerning DE and E
obtained so far to the cases of extension, simple shear, their combination and so
on. The results thus obtained will serve not only on considering the strain of
circular tubes but also for a more complete understanding of the general theory
of strain.

(1) Combination of Simple Extension and Simple Shear

In order to consider the combined extension-torsion of a circular tube, we intro-
duce the Lagrangian coordinate system and the local one, both of which, as shown
in Fig. 5a, being rectangular Cartesian at the initial state t=0, have the origin
on the wall of the tube and the ', 2% 2® and !, z2, «® axes coincident with the r,
6,z directions respectively at the point. Hereafter since we will consider only
uniform deformations of the tube, we can’ take account, in case of the local co-
ordinate, not only of dz but of 2. Although, at t=0 both the z* and the z* axes
coincide with the above mentioned rectangular Cartesian axes, generally the

Z x3

FIGURE 5a. FIGURE 5b.
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former become oblique, as the deformation increases, the latter remaining as it
was. If we assume the thickness of the tube to be so small that the deformation
may be regarded as uniform over the thickness, the combined extension-torsion
of the tube of Fig. 5a is replaced, as shown in Fig. 5b, by the combination of ex-
tension in the 3 direction and simple shear in the x2, x3 plane of a plane plate
lying in the plane.

Accordingly the combined extension-torsion of the tube carried out in any way
to give a configuration extended by » times in the axial direction and twisted such
that a generator become a helix tilted by the angle arc tan (y/n) with the axis is
represented by the deformation, as shown in Fig. 5b, of the unit cube having as
the intersecting edges the Lagrangian or local reference frame for t=0, é —e,
é,=e, and e;=e;, to a parallelepiped with the edges equal to the Lagrangian re-
ference frame for ¢, e,, e, and e,. From Fig. 5b, we have

€;
e=—-%,
1 N/%-
as a special case of (6.20), assuming the material to the incompressible. Hence,
corresponding to (6.20") and (6.23),

33=’YL83-|-7’82 ’ (8.1)

e,=Jne, e,=Jne,, eszies—ieg, (8.1)
n n
and _
e=yne', e=Jne’—-L e, e=1es, (8.2)
n n
e 1
el="L, e®=—ée*+re’, e*=ne’. 8.2/

e, e; and e, being the basis of the local coordinate system coincident with the
rectangular Cartesian one at =0, constitute a system of mutually perpendicular
unit vectors, accordingly so with e', € and e®. Hence we have in this case e;-e;
=0;; and €'-e’=4", so that from (3.16)

1 1
gu'—_;b—, 922:;, Fu=n+72,
> (8.3)
923:%’;’/—, 93:=9:,=0, ]
1n_ 22 __ ’n2+7’2 |
e gE T
> (8.3)
gB=— n§/2 , gh=g?=0.
Thus from (4.12), we get the components of DE
D D
(De)y = —En%, (D6)22=-—énﬂ2, (De)sg=nDn+rDr ,
(8.4)

(Ds>23=21’7—;.—477’ii2-, (De)sy = (De) =0

This document is provided by JAXA.



Theory of Plasticity Based on Legitimate Concept of Strain 183

referred to the basic tensors e’e” for the Lagrangian coordinate system at the
state ¢.

The components of DE referred to the basic tensors e‘e’ for the local coordinate
system can be obtained by substituting (8.4) into (6.28), in which ¢} is given by
the coefficients in (8.1°), as

(De) 11 =(Dg)2e= ‘—ﬂ— ,  (De)aa= & s
2n n

(8.5)

(De)gz= 7’2 Dn—i—%, (De)31=(De)12=0.
4n N

Now that the plastic strain increment has been calculated as (8.4) and (8.5), the
plastic strain should be obtained by integrating (7.9) or (7.15) using (8.4) or (8.5).
We will now begin with the case of Lagrangian method. In case of the combined
extension-torsion, we can put

0,(Du);=0,(Du);=0,
az(Du)1:az(Du)3:0 ’ } (8'6)
05(Du), =0,
so that, by virtue of (4.7),
0,(Du),=(De)yy, 0y(Du)y=(De)z;, 05(Du)s=(De)ss, } (8.7)
0s(Du)=05(Du);+05(Du) s =2(De)ys » : .
because in this case V,(Du), in (4.7) equals 9,(Du),. Substituting (8.7) into (7.9),

and then applying (8.3') and (8.4) to the result, we obtain the following differential
equations with regard to the components ¢,, :

D€11+ Dn 511:'_' D’rz ’
n 2n
24 .2\ Dn
Dey, + (n +n7;) 2 €2 :@7/? 23:.—%,
Degy— (2 + X \Dney +[ (3L+—L \Dn+ 207 D
€33 _n__i—_ﬁg_ NEs33 ﬁ 7 n+2Vn 7’]523
=nDn+7Dy,
Dn 17(3 rDn ®8)
D523"7 €23 +7[<ﬁ“‘ 52 )D’n +2ﬂ/-"—@—DT:l€zz“‘§W€aa
= Dr _ rDn
2V 4n¥?’
1/1, 7 17(3r , 7 — —
D$31_"‘2—<‘; +'7F>Dns3l +7[(ﬁ+ ')’1,5/2 )Dn +2\/n Dr]821_0 ’
2
DS12+(-71—L+ 27;&3 )Dnslz “‘;13—7,1?; €5, =0.

These are the results by the Lagrangian method.
In case of the local coordinate system, the differential equations are given by
(7.15), so that from (8.5) ‘
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Deyy=Degg=— -—D-Zb—- )
2n

Dez,s:& ,

D523=

" _Dn —I—D
4n? +2n T

D€31 =D€12=0 .

(8.9)

It is seen that the equations by the method of the local coordinate system are
much simpler than those by the Lagrangian method, and are fitted for the practi-

cal use.

If the deformation path, that is, the process of variation of the parameters n
and 7, is given, the differential equations (8.8) and (8.9) can be integrated to yield
the results E=¢,.e'e* and E=¢;e'e’ respectively. As a matter of course, both
the results should be the same for the same deformation path, only their expres-
sions being different. To show this actually for some examples will serve not only
for certifying the self-consistency of our present theory but also for deeper insight
of it. In the following we will apply the above results to some special cases and
give the expressions by the both methods, which will be seen to be identical.

(1.1) Simple Extension
Since, in this case, we can put
r=0,
(8.4) reduces to

Dn
2n?
(De)as=(De)y, = (De)1.=0,

(De)yy=— fn s

py (Deg)gy=— »  (De)ss=nDn,

and (8.8) and (8.9) to

D__._E“ ——_51.: —_ 1 ‘D_._.eza —_6_2_3_ =0 ‘
Dn n 2n2° Dn 20
Dey € 1 Dey, &5 _
Dn n v’ Dn 2n (
Dess_ei:n’ Dsl?__sy._—_o,
Dn n - Dn 2n )
and
Deyy=Degy= ____l_)ﬁ ’ D533=‘Q,,'b— ) }
2n n
D823=D331 =D812= O
respectively.

(8.10)

} (8.11)

(8.12)

(8.13)

The equations (8.12) can easily be integrated along the path of simple extension,

namely with respect to n, from 0 to n, under the initial condition

€,=0 at n=1 (t=0),

to give the result

(8.14)
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511:522='“'§'177 logn,

egz=nflogn, (8.15)

€93 =E3; =61, =0 .

On the other hand, (8.13) gives the result

811:822"_"_% logn, ex3=logn, } (8.16)

€23 =E31=6;2=0,

for the same deformation path and initial condition. What must be noted here is
that (8.15) and (8.16) are the components of the same strain of the simple extension
referred to the basic tensors e’e” and e’e’ respectively, and therefore are derivable
from each other by (7.16) whose coefficients read as those of (8.1) or (8.1’) in which
7 is put equal to zero. It is clear from (8.15) and (8.16) how the expression of the
strain components depends on the method used.

The components ¢; obtained in (8.16) are seen to be the logarithmic strain itself
introduced by P. Ludwik (1909) [/]. This shows that the logarithmic strain of
ordinary use is none other than the extensional plastic strain referred to the local co-
ordinate system, i.e. that the plastic strain or the strain history tensor E introduced
in the present paper is a generalization of the logarithmic strain Jfor extension. That
the logarithmic strain, together with the true stress, is quite reasonable for de-
scribing the plastic deformation of finite extension will be shown later.

(1.2) Simple Shear (Torsion of Thin Circular Tubes)
Since, in this case, we may set

n=1 (8.17)
as shown in Fig. 6, (8.4), (8.8) and (8.9) are written
x3 8 o
éa=63 ,/
e,/
|
9 ;L é2=ez i xt
é=e¢
X! x!
FIGURE 6.
(D&)ss=rDr , (De)za=iDr ,
2 (8.18)
(De)y, = (De)gr= (De)yy = (De);2=0,
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De; =0, Den=0, Dey—2eDr=rDr,
L (8.19)
D€23=—:Dr ) D€31'—€21Dr=0 , D€12:0 ,
and
1
D623 - —”—Dr ,
- (8.20)
the other Degjszo
respectively.

Integrating the first, the second, the forth and the sixth quation (8.19) with re-
spect to 7 from O to 7, under the initial condition

€,=0 at r=0 (t=0), (8.21)
we obtain

1
€:=0, &,=0, 523=—2—Ta €.:=0.

Hence the third and the fifth equation give
€=71, €u=0

under the same initial condition. To sum up, the results are

1
€ =—7> € =77,
2 (8.22)

the other &},s=0.

The components ¢;; for the local coordinate system can be obtained by applying
the second relation (7.16) to (8.22), or by integrating (8.20), in the form

523=—;—r, the other &};s=0. (8.23)

It can be seen that the normal component of E with respect to the x* or «® direc-
tion is present or not according as the method of analysis is Lagrangian or of
local coordinate, and further that the expression of E corresponding to the so-called
logarithmic strain in case of simple extension is given by (8.23).

(1.3) Simple Shear after Simple Extension

As shown in Fig. 7, we suppose that circular tubes are first extended from n=1
to n=mn, under the condition 7=0, and then twisted from y=0 to r=r,, under
the condition n=mn, The strain components &,, just after the tubes are extended
to the state n=mn, are

En=¢&p=——

N (8.24)

logn,, ep=mnqlogn,, }
€23 =E3 =2 =0
according to (8.15).

Then for the second process of deformation, i.e. the process of twisting from
r=0 to r=7,, keeping 7 in the constant n,, the differential equations (8.8) are

written
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.r3 3

&/

n
|
‘—‘3774
€;=6
0 x2 x?
e, 2= G2
-7
eo/=ef
x! x!
FIGURE 7.

DSHZO, D€22~—_—0,
Deys—2e;,0/ny Dy=7Dry ,

8.25
D€23—822v no Dr = -I—_DT > ( )
2Vn,
Dssl :D€12:0 . J

The first and second equations (8.25) show that &,, and ¢,, are kept constant and
equal to the right-hand sides of the first and second equations (8.24) respectively.
Similarly, €, and ¢, are both kept equal to'zero. Consequently, substituting &,, of
(8.24) into the forth equation (8.25) and then integrating from 7=0 to r=r, under
the initial condition

&3=0 at r=0,
it follows that

1
Eg3= 1—log ny)7y, .
23 2@ ( g o)1

Again substituting the &,; thus obtained into the third equation (8.25), and then
integrating from y=0 to y=y, under the initial condition

€33 ="n; log n, at =0,
we get

2
€33 =(2—log "’bo)%—i—nﬁ log 7, .

The results are summarized as follows:

€1 =Ep—— log n, ,

2n,

2
g3 =(2—1log no)%-{-nﬁ log n,, (8.26)
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1
Ey=—=(1—log ny)7,,
23 2‘/—770( g M)
€ =¢€.=0.
It is seen in (8.26) that &,; becomes negative when n,>2.73- - -, and its absolute

value increases with 7, and that &g is also possible to become negative when
My>(2.73- - +)? for large r,. These strange results that the shear and normal com-
ponents of strain begin to decrease as the deformation increases are considered to
be due to the fact that the basic tensors e’e” to which these components are re-
ferred, vary with deformation. These apparent contradiction will be seen to be
solved by considering their correspondence with the stress introduced later on.

Applying (7.16) to (8.26), or integrating (8.9) along the same deformation path
of twisting after extension as above, we obtain the strain components referred to
the local coordinate system

. |
€11 =E22= ——5—log Ny, Esg=logmn,,
(8.27)
71

E23= s €31=¢€12=0.

2n,
As against the result (8.26) by the Lagrangian method, (8.27) has a plausible form.
By comparing (8.27) with (8.23) we can see that the shear components ¢q5 in the
both cases are equal, when the generator of the tube before deformation makes equal
angle with the axis of the tube after deformation, but not when the value of 7 is equal.

(1.4) Simple Extension after Simple Shear

We suppose, as shown in Fig. 8, that after being twisted from y=0 to r=ry,
under the condition n=1, the tube is extended in the axial direction from n=1
to n=mn,. The strain components ¢,, just after the twisting are

x2 x?

FIGURE 8.
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528=%7-0, €3=7%, the other &,5=0 (8.28)

according to (8.22).

In the stage of simple extension subsequent to the simple shear, the material
points situated at C, and D, in Fig. 8 just after the simple shear are seen to trace
the paths C,C, and D,D, respectively such that

—=T, 1Znzn,. (8.29)

\/—— To ==
Accordingly, if we denote by 7, and r, the values which » and 7 assume in the
final state, the relation

= To 8.30
71 \/774_1 ( )

holds between them. The differential equations with respect to ,, for this process
of deformation of simple extension are obtained from (8.8) and (8.9) as

Dau‘*‘suﬁ'—— D,n; R
n 2n
2
D322+522<—1—+r—04>Dn—Sgs—r%Dn=—-l—- D? ,
n n n 2 n
2 7
D833—2€33(—1— To )D’n+262 (27'0+ 7 )Dn ( To )Dn,

n nt 2k

(8.31)

Dn r To 4 7o _ 17
D823—823 2n _833 04 Dn+ 622(2;0-+71%—)Dn___?__02__pn’

2n n

De,,—szl( + o )Dn—l—egl-——Dn 0,

{
Dewten(L 415 \Dn— ey L2 Dn=0.
n 2n

2n
But these equations can not be easily integrated.

On the other hand, if we have recourse to the method of local coordinate, we
can perform the integration with no difficulty. The strain components &;; just after
the simple shear (torsion) from 7 =0 to y =7, under the condition n=1 are

szaz—;ro, the other ¢&/;s=0 (8.32)

according to (8.23). Then for the stage of simple extension, we may integrate (8.9)
under the condition (8.29) and have the result

1
311'—"522:—"'2—108 Ny, ess=log n,,

(8.33)

1 1
523=E ro=7«f771 71> €31=€12=0.

Comparing (8.33) with (8.23), one can see that the shear component &3 is not in-
fluenced by the extension after the simple shear, and further by comparing it with
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71
2n,
(my, 11) is reached by the simple shear after the simple extension or the inverse process.

The components ¢,, referred to the Lagrangian coordinate system are obtained,

by applying (7.16) to (8.33), in the form

(8.27) that the component ey, is or %\/7—7; 71, according as the same final state

|
En=Ep= “*2;— log n,
1

2 -
e =n! log n,— 2:: log 7, ++n; 72

1

1
=n} log n, — 71 log n,+ni "y, (8.34)

€= — Io log n, ‘|‘i TO\/'EI_
2n 2

1

=—_T1 1o n 1 n
2~/n1 g l+271 19

€31 =€;=0.

This is the result which would be obtained directly from (8.31), when integrated
in any way. It is the same for this case too that some of the strain components
decrease in a certain case with the increase of deformation ; but this is not a con-
tradiction, being due to the change in the basic tensors.

(1.5) Coincident Extensin and Torsion in a Constant Ratio

We will next consider, as an example, the case in which extension and torsion
take place coincidently in the constant ratio % such that

r=k(n—1), k=const. (8.35)

The differential equation (8.8) in this case are also so complicated that they are
difficult to be integrated.

Having recourse to the method of local coordinate, the differential equations

(8.9) are easily integrated, under the condition (8.35), from n=1 to n, to give the
result

1 .
euzezzz——?logn » &z=logn,
Can=k 1ogn+£(i_1>, (8.36)
4 4\ n
€31=¢612=0,

The components ¢,, are obtained from (8.36) in quite the same way as in the pre-
ceding article and therefore may not be put down.

(2) Tri-axial Extension

We suppose, as shown in Fig. 9, that a body is extended (or contracted) in three
mutually perpendicular directions fixed to it by I, m and % times. Where
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x3

0 3 x?
\e
IL _ I__;] m
é =6
II
FIGURE 9.
lmn =1,
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(8.37)

because plastic deformation is incompressible. If we take these directions coinci-
dent with %, 2 and z3 axes of the rectangular Cartesian local coordinate system,

(6.20) is read as : _
e—=le,, e;=me;, e;=nes,
hence (6.23) as

elz—l—e‘, e2=—1—e2, e=Les.
l m n
Accordingly,
guzlz, G =m", g =n°, Fos =951 =9:12=0,
1 1 1
gu_____l?, gzz=_’n?, gss:_n_z’ gB=gM=g"=0,

(De)y=IDl, (De)se =mDm, (De)g=nDn,
(De)gs= (De)gy=(Dg)1,=0,
so that by applying the first equation (6.28) to (8.42),

(De)llz%’ (De)z2= Dm s (08)33=—% s
m n

(D€)2a=(De)sy=(De)12=0.
From (8.41), (8.42) and the relations

(De)yy =V (Dw), 5 (D€)ye =V (D), (De)sg =V 3(Du)s ,

(De)zs=(De)sy = (De);2.=0,

(8.38)

(8.39)

(8.40)
(8.41)

(8.42)

(8.43)

which hold in this case, the differential equations (7.9) are obtained in the form

Dl

DEll——zsu——-:lDl . D€23_€23(‘Dm +%>=0 ,
l m :

n

Deyy— 265, Dm
m l

Dl | Dm

D533—2533_1)_7L. :’I'LDn, D612—613<.__+_____):0 .
n m /

l

=mDm, Desl_esl(%ﬁ‘{“!l)-:os

(8.44)
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"
On the other hand, the differentia] equations (7.15) referred to the local coordinate
system are written by (8.43) as
Den'——-gl-’ Dego= Dm s Degg= D >
! m n (8.45) ‘
Dey3=Deyy=De,, =0 .
Integrating (8.44) for the process of extension in each of the 2", 2% and 23 direc-
tions, we have
en=0=logl, e,=mlo m, ep=n’logn, 4
11 g 22 g 33 g ‘ } (8.46)
€23=83;=¢€,,=0. |
For the same process of deformation, (8.45) gives v
gni=logl, e,,=lo m, ggz=logmn,
11 g 22 g 33 g } (8.47)
€23 =E31=61,=0. )
Here, it is needless to say that (8.37) holds between l, m and n, and also that (8.46)
and (8.47) are derivable from each other by (7.16). '
The results (8.46) and (8.47) do not depend on the order of integration with
respect to l, m and n. This means that the plastic strain for the case of extensions
in three perpendicular directions is the same, being independent of the order of the
extensions, if the geometrical configuration of the final state is the same. This is an
important point in which the present case is different from that of combined ex-
tension-torsion. :
(2.1) Pure Shear (As the Resultant of Extension and Contraction in Two Ortho- i
gonal Directions) .
As shown in Fig. 10, we consider the pure shear in which the body is extended
by n times in the z3 direction and contracted by 1/n times in the 22 direction,
3 g i
n _eJ —— )
- 1 4 |
€3=63 ‘
_ bl ;
: x4 x? |
N € é-e, . %
%
FIGURE 10. {
being neither extended nor contracted in the ! direction. Since we can put, in ﬂ
this case, for I, m and 7 in the preceding section as |
!
=1, m=1, (8.48) |
n :
(8.46) and (8.47) are written a
¥ 4
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522:—-—1—210gn, g=ntlogn,
n (8.49)
the other ¢/,s=0,
and
€= —logn, ezz=logn, } (8.50)
the other ¢%s=0, )
respectively.

(3) Pure Shear (As the Resultant of Simple Shears in Two Orthogonal Directions)

As against the case of Article (2.1) in which the coordinate axes were taken
coincident with the principal directions of the strain due to pure shear, here we
will consider, as shown in Fig. 11, the case where the coordinate axes are rotated

x¥

x¥

FIGURE 1'1.

by 45° from the principal directions, i.e. where they are taken parallel to the
directions of the shear stresses. Since our plastic strain is a tensor, its components
in the present case would be obtained from those in the preceding Article by some
transformation formula of tensor components, but now we know nothing about it
for such finite deformation as is treated in the present paper. For this reason,
and also for the purpose of giving the present theory certification from various
angles, we will begin with the direct calculation of the strain components referred
to the rotated axes.

As shown in Fig. 11, we represent by x¥ and x¥ the axes of the rectangular
Cartesian local coordinate system rotated by 45° from those in Fig. 10, and sup-
pose that the square having two adjacent sides e, and e, is converted to the
parallelogram with the sides e, and e;. Then

e,=ey,
e,=aey+ fey , (8.51)
ey=fPey+aey,

because the relation of e, to e, and ey is the same as that of ey to e; and e,

where a and 8 are parameters representing the extent of deformation, which will
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L34
be related later on to the elongation in the principal direction. Applying (3.15)
to (8.51) and taking account of the incompressibility condition [e e.ey]=1, we
get
el':(az_ﬁz)el' ,
e¥=ae¥ — fe¥, (8.52)
e’=—fe¥+ae¥ .
We have from (8.51)
gv=1, vy =0yy=0a’+ %, _ } (8.53)
g2'3,‘—‘2aﬁ s gsllr:gllglzo N
hence
1
(D)= (De)yy=—D(a*+ %) ,
2 (8.54)
(DS)Z;;,,:D(aﬁ) s (De)yy:(DG)a;y== (D&)W/ZO . ))
Applying to (8.54) the first equation (6.28) whose coefficients ¢ are read as those )]
of (8.51), we can obtain (Dg);; and therefore the differential equations (7.15) in
the form
Deyar=Deyy=(a*+ 6D+ ) ~28D(a)
Deyy=—abD(a*+ ) +(a*+B)D(af), (8.53)
Delllr - Dealli = D€1,2; = 0 .
Since the parallelogram in Fig. 11 is brought about by the pure shear from the
initial square, their areas are equal to each other, and the relation
el,: ezlxeat:ezrxear:el
holds. From this relation and the first equation (8.52), we have
at—fE=1. (8.56)
On the other hand, we suppose that the magnification in the principal direction,
i.e. the diagonal direction of the square, due to the pure shear is n, then ‘-) )
e2f+ear:n(ezl+ 831) N
and hence substituting (8.51) into this equation, we have
at+B=n. (8.57)
Consequently, from (8.56) and. (8.57),
1 ( 1 ) _ 1 ( 1 )
=_|n — 1, =l n———1. 8.58
“ 2 + n P 2 n (8.58)
Substituting (8.58) into (8.55), we get
Dez,s,:—gf'—, the other De/,s=0, (8.59)
n
hence by integration
Eyg=logm, the other &/,5s=0. (8.60)
J
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-

It deserves special attention that the transformation relation between the com-
ponents (8.50) and (8.60) for the case of pure shear of finite magnitude is the same
as that for small pure shear, as shown in Fig. 12a.

E23 .E2y E23,E00
Ezy _—
logn Epy
22,833 A l B £z22,€3
[ 0 a3 E29.E53 ) OlgymC b Eoz,Ex
log7t—et=—1logn I a2 nlogn
(\,. FIGURE 12a. FIGURE 12b.
® By applying to (8.60) the first equation (7.16) whose coefficients ¢} are given by
those in the inverse relation of (8.52), we have the components ¢, for the Lagran-
gian coordinate system
1 1
82!2;2'83131:—2—('”42 —‘F) log n,
52,3,:_1-<fn,2 +L> log n, (861)
2 n®
the other ¢,/.s=0.
It is seen by comparing (8.61) with (8.49) that the relation
o1
Eygr =Egyp— 5 (€22 t+¢33) »
1 (8.62)
Eyy= 5 (e3s—€22) »

Q* hold between the components before and after the coordinate axes were rotated

by 45°. This is regarded as illustrating that, in case of the Lagrangian method too,
the same transformation formula as that for small deformation, as shown by the Mohr’s
representation in Fig. 12b, is also valid for large deformation. This fact illustrated
for the case of pure shear, concerning the transformation of the components of E,
will be proved later on generally.

If we denote the angle between e, and e, in Fig. 11 by ¢, and that between ey
and e, by 6/2, then the relations

o _ 1
tan ==, 8.63
2 nt (8:63)
’n—4 1+an0 (8.64)
1—sinéd

hold, and accordingly (8.60) is written in the form
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ez,a,z-l—log 1+4sin@

, the other &/,s=0. 8.65
2 ° 1—sing 7 (8.65)

It will be needless to mention that the strains for the pure shear and for the simple
shear are the same for small deformation when the changes in the angle between
the axes perpendicular to each other and tilted by 45° with the principal directions
are the same. But we can clearly see by the comparison of (8.23) and (8.65) that
these strains become different for the same change in the angle, as the deforma-
tions proceed.

9. ILLUSTRATION OF THE FACT THAT E IS THE STRAIN HISTORY TENSOR

In Section 7, we have already deduced, by a general reasoning, that the plastic
strain E obtained as a solution of the differential equations (7.9) or (7.15) is not
specified by the final geometrical configuration, but depends on the deformation
path along which they are integrated, and therefore is a strain history tensor.
This conclusion is one of the most import starting points as well as a conclusion
which decides the essential character of our present theory, and so its validity
seems to be worthy of being examined carefully by examples.

First we will consider the case of combined extension-torsion treated in the
preceding section. For example, the plastic strain E; , when the body takes the
configuration specified by (n, ) by a simple shear after a simple extension has
the components

€11 =Eg2= —%Iog n, &g=logn,
9.1)

Ezszl—, €31 =2612=0,

» 2n
according to (8.27), and the strain E, ; for the same configuration (%, y) brought

about by a simple extension after a simple shear is

eu-:szz:—%logn, gss=logn,
1 — (9.2)
523274/%7” €31=612=0,

according to (8.33). It is seen that E, ; and Eg , are distinguished by the com-
ponent &,3, namely that

ET,E—EE,T=Lr(«/ﬁ-———l—>(e2e3+e3e2). (9.3)
2 n

Expressed otherwise, the plastic strain of a material element, when it performs
the cycle, torsion extension-reversed torsion-contraction, to assume again the
initial shape, does not vanish but has the value

Erzra=r (v — L)ee*+e%?) . (9.4)
2 n
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This result (9.3) or (9.4) is considered to be due to the very fact that the micro-struc-
tural state of the body as represented, in metals, by the group pattern of dislocations,
differs according as it is extended after twisting or twisted after extension. In fact,
it is clear that by the twisting process in the former case the slip, and therefore

the micro-structual change due to it, of the amount -I?N_n_ is produced, while for

that in the latter case it is %(-,7;;—) If, on the other hand, the plastic strain, and

hence the micro-structural state, were required to be equal for the both deforma-
tion paths, the final geometrical configuration must be chosen differently. Thus
the conclusion generally deduced in Section 7 is now seen to hold actually for the
special case of combined extension-torsion. It is worthy of notice that the dif-
ference (9.3) of the plastic strain due to the deformation path should correspond
to the difference of the plastic properties such as anisotropy and the Bauschinger
effect of the material, but not to the difference of the stress state according to
the deformation path, which has its cause in the state equations.

Not to mention, the path-dependence of the plastic strain, i.e. (9.3) or (9.4), is
of practical importance for the finite deformation, and the usual procedure to
obtain the plastic strain from the difference of the geometrical configuration before
and after deformation is seen to be meaningless. Also for the small deformation,
it is expected to have practical importance, especially when the deformation is
repreated and the remaining strain becomes finite after a number of cycles.

The above statement illustrated for the combined extension-torsion that the
plastic strain for the same final geometrical configuration depends on the deforma-
tion path up to the state does not necessarily hold for any case. For example, in
case of the triaxial extension, the amount of slip, and consequently the micro-structural
change, of the body is considered to be the same, no matter what the order of extension
may be. And in this case, the strain (8.47) has been found to be really 1ndependent
of the order of integration with respect to [, m and n.

10. TRANSFORMATION OF COMPONENTS OF DFE AND E

In the preceding section, we have illustrated for the case of pure shear that the
transformation of the plastic strain components for the finite deformation, when
the coordinate axes are rotated by 45°, is the same to that for the small one. In
the present section, we will derive the transformation formulae of the components
of DE and E for general coordinate transformations.

We consider two Lagrangian coordinate systems, and suppose that between the
coordinates #* and ¥ of a material point referred to the respective systems there
exist the single-valued and mutually independent relations

=¥z, 22, 2%, A=1,2,3, (10.1)
which can be solved to give

=2 (", 2%, 2¥), 1=1,2,3. (10.1)
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Since the coordinates «* and #* are both Lagrangian, the relations (10.1) and (10.1)
hold for arbitrary ¢, when they hold for a particular ¢, say ¢=0.
As the reference frames for the coordinate systems «* and 2 are given by

e;=ao,r and e,=a,r, (10.2)
respectively, where
_ 0
all = 'a—x”— Py (10.3)
we have
el =Agle,u’ ’ el'=A§’ep ’ v (10'4)
and
e'=Ale", e'=AY", (10.5)
putting
AY=02", AL=d,x". (10.6)
It is evident from (10.6) that the relations
AYAL =04, ALAY =0 (10.7)

hold between A4 and A%,
By virtue of (10.5), we have the transformation formulae between the strain
components

Ep;‘r:AglA::/S“‘ N 5;F=A§,A,’:’€pl‘r ,
V=AY A,  e*=ALALE™, (10.8)
en=AyALel ea=ALAYEL
and the same formulae between the strain increment components (De),,, (De)*, - - -
and (Dg) v, (D)™, .«
The above case is for the Lagrangian method. If we introduce local coordinate
systems #* and & which constitute, for t=0, certain curvilinear coordinate systems

«' and z* respectively, which may be regarded as Lagrangian systems for £=0,
then the reference frames for the local systems

€e;=o;r and e,=o,r, (10.9)

where
0

ox¥
are equal to those €, and €, for the Lagrangian systems at t=0. For the Lagran-
gian system, the relation between é, and é,. is the same to that between e, and e,
because the transformation equation (10.1) holds independently of ¢. Hence the
transformation formulae between €; and e, and €' and e, being identical to (10.4)
and (10.5) respectively, are given by

e=Ae,, e=Ale; (10.11)

3y = (10.10)

and .
e=A.e", e'=Aleé. (10.12)

Thus we obtain the same transformation formulae as (10.8) for &, etk . ., viz.
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ew=AuAben, eu=A A,

¥ =AVAT™®,  F=ALALEY, (10.13)
h=AlALe,  G=ALATS,

where ¢, ¢/, £ and &’ have values corresponding to i, #, k and k' respectively. The
formulae for Dey,- - - are the same and therefore they need not be written down.
It is easily found that the coefficients A% and A4 are also given by

A¥=e,-e"=¢;-€¥,
} (10.14)

Af,Ze,;-e'Zei;-ek .

When the local coordinate system, or the Lagrangian coordinate system for ¢=0,
is rectangular Cartesian in particular, the transformation coeflicients A% and AY
represent the cosines of the angles between the axes of the coordinate systems da
and dz?. In this case the transformation formulae (10.8) and (10.13) are reduced
to the usual ones obtained for small deformations in many text books.

The transformatian formulae (10.8) and (10.13) have beem derived for the deforma-
tion of arbitrary magnitudes. And it is not only noteworthy but fortunate that they
have the same form as for the small deformation. Namely, as shown in Fig. 13, we

8 ‘ol , ’
29 x3 x’ x x3 o
X
(€22, E23) 2
xz
20,
- &

€22 o 2 2
Eya

< E22

— LEar+ 39— (€33 -E23)

FIGURE 13.

will now consider two Lagrangian coordinate systems ’ and #* which are rectan-
gular Cartesian for =0 and whose axes x' and " are coincident with each other,
and suppose a uniform plane strain in the x? «® plane, or the z%, ¥ plane, to take
place. If the angle between the axes #* and 2¥ is 6, for t=0, it becomes, for ¢, 8
other than #,, according to the plane strain. On the other hand, when the local
coordinate systems 2* and «¥ (as we are dealing with uniform strain, we need not
distinguish between dz' and «%, and dz¥ and z¥) which coincide at t=0 with the
above Lagrangian coordinate systems z* and 2* are considered, the angle between
the axes 2% and #* is maintained equal to 6, for all ¢. Accordingly A: are given
by Table 1.
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TABLE 1. Value of AL, =A*

e 1 2 3

<

1 v 1 0 0
2 2 0 cos b, sin @,
3y g 0 —sin f, cos b,

Hence (10.8) and (10.13) read

Earyr =COS® OyCo -+ 510 By€55+-5in 26,655 ,

&y =SIn® o2 +COS® Byey3 —sin 26,655 , (10.15)
Eoryr — — —;— Sin 260(822 ‘-633) —COS 200523 ’

and
E2r2r=COS” B€5+ 5in® Oye35 1 5in 260,653 ,
€33 =5IN% 0,855+ COS? Bye53—Sin 26,655 , (10.16)
82131 _— —;— SiIl 200(&22 - 833) —CO0S 200823

respectively. These are seen to have the same form as the transformation formula
for the case of small plane strain. What must be remarked here is that 0, is the
angle between the axes x* and x¥ for the undeformed state t=0, i.e. between the axes
x* and x*¥. In particular, when the axes 22 and 2 are taken coincident with the
principal directions of the strain, we can put &,;=0 in (10.15) and &,3=0 in (10.16),
and therefore have

1
Egrgr= 5 (€22+€33) +—;— (€22—&33) cos 26,
1 1
53'3'=? (€22t €3s) _7(522—'533) cos 26, , (10.17)
62131'—_' -‘-1—- (522 ""533) Sin 200 .
2 y
and
1 1 \
Earg 27 (22+¢€33) + 5 (e22—¢33) cos 20, ,
1 1
33'3'27 (e22+¢€33) +? (e22—¢33) cos 26, , (10.18)
o ,=——i(e —&33) Sin 26
2/3 5 \C22 €33 0- )

Thus the relations between &y, &, and ey, Eyg, Exy, and between &,,, €33 and eypr,
€y, €y are seen to be represented by the Mohr’s circle of Fig. 13 just as in the
case of small deformation.

When the plane strain is pure shear in particular, and its principal axes are
taken to be the #* and 2 axes, ¢/js are given by (8.50), and accordingly (10.18) is
written as
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Egrgr=—C0S 26, log n ,
a3 =cos 20, log n, , (10.19)
Earz=S5In 260, log n .
Further, when 6, is taken equal to /4 as shown in Fig. 6, (10.19) is reduced to
(8.60), i.e.
Eyzy=l0g N, Epp =E4s=0. (10.20)

This means that (8.60) is also obtained by the coordinate transformation from
(8.50).

We will next consider simple shear, as an example of the plane strain. If the
x* axes are taken as in Fig. 6, the strain components ¢;; are given by (8.23), and
hence (10.18) becomes

1 _ .
8212/=‘5‘ T sin 200 s

1.
53,3,=——2—rsm 20, , (10.21)

1
Egrzr = ’——2—— 7 cos 200 ,
For §,=x/4 particularly, (10.21) is written
1 1
52/2':—2—T ’ Egrgr = —77‘ N 5213/:0 . (10.22)

This means that one of the principal directions of simple shear lies in the direc-
tion inclined by 45° with the slip direction (x2 direction), no matter how large the de-
formation may be. This is a matter of much importance. As stated in the intro-
duction, the recognition commonly accepted that the principal directions of simple
shear are parallel to the principal axes of the ellipse resulting from a circle before
deformation by the simple shear, or to the corresponding axes of the circle, is
wrong for the plastic deformation at least. It can easily be found that the principal
direction of DE for the simple shear also makes 45° with the slip direction (2
direction). That is, in the plastic simple shear, by the strain increment which has a
principal direction of 45° with the sli;} direction, the strain with the same principal
direction is produced. And without this idea of strain indeed we can not explain the
very fact for an isotropic thin tube that the plastic pure torsion is caused by a pure
torque, without any axial elongation or contraction of the tube. This is the reason
which enforced us to our present theory of plasticity.

To avoid confusion, it should be noticed here that the elastic simple shear,
contrary to the plastic one, is specified by the ellipse which was a circle before
the deformation and its principal axes are coincident with those of the ellipse [3].
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11. DEFINITIONS AND EXPRESSIONS OF STRESS
AND STRESS DEVIATOR

In the preceding sections, we have introduced the plastic strain increment DE
and the plastic strain E reasonable for describing plastic deformation viewed from
its physical picture. Our next problem is to define stress, and give its expression,
which, together with DE and E, can describe plastic deformation with logical and
physical legitimacy.

The first condition for the stress to satisfy for this purpose is that it is a tensor,
as was dilivered in Section 2. This condition is not sufficient to define stress uni-
quely, for there can exist not a few tensors which correspond in some manner to
the state of forces at a point. Mathematically, a stress tensor is a quantity which
transforms the vector representing a sectional area in the material to the force
vector acting on the area. As the sectional area one may choose that before de- =\
formation AdS or that after deformation ndS (7 and n are unit normals on dS l) ’
and dS respectively), and as the force vector £dS or £dS. The stress tensor depends D
on the way of combining these vectors.

Thus we need further condition for the stress to satisfy, in order to reach its

unique definition. And as such condition serves the virtual work principle (2.1).
What is suggestive in selecting the stress tensor, in the light of the condition (2.1),
out of the various transformation tensors mentioned above, is the conception that
the stress tensor should also be referred to the deformed state in the plastic de-
formation, as it was for the plastic strain tensor. Thus we are tentatively led to
the definition of the stress tensor

fdS = (ndS)-T

f=n-T (11.1)
where, as touched above, dS represents the elementary area at a point considered
in the material, n the unit normal on dS and £dS the force vector which the part
on the side of dS to which n is directed exerts on the other side of dS.

Leaving the verification to a later occasion that the tensor T’ defined by (11.1) | )
satisfies the condition (2.1), we will now continue our subject on the assumption
that (11.1) is reasonable. If in (11.1) three independent normals n, (A=1, II, III)
and the corresponding forces f, (A=1, IL III) are given*, the stress tensor T' is .
completely determined in the form

T =n‘f,. (11.2)
This is the definition of stress in the absolute form valid independently of the
coordinate system.

Having recourse to the Lagrangian method, we can write

n‘=n4e,=nje*, (11.3)
f,=rie.=f..€". (11.4)

* Here the capitalized index, say A4, is used to denote the directions I, II, III independent of those
referred to any of the coordinate systems ever introduced.

or
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Substituting (11.3) and (11.4) into (11.2), and putting
o =nYfh, 6,=Nif4., oi=nf,., (11.5)
we obtain the expression of T
T'=o""ee,=0,.'e¢"=cle,e", (11.6)
where ¢*“, g,, and o, are transformed to one another by the metric tensor g,, and
g*, i.e. for example '
010=01:9,,0" , 0';3:9;::0'“ . (11.7)
When the local coordinate system is used, similarly we have the following ex-
pressions :

n*=n*e,=nfe, (11.8)
f,=fle;=f,€, (11.9)
dI=n4f], oy=nif., o=n4f,;, (11.10)
T=o"¢e;=0;6'e'=0'e;e’, (11.11)

o5 =9udio™, o;=guo", (11.12)

When the local coordinate system being rectangular Cartesian in particular, the
reference frame e, €,, €; constitute a system of mutually perpendicular unit
vectors i, J, k, the distinction among the contra-, co-variant and mixed components
of stress disappears, and they can all be substituted by o, Oy Oos Tyas Tyzy Ty @S
considered in many text books.

We will next introduce deviatoric stress. In the first place the hydrostatic tension
is given by one third of the first scalar invariant of the stress tensor T, i.e. by

~ 1 1

az?a*#gl,,.—_?a;,,g';“:%ajag (11.13)
for the Lagrangian coordinate system, and by

-1 4 1 i 1 s

o'=~3—0ijg =§—0'ijgu:—3—0'ﬁ,l (11-14)

for the local coordinate system respectively.
The stress deviatoric tensor T is therefore defined by

T'=T—-o1 (11.15)

where the unit tensor I is expressed by (3.25) for the Lagrangian system and by
I=e¢;e'=¢€'e;=g;e'e’=g"ee; (11.16)
for the local system. Representing the components of the deviatoric stress tensor

T' by o'*,---, ¢'¥,... for the Lagrangian and local system respectively, we can
write
T/:allﬂeleﬂz e,
=d'Vee;=- .-, (11.17)
hence from (11.15) obtain
o' =g*—ag*, ‘7;#:02#—'591#’ allul:a:'_aaﬁ’ } (1118)

i 33— , .
o¥=0"—0gg¥, o ;=0;—09;, o ;=di—adt.
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It is easily found from (11.18) that the first scalar invariant of 7' vanishes, viz.
a'**g,,=0, a'¥g;=0. (11.19)

When the local coordinate system is rectangular Cartesian in particular, (11.18)
gives the usual relations

! ot [ A—
0y =0x—0,""* 5 Tyz=Tyz""" (11.20)

no matter what the components may be, contra- or co-variant or mixed.

12. SoME EXAMPLES OF 7"

We will now consider some cases of simple stress states, for the purpose of both
deepening our understanding for the stress tensors 7' and 7'’ and clarifying their
correspondence with the strains DE and E previously introduced.

(1) Simple Tension 3 '

We consider, as shown in Fig. 14, a rectangular Cartesian local coordinate »
system ' and suppose that an uniform simple tension of the amount ¢ per unit

o

x3

x! o

FIGURE 14. ) ‘

‘\1‘

cross section is exerted in the 2 direction. Then the stress tensor 7' is expressed
in the form

T=oesey=ce*e*=- .- . (12.1)
The ¢ in this case is the so-called true stress. If the plastic deformation due to

this simple tension is a simple extension by #» times in the «® direction as described
in Article (1.1), Section 8, then (12.1) is transformed into the form

g —_ — 03
T= Py e;e;=n’se’e’=oé’e, (12.2)

referred to the Lagrangian system coincident for =0 with the local one, because
€;=ne,;, ne*=e3. Thus it is seen that the Lagrangian component of the tensile
stress of the amount ¢ is ¢/n? or n’% or ¢, according as it is contravariant or co-
variant or mixed.
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The hydrostatic tension being

s=Lg, ‘ (12.3)
3
the components of T’ are obtained from (11.20) as
cMN=qd),=dl= ____;0 , /2=ghy=02= —%o‘ ,
0_/33:0;320;3_._.2_0’ (12.4)

the other ¢’Y=0¢/=0¢7=0.
The Lagrangian components of T’ are obtained from (12.4), by means of (8.1")
and (8.2'), in the form

o"lz—ina, 0'222———1-’17,0, a'”-—*if—z,
3n (12.5)
the other ¢'*=0,
R A A R Nl
3 n 3 n (12.5")
the other ¢%,=0,
ol=—_—0, oé’z—io, o"”’:ia, ‘
3 3 (12.5")
the other ¢/'=0,

according to the contra- or co-variant or mixed components. Although the mixed
components have the same values as those by the rectangular Cartesian coordinate
system, their mechanical meaning is not the same.

It is at our disposal to adopt what components of the stresses for what coordinate
system, but the components of DE and E must be chosen correponding to those of
the stresses. That is, in considering the stress-strain relation, they must be (De)**
and &** for ¢’**, and (De);; and ¢;; for ¢';;, for example, but in considering work,
(De)** for ¢,,, and so on. And no matter what kind of components may be con-
sidered, the T""~E, DE relation is seen to be reduced to

Dn

-2~a~log n, (12.6)
3 n
and the work T--DE to
Dn
—_. 12.7
e (127)

(2) Torsion

We consider a shearing stress state as shown in Fig. 15. Then it is expressed

by ,
T=T'=1(e.e;+eze,) ' (12.8)
or _
08 =0y3=02=0¢3=0B=gly=02=0dB=r1,
23— 03=02 23 =03 } (12.9)
the other components=0.
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x3
T
T T
0 x?
T
xl
FIGURE 15.
. . . ‘/
Their Lagrangian form is Vo,
022:0’22:_277a 0232012322_, (12'10) 3
0'23:0';3-——2', 033:043=2TT, (12.101)
ai=gll=—7yr, ai=of=(1—7)r,
2 i T 3 3 ( )T } (12.1011)
oi=ol=r, si=ol=7r,
the components not written in the above being zero. When the deformation due
to this shear stress is the simple shear shown in Section 8, the relation between T
or T’ and E, DE is, likewise to the above case, reduced to
1 1
T~—y, —D 12.11
57 5 Dr (12.11)
and the work T'--DE to
L.py. (12.12)
> :
regardlesss of the kind of components and of coordinate system selected. When )
the deformation due to the stress is a pure shear, it is sufficient for the -l—r and )
—Dr in these relatlons to be replaced by log n and Dn/n respectively.
(3) Combined Tension-Torsion
We consider the stress state to be given by Fig. 16. Then we have
T=oese;+7(eze;+ese,) , (12.13)
0/1120412,. =g/ = —.. .:__1_0,
2
0/33—0; :...=?a, \ (1214)
0"2320‘932 .o 20,32: LAY :T,
the other components=0. /
@
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o
x3 I
T
T T
0 12
.T
x! o
FIGURE 16.

If the deformation due to this stress is the combined extension-torsion specified
by m, r as shown in Fig. 5b, the Lagrangian expression of (12.14) is given by

1
0{1:0522 _,,—n ag,
J
a§3=2nrr———1—r"’a+in20,
3 (12.15)
o§3=~/7z~r——:l)’— :/];—71,_0 ,
0'::1'—0{2-—0

It seems rather strange that o} and ¢4, of (12.15) become negative for the positive
o and r when they both, or only ¢, become, large beyond some extent. The like
has already been shown for the strain components given in (8.26). This same
question encountered in both (8.26) and (12.15) is now seen to be solved by con-
sidering them in correspondence with each other. Namely, their comparison is
found to lead to the correspondence

—§—o~logn, r~L

2n

which is very natural and is also obtainable by the comparison of the other kind
of components as well.

From the above examples, we can see that the interdependence of 7' and E,
DE and the work 7--DE are quite the same for any kind of the coordinate
system and the components. This result, though rather. natural in view of their
being tensor, is considered to show the self-consistency of our present theory.

13. THEORETICAL JUSTIFICATION OF THE TRUE STRESS
AND THE LOGARITHMIC STRAIN

In the preceding sections, it was made clear that the tensors DE, E, T and T
themselves, and therefore their interdependence, are the same (invariant), though
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their analytical expressions depend on the kind of the coordinate system and of
the components used, and especially that in the case of simple extension due to
simple tension the "'~ E correspondence is reduced to the true stress-logarithmic
strain correspondence

a=§~e=10gn (13.1)

which was first introduced by P. Ludwik [/] to describe extensional plastic de-
formation. (Here the coeflicient 2/3 in (12.6) is omitted, for the sake of simplicity.)
That is, it is one of the conclusion of our theory that any stress and strain other
than the true stress and the logarithmic strain must not be used to describe extensional
plastic deformation. We will now show that this conclusion, and hence the basis
of our present theory, is valid in view of the logical and practical considerations
on the description of the extensional deformation.

For this purpose we will compare the characteristics, which our true stress and )
logarithmic strain exhibit for the description of deformation, when the origin of
the strain is displaced, with those shown by other ones commonly used. And further
for this, we choose an arbitrary state, work-hardened or annealed, as the state
t=0, and suppose a test piece of unit of both length and cross section in this state
to ‘have the lengths and cross sections shown in Table 2 in the respective state
t=t, and {. And then we represent by the notations in Table 3 the logarithmic

true stress

state t=0 t=t, t origin of strain =0 t=t,
length 1 o n logarithmic strain e €
. - usual strain e ¢
cross section 1 A, ’ o
8

nominal stress

and usual strains and the true and nominal stresses when the origin of strain, i.e.

the undeformed state, is taken at the states t=0 and t, respectively. Further we

indicate the logarithmic and usual strains of the state t=t,, when the state t=0 )
is regarded as the origin of strain, by ¢, and e, respectively. Then we have from ‘
the definitions of usual and logarithmic strains,

l4e=n, H—e’:-’i, 1+e,=mn,, (13.2)
. N
e=logn, &=logn—Ilogmn,, &,=logn,. (13.3)

From (13.2) we obtain

1+t¢
| ,
+ 1+e,
and hence
/7 e'—eo
e=-__"0, 134
Fe. (13.4)

and similarly from (13.3)
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£=e—¢g,. (13.5)
It can be seen from (13.4) and (13.5) that by shifting the origin of strain from
the state t=0 to the state t=¢,, the scale of measuring the usual strain is increased
by (1+e,) times, while that of the logarithmic strain is maintained unchanged.
Next, indicating the load acting at the state ¢ by P, we have from the defini-
tions,

s=P, g=L__ (13.6)
4,
By virtue of (13.2), (13.6) and the incompressibility condition
noA():l ’ (13.7)
we obtain the relation
§'=s(1+e,) (13.8)
between s and s’. As for the true stress, on the other hand, the relation
P
=g = 13.9
o=0'=" (13.9)

is obvious to hold. From (13.8) and (13.9), we can see the value of the nominal
stress to be increased by (1+e¢,) times, but that of the true stress kept unchanged
on the transposition of the origin of strain from the state t=0 to the state t==%,.
It is found from the above consideration that the ¢'~¢’ relation when the state
t=t, is selected as the origin of strain, is represented by the curve O’'BC’ in Fig.
17a which is coincident with the curve OABC representing the o~e¢ relation when

04 0—-’ S S’ C’

C . C

B/C B

v

0 0’ € 0 o e
FIGURE 17a. FIGURE 17b.

the state t=0 is taken as the origin of strain, namely that the stress strain curve
represented by means of ¢ and e does not change its form by the transposition of the
origin of strain. This result being consistent with the essential character of plastic
deformation that the current deformed state can be regarded at the same time as
an undeformed state, is considered to be a matter of good fortune also from the
practical viewpoint.

As against the above case, when the stress and strain, or either one of them,
other than ¢ and ¢ are employed in representing the stress-strain curve, it is found
that the above relation does not hold. We will now consider the case, for example,
when the nominal stress s and the usual strain e are used. Let the s~e curve
when the state t=0 is chosen as the origin of strain be represented by the curve
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OABC of Fig. 17b, then it is found from (13.4) and (13.8) that the s'~¢’ curve
whose origin of strain is taken at the state t=¢, is given by the curve O'BC’ dif-
ferent from the original curve OABC. This result that the same mechanical process
of deformation is represented by different curves according to the state where the origin
of strain is situated, seems inconsistent with the conception that the origin of strain
can be chosen at any state in the plastic deformation. And this is considered to show
the s ~e combination not to be reasonable for the description of plastic deformation.
The same circumstances are seen to hold for the ¢ ~¢ and s~ ¢ combinations.
What must be remarked here is that the stress and strain reasonable for describing
elastic extensional deformation where the origin of strain can not be admitted to
choose arbitrarily, being uniquely determined, are those other than the true stress
and the logarithmic strain.

The above fact is considered to give a further affirmation on the foundation of
our present theory of plasticity.

14. EQUILIBRIUM EQUATIONS

The stress tensor introduced in Section 11 for the plastic deformation is such
tensor as to give the force exerted actually on unit of sectional area in the material
in the deformed state . And accordingly it will be natural to consider also the
equilibrium condition referring to the deformed state.

We suppose the material part of the volume V, enclosed by the closed surface
S, at the state t=0 to occupy at the state ¢ the space of the volume V enclosed by
the surface S as shown in Fig. 18. Then, representing, for the state ¢, the density

P

dS

FIGURE 18.

by p, the body force per unit of mass by F and the unit outer normal on the
surface S by n, we have the equilibrium conditions of forces and moments

pFdV+ [ n-TdS=0 (14.1)
Jorav+ |

and

erdeV—}—frx(n-T)S:O (14.2)

for the deformation of any magnitude. Applying the Gauss’ theorem
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fn-TdS:fV-TdV (14.3)

to (14.1), we obtain .
f(pF+V-T)dV=0, (14.4)

so that '
oF+7-T=0. (14.5)

This is the equilibrium condition of the form, which holds for arbitrary coordinate
system, whether Eulerian or Lagrangian or local, over the whole range of the
small and finite deformations.

The equilibrium condition (14.5), however, is not of the form invariant for co-
ordinate transformations. Namely, for the Lagrangian coordinate transformation

¥ =x¥(xt, %, 2%) , (14.6)

for example, as given in (10.1), the integral (14.4) is transformed as
f (V- T+ pF)Vg dz'datda® = f (7 -T + pF)Vg |0,a* | dada¥dx® - (14.7)

where |d,«*| indicates the determinant composed of the elements d,.%*. Since, g

defined by (3.17) being a scalar of weight 2, g is a scalar density which obeys
the transformation law

. J_gT = ‘a,u'xl | ’\/6 ] (14'8)
(14.7) can be written
f 7 -T + pF)g dadada’ = f 7 -T + oF)Wg daVda?dz” . (14.9)
Consequently we obtain the equilibrium eguation of the form
gV -T++g pF=0 (14.10)
invariant for coordinate transformations. Introducing the relative tensor
 X=4T, (14.11)
its divergence is given by
div X=vgV -T=+g€'-3,[Vg T]=d,(¢"-X). (14.12)
Hence (14.10) is also written in the form
div X++/g pF=0. (14.13)

That the stress tensors T and X are both symmetric is seen to result from the
equilibrium condition (14.2) of moments. That is, applying to (14.2) the Gauss’
theorem whose T is replaced by TXr and taking account of (14.5), we obtain

| e -Txe,=0, (14.14)
so that
e'-Xxe,=0. (14.15)
This result obtained in particular for the Lagrangian coordinate system show the
coordinate independent property of the tensors 7' and X being symmetric.
For practical purpose, it is needed to give the equilibrium equations (14.5) and
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(14.13) an analytical expression for some coordinate system appropriate for the
problem under consideration. We will now begin with the case of the Lagrangian

coordinate system. In this case we may put

F = Fle, (14.16)
and substitute the expressions (11.6) and (3.21) of 7" and /, (14.16) and
d.e, = I'5.e, (14.17)
into (14.5) to give
(7,0% +0F*)e, =0, (14.18)
where I, is given by (4.4), and the covariant derivative V0" of ¢** by
V% =08,6%+o** I} +c*T%, . (14.19) .
We have from (14.18) the equilibrium equations
V0% 4 pF =0 (14.20) D .
in the direction e,. , X
For the stress tensor density
X=X%e,e, =g c'*e,e, - (14.21)
we obtain the component equations
7. X*4+4g pF*=0 (14.22)
in the e, direction, making use of the definition (14.12) and the relations
oNg=T54g, g '=—TiNg . (14.23)
Where the covariant derivative V,X** is given by '
V. X*=0X*+X*TI}, . (14.24)
When the coordinate system used is Eulerian or local, the equilibrium equations
are also obtained in the similar form
Vio'+pF=0, (14.25)
7, X'+ pFi=0, (14.26) A
or
Vio +poF =0, (14.27)
V,X +4gpeF =0 (14.28)
where
g=lg,l, 9=|gyl (14.29)
and the covariant derivatives V0%, Vo ,--- are of the form quite similar to those

for the Lagrangian coordinate system, and therefore we may save the trouble to
write them down. Since both the Eulerian and the local coordinate systems are
usually orthogonal, the covariant derivative are simplified, many of the coefficients
I'%; and I'¥; vanishing. Of course, all what has been said in this section applies not

only to the small deformation but to the finite one.
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15. PRINCIPLE OF VIRTUAL WORK

It has been stated in Section 11 that for the definition (11.2) of the stress, together
with those of strain and strain increment (7.1) and (3.27), to be justifiable for
describing plastic deformation, they must satisfy the virtual work principle of the
form (2.1) as well as the condition of their being tensors. And now we are in the
stage to examine this problem.

Likewise to the virtual work principle

oW =K ou=Xou+ Yov+Zow=0
of a particle exerted by the force K(X, Y, Z) in equilibrium, that for the material

of volume V composed of the volume element dV=yg dx'dx*da?, in the deformed
state ¢, exerted by the force

(7 -T+oF)dV=(div X+Vg oF)dz'dz*dx ® (15.1)
in equilibrium is given by
f 7 -T+pF)-oudV= f (7 0%+ pF ) (6u),d V=0, (15.2)

where ou indicates the virtual displacement of a material point.
The first term of the integral (15.2) can be transformed as

f 7T -6udy = f 70" (6u),dV
— f {7, [0*(0u),]— ™7 (5u),}d V

:f[V-(T-au)-—T- PouldV, (15.3)

and the first integral of the right-hand side of this equation is further transformed
by the Gauss’ theorem to a surface integral as

fV-(T-&u)dV:fn-T-&udS. (15.4)
Since the surface traction on S is given by
p=nT, (15.5)
(15.4) is written in the form
fp-au ds. (15.6)
The second integral of the right-hand side of (15.3) is seen to be represented as
fT- .Vaudvsz. OBV (15.7)

taking account of the symmetric character of 7' and the definition (3.27) of JE.
In consequence, the virtual work principle (15.2) is written in the form

[p-ouds+ f oF-oudV= f T..3EdV (15.8)

or, represented in terms of the components referred, for example, to the Lagrangian
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coordinate system, in the form
f pH(0u)dS+ f oF(3u),d V= f (36, dV . (15.8")

The expressions for other coordinate systems are given in the same form. The
left hand side of (15.8) representing the work 6 W, done by the external forces, i.e.
the surface tractions p and the body forces F, during the virtual displacement ou,
we can put

5W1=fp-5udS—|—pr-5udV, (15.9)
hence we obtain the result ‘

5W,-_—fT- -BEdV:fo"‘((Ss)“dV. (15.10) ‘

This relation, obtained as the result of the virtual work principle (15.2), represent-
ing that the work by the external forces is equal to that done by the stress during
the strain, is usually called by the principle of the same name.

The relation (15.10) is seen to be of the same form us that given in (2.1), which was
regarded as the condition for the stress T, together with the strain increment 0E, to
satisfy, in order that its definition may be legitimate for describing plastic deformation.
Thus the definition (11.2) of the stress tensor T is concluded to be justifiable.

For finite deformation the relation (15.10) does not necessarily hold, according
to the definition of T and 6E. And the fact it holds for the small and finite defor-
mations has a great significance, because on account of this there exists the plastic
potential and the theory of plasticity for finite deformation is possible to be organized
in the same way as that for the small deformation, as will be shown later.

Of course, (15.10) is possible to be expressed in any coordinate system; for ex-
ample, for the Eulerian and the local coordinate systems, it reads

SW,= f 9(36),,dV (15.10')
and
5Wi=fa (3¢) dV (15.10")

respectively. J

16. PLASTIC POTENTIAL

By taking ou in (15.2), and hence JE in (15.10) to be an actual displacement Du
and an actual strain increment DE from t to t-+dt, we have
DW=T.-DE=0"*(Dg),, (16.1)
for unit of volume of the material in the deformed state, or for a constant mass,
because the plastic deformation is incompressible.*

* Rigorously, we should consider the work for a constant mass
DW’'=X--DE=X**(De)a ,
but for the reason of the incompressibility of plastic deformation, this is equivalent to consider
(16.1).
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Now if we represent the internal energy per unit volume (a constant mass)
stored in the material due to the whole plastic deformation up to the state f, by
U, and the heat which flows out during dt, by D@, then the first law of thermo-
dynamics is written in the form

. DU=DW-DQ. (16.2)
Denoting the entropy per unit volume (constant mass) by S, and the temperature,
by T, the irreversibility of the plastic deformation is generally represented by

DS>-_DT—Q. (16.3)

This is a matter of course in view of the character of plastic deformation in which
—DQ<0, and DS >0 on account of the increase of the extent of disorder.
From (16.2) and (16.3), we obtain

DW=T-.DE>DU~TDS. (16.4)

When the process is especially isothermal, the irreversibility condition is written

in the form A
DW=T--DE>DF, (16.5)*

where F' means the free energy

F=U-TS. (16.6)
In metals subjected to plastic deformation, DS is negligibly small in general
compared with DU, accordingly DF' is regarded as being approximately equal to
DU. We will herewith consider what restriction is put on the relation between
T and DE by the irreversibility condition (16.5). For this purpose, we suppose T’
and DE to be vectors in six dimensional space, as usual, which have the components
o** and (Deg),, respectively. Then D W=¢*"(De),, is regarded as the scaler product
of the both vectors. Therefore, if the stress vector ¢** is as shown in Fig. 19a, the
irreversibility condition (16.5) prohibits the vector (Dg),, to exist in the hatched region
of the figure. In the case where the material under consideration is perfectly plastic

O.»mu
(DEij
oY

FIGURE 19a. FIGURE 19b.

* It is not correct that the inequality DW=o0.de,+--->0 is used in many literatures as the
trreversibility condition of plastic deformation. :
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in particular, the relation DF=0 is considered to hold, so that the prohibited region
of (De),, is of the shape shown in Fig. 19b.

The other condition, which put some restraint upon the relation between T and
DE, is the principle of maximum plastic work. It should be remarked here that
this principle is properly derivable from that of minimum slip, although it seems
to have been considered by many people to hold without any premise. At any rate,
the maximum work principle is stated as follows. The work T'- *DE=¢*"(Dg),,
done by the actual stress T in case of the strain DE is greater than the work
T*.-DE=q*""(Dg),, done by the virtual stress on or inside the yield surface

; f(T, E)=c, (16.7)
namely,
(T—T*)- -DE=(0**—0**)(De),,=0. (16.8)

The yield function f is considered to involve in general the strain history tensor
E. What is important here is that f is a function of the strain history E introduced
in our present paper, but not of the strain used in general, which is specified by
the geometrical configuration, independent of the deformation path. This is be-
cause the mechanical state of a plastically deformed body is determined by the
path dependent strain history tensor E. As for the form of the yield function f
involving E we will make a full investigation in a subsequent paper.

The maximum work principle (16.8) indicates that the yield surface (16.7) is
concave toward the origin and the vector (Dg),, is parallel to the outer normal to
the surface at the point ¢**. What follows from both the irreversibility condition and
the maximum work principle is that the direction of the yield surface at each point ¢**
is restricted in a certain range.

The result that the vector (Dg),, is the normal to the yield surface is represented
by the analytical expression

(De),,= 27" &) 1y, (16.9)

d o

where D2 is obtained from the law of work-hardening as will be shown in the
next section. As for the other coordinate systems, we have the similar relations

i
(De)i,:?—f_—%’j,@ Dz, (16.9")

y
(De)y= i%"_%i‘f_m . (16.9")

(72

17. LAW OF WORK-HARDENING

Work-hardening is as well one of the strain history phenomena as anisotropy
and the Bauschinger effect. But they are distinguished from each other in respect
that the former is due to the density change of dislocations in the metal crystals,
while the latter, to the change in the mode of arrangement of dislocations. Other-
wise expressed, the former is regarded as the expansion of the yield surface due
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to a scalar effect of the strain history, and the latter as the distorsion and the
transposition of the yield surface due to its some tensor effects.

The theory of work-hardening was first introduced by G.I. Taylor and H.
Quinney [4], and R. Schmidt [5], and it makes the assertion that the value of
the yield function is a function of the plastic work done so far. But this concep-
tion, though generally accepted hitherto, seems desirous to be modified somewhat.
That is, the amount of work-hardening should be regarded as a function of the
internal energy U, not the plastic work W, because the state variable in the equa-
tion of energy conservation

DU=¢**(De),,—DQ (17.1)
is only the internal energy U, and not the work or the heat quantity Q. This
notion is seen to be justifiable also from the fact that DU obtained by the
measurement of ¢**(Dg);, and DQ by Taylor and Quinney [6] is approximately
equal to DU due to dislocations, obtained by the dislocation theory of Taylor [7].

For the above reason, we should put

fle*, e, )=H(U), (17.2)
but not

Fo™, el,,)zF( f a“‘(Ds);,,). (17.3)

In case, in particular, when the proportion of U to f a**(Deg),, varies in the same

way for all the deformation paths, (17.3) can be used instead of (17.2).
Provided the law of work-hardening to have the form (17.2), D2 in (16.9) is
expressed as follows. From (16.9), we have

2
54 (De) =t LG &) (17.4)
ao.ll‘
so that from (17.1)
2
DU+DQ=o 2" &) py (17.5)
oo
On the other hand, from (17.2) it follows that
Df(e*, &, )=H'(U)DU, (17.6)

where H'(U) represents DH/DU. Substituting (17.6) into (17.5), we obtain
Py af(O"l‘, 5“) Di= Df(;;ia 61#) +DQ,

do**

and therefore

| pyo DI e+ H(U)DQ o
HI(U)O_Ip af(o.l#’ 61/-'_)_ ( : )

ao.lll

Similarly, according to the other coordinate system,

Da DS (a% )+ H(U)DQ
_
(U)o (7 e
do*’

; (17.7")
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Di= Df (6%, ei,-)—H’(-U)DQ
H/(U)o 2 (0% &)
do*
If the yield function f and the work-hardening function H are known in any

way, the state equation for plastic deformation is seen to be completely determined
by (16.9) and (17.7).

(17.7")

18. CONCLUTION

On account of it being impossible to bring the theory of plasticity, more precisely
the incremental strain theory, into a logical system, especially for finite deforma-
tion, when based on the existing concept of strain specified by the change in the
geometrical configuration, and its increment, we introduced a new definition of
strain increment, and accordingly the strain, denominated otherwise as strain
history tensor, which depends on deformation path, but not on the change in the
geometrical shape directly. This strain is reduced to the so-called logarithmic
strain in the special case of simple extension. The stress tensor is defined in such
a way that it gives for unit of area in the deformed state the actual force exerted
through it and is reduced to the so-called true stress in case of simple tension.

According to this concept of strain and its increment, the theory of plasticity
become free from the essential inconsistencies ever lurked in it, and is brought
into a perfectly logical system. More than that, in consequence of this, it is ex-
tended quite naturally to the theory for the small and finite deformations, which
holds in just the same form as in the case of small deformation.

Finally it must be noticed that this concept of strain plays an important roll
indispensable for the theory of dependence of anisotropy and the Bauschinger effect
on the deformation history, which will be introduced in the following papers in
succession.

Department of Aerodynamics and Structures
Aeronautical Research Institute

University of Tokyo, Tokyo

July 27, 1959
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