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Thermal Buckling of Rectangular Plates®

By
Koryo MIURA

Summary. Thermal buckling of the plate simply supported by the web is analysed when
the system is subjected to an arbitrary symmetrical temperature distribution over the plate
surface. The buckling criterion is established and, furthermore, a simple formula for
buckling criterion is obtained with reasonable accuracy for engineering purposes. Special
attention is paid in exactly satisfying the boundary conditions, and the solution thus ob-
tained is compared with those of Hayashi, Klosner and Forray, who have treated it approxi-
mately. - It is found that their solutions for buckling criterion are appreciably larger than
the value in the present analysis and, either decrease in the stiffness of webs or increase in
the non-uniformity of temperature can result in a much larger descrepancy with more
accurate value.

INTRODUCTION

On thermal buckling of supersonic wing panels heated by the air flowing in the
boundary layer many researches have already been made in both analytical and
experimental procedures. One branch in this problem, that is, thermal buckling
of a rectangular plate subjected to non-uniform temperature distributions has
already been treated by N. J. Hoff [/], T. Hayashi [2], J. M. Klosner, and M. J.
Forray [3] and others in the case where the edges of the plate are supported by
shear webs. '

Hoff analysed the problem by assuming one-dimensional temperature distri-

butions. Hayashi solved the problem in the case where the temperature distri-
bution is expressed as §=40y,+8,, sin %‘g—sin 52% Klosner and Forray obtained a
buckling criterion under more general temperature distributions, i.e., arbitrary
symmetrical temperature distributions.

Before entering into the presentation of author’s analysis, we had better inquire
into several physical conditions imposed on thermal buckling of supersonic wing
panels and then criticize the validity of analysises of earlier studies. If the thick-
ness of the plate is small and if there are no large temperature gradients in the plane
of the plate or through the thickness of the plate, the stress may be regarded as

two-dimensional. Usually, these requirements may be fulfilled in the systems of

* Presented at the Rocket Symposium, Japan Society for Aeronautical and Space Sciences,

Tokyo, October 25, 1958. It was done by the author in partial fulfillment of the requirements ‘

for the degree of Doctor of Technology at the University of Tokyo; the author is indebted to
Professor Ken IKEDA for suggesting the study and for his helpful discussions.
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the supersonic wing panels and, therefore, to solve the two-dimensional thermal-

stress problem is to be presupposed for the analysis of thermal buckling. It is

always possible to solve rigorously the two-dimensional thermal-stress problem
of the rectangular plate whether the boundary is free from any external forces or,
on the contrary, entirely rigid.

But the matter becomes quite difficult to solve, if the boundary of the plate is
supported by the web having finite stiffness and thermal expansion and, according-
ly, the web has both tangential and normal components of displacement to the
edge of the plate. In this case, then, the matter becomes to the two-dimensional
thermal-stress problem having changeable boundary conditions, the solution of
which is difficult to obtain. '

Moreover, one restriction should be added to the boundary conditions, since the
system of a plate and webs now being treated is a part of the wing or the body of
vehicles. This restriction is that the edges of the plate should deform in a manner
in which the edges remain straight, because the edges of a system are connected by
the other simmilar systems. Hayashi, Klosner and Forray solved the problem by
using some approximate treatments and avoided the difficulty arising from the
required complicated boundary conditions. Their approximate methods abandon
the attempt to satisfy the boundary conditions for every part of the edges and
rather use the integration of these boundary conditions for displacements, which
are used in place of original conditions.

The analysis proposed by the author in this paper treats the rectangular plate
subjected to the symmetrical temperature distributions expressed as:

0="04,-+ i i 0oq sin 2% in 97Y

p:odd g:odd 2a 2b

and it is easily applicable to more general symmetrical temperature distributions.
The ideas and the principles of author’s method are: first, by the use of Duhamel’s
analogy the thermal-stress problem can be converted into the iso-thermal problem
subjected to an appropriate imaginary hydrostatic pressure and imaginary body
forces; secondly, the two-dimensional plane stress problems subjected to body
forces can be solved rigorously by the principle of virtual displacements provided
that the displacements are given at the edges; and finally, these displacements
expressing the boundary conditions can be so defined that the conservation of the
straightness of the edges after deformation may be satisfied automatically.

In short, the Klosner and Forray’s method is based on the principle of least
work which affords a powerfull means in the case where the boundary conditions
are given in terms of stresses and, on the contrary, the author’s method is based on
the principle of minimum potential energy which is suitable in the case where
the boundary conditions are given in terms of displacement.

THERMAL STRESSES IN RECTANGULAR PLATES

The temperature distribution # acting on the plate is assumed to be symmetrical
about the centerlines of the plate, and besides, the uniform temperature at the
edges of the plate is assumed. (The latter restriction can easily be released if
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desired.) Then the temperature can be expressed by the Fourier’s series as

o=0ut 3 5 opsin 5 in L 2
Or, it is usually more convenient to write it in a dimensionless form
b —Tut 33 3 Trusin B sin O, ©(2)
where §,, is the average temperature of the plate
1 2a 25
Oo= oy of 0 odyda (3)

and, consequently, there exists the following relation between the uniform term,
T\, of the temperature and the non-uniform term, T,,, both in dimensionless forms.

pa>
e 1
oo+

T pradd groda Dq oq L=l (4)
It is usually accepted that the temperature gradient in the direction of the thick-
ness of the plate is negligible provided that the plate is thin.

In solving the thermal-stress problem, Duhamel’s analogy can be of great con-
venience since, by use of the relations comprising it, it is possible to establish a
correspondence between a thermal-stress problem for a given body and a fictitious
stress problem for the same body at a uniform temperature. In this plane thermal-
stress problem, the thermal-stress is obtained by superposing fictitious ‘hydrostatic
pressures’, ¢,,, 0,;, and t,,,, on the stresses, ¢,,, 0,5, and z,,,, produced by fictitious
‘body forces’, X and Y, provided that the edges of the plate are fixed. Thus,

0$=01‘h+01b’ ]
G, =0 nt0,, g (5)

Ta:y=facyh +Tw7/b ’ J
and

11—y oy
The solution of this problem can be obtained rigorously by the standard use of
the principle of virtual displacements. In this section, we shall treat the case
where the edges are fixed and in the following section we shall treat another case
the edges allow to displace in the plane of the plate, but not vertically to the plane.
When the fictitious body forces, X and Y, are applied to the plate, the equations
of equilibrium are
aa:cb ara.yb

5w T oy +X=0,
ao,,b + af:yb + Y O ( 7 )
0y
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54 K. Miura

As the temperature distribution is taken to be symmetrical about the centerlines,
x component of the displacement should be asymmetrical about x axis and be
- symmetrical about y axis. The same consideration is to be given to the y com-

ponent of the displacements. Then the displacements, « and v can be represented
by series as

o0

u@y)= S S A, sin L gin Y

m:even m:odd 2a 2b ’ ( 8 )
v(x, y) =m§l}d "én B, sin /";7;% sin nzrzy ,

where A4,,, and B,,, are unknown coefficients. Obviously these displacements satisfy
the prescribed boundary conditions in this case, i.e.,

=0, (@=0, 2a; y=0, 25), } (9)

v=0, (x=0, 2a ; y=0, 2b).

For the calculation of the coefficients 4,,, and B,,,, the principle of virtual dis-
placements can be used. Taking virtual displacements in the form

. x . N
ou=204,,, sin ML sin 7Y

2a 26 0
v=0B,,, sin X% in M7Y (10
mn S 2a 26

we obtain the necessary equations for calculating the coefficients A,.and B
the following form:

2a 20
f f ( “+a’m +X)sm L sin 7Y dydz=0,

"2
(m:even, n:odd) (an
fzaf%( 00,5 4 0Tap az',,y,, + Y)sm 77;1;96 ’nn'y dydz=0 .

(m:odd, n: even)

By using the stress-displacement relations, i.e.,

E (0 ad
gzsz_-.—_yé(_y_ +y_v> .

ox oy
__E (ov_  ou 12
7= 1 (2t o) (12)

_E (ou ., &
T$”b“2(1+»)(ay +52)

Eq. (11) can be written in terms of the temperature:
R e (- R __ m n’r ] ’Inrrx . MY
f f {m 2, ,.%Am"[ T (1= S0y ) " 2g S

>, — mnr mrx nry
+,§M,§n3m[s ab(1—) ]°°‘°’ 20 72
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Z 2 0nv pq[z (lpa ):ICOS z)zﬂax Sin

p odd g:odd

qny}
2b
mrz .y
X sin——=~ T 2b dydz=0,

(m: even, n:odd)

ofza [w {”% ”:2;3& B,. [ — 4b2’(*12”_ 5 8a2(m12 —H)JS“‘ m:;w sin nzi;)y
3 5 A a1 oy Joos T3 e0s !
] O Toa ~ H15) Jsin B cos T |
X sin——= @Zw i 'n27rby dydz=0.

Integration of above equations results in the following expressions for the coef-

(m:odd, m:even)

ficients:
_ 8a ] 1 mp
Amn - ﬂ'za(l ""l)) m2 + nz Z u.v ——'———m2_p2 5((1, n) ’
a®(1—v®) ° 2b%(1+v)
__ & 1 > ng o
Bon= n®b(1 —v) m? 4 q:%d O Taq n:—q* o(p,m),
20%(14v) = b (1—v)
where d(q, ») and 6(p, m) are the Kronecker’s deltas defined as follows:
1;q9=mn,
o s n —
o, m) {0 MEST TR

Thus, the stresses g,,, 7,4, and 7,,,, caused by the fictitious body forces, are given

by the following expressions:

= 4k 3 [ 1 }
Tn= Tl'(l _l)) mieven m:xdd 2+ nz( 1 —D)(L2 pzld av P‘Zm 5(Q9 n)
> X cos A% sin 1Y
2a 2b
bl & [ 1 ]
TL'(I — U)p m:odd nieven m2(1 ——y)b2 + 2 0%10’" Pq 0<p, m)
T 247
X sin ——— ”Z;x cos %y_
__ 4l & & [ 1 :|
= 72.'(1 _U) m:odd nieven mz(l —-']J)bz +n 2 q%ld 0“ T 4 O(p’ m)
2a?
Xsin——~ 7);7;90 cosnziby
4aE &, 2 { 1 o mip :I
77.'(1 - 1)) m:even ﬂ:zodd m + M p%d av qu m—z_——zé(q, ’n)
2b%
mrx . nry
X CO§ ——— o sin =5

H

k]
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(14)

(15)

(16)
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Tayp— — %m;:en ,.:m mz—l-l——l—i ’1"12(1 e ,,:Z::d 0Ty m'mnn 5(g, m)
¢ o ’ X sin ’”;aw COS%

- zc:r_E ﬂ::dd n:%n m( 12—,,)1 % o -Z_ q:‘i:'a 00Ty, n’mnn é(p, m)

X cos %?—sin %

and these infinite series form the complete solutions of the stresses. Unfortunately
these expressions present great complexity in their forms, and it is difficult to use
these expressions in calculating the buckling load and, furthermore, these are in
no way the forms which may suggest to us readily understandable relations be-
tween thermal-stresses and temperature.

After due consideration about these formulas, it will be convenient for succeed-
ing analysis to calculate first the stress due to some particular term,

in 272 i1, 97Y
0., T, sin 3a sin 2= b

in the infinite series of the temperature expression and, superposing together, we
can obtain planer expressions for stresses due to the arbitrary temperature. Name-
ly, it means the rearrangement of the summations in Eq. (16). Thus, the thermal-
stresses due to the particular term of the expression of the temperature are writ-
ten, exclusive of the stresses o,,,, and o, ;.

1=y _ .oqry S 4 1 . _m'p mnrx
ﬁa“"”’—a‘“’T‘"" SIN=3% m;%:en T it A(1—v)a® mi—p? €S =2
2b*
prr & 4 1 n'qg o Py
+v0uVT Sln 2a n%en T p(l_v)b +’)’L nz—q2 2b ’
2(1 (17)
1=y qry < 2 1—y mpq mnx
g Tovrw =0u Ty COSZ% 31— b +q2(l—u) @ mi— St oy
2 b
prr S 2 1—y npq . nmry
+0uv qu Cos 20 nieven T ﬂ_l))i +ngi nz__qz sin 2b .
2 a b

The close relations between stresses and the temperature are comprehensible.
Superposing these stresses from p=1 to p=o or ¢g=1 to g=co, and adding to
them the stresses ¢,, and g,, due to fictitious hydrostatic pressure, we finally obtain
the thermal-stresses in the plate due to arbitrary symmetrical temperature distri-
butions. ‘

1=y 2 S prx qry
o ax—tﬁthoo+6‘M’D§1 TZUM T,, [sm—z———sm 5%

. qry s AT | o PTE & nzy}

sy ,..2 Coamo €08 75 = Fsin 5770 31 Cpoon 008 5 |
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1—y S~ |: prx qry
——5 y=0usTo+ 0, vp;dd = T,,| sin—— e sin 55 "~
. opnE 2 nry qry . = mnx
tsin 2a 'n:gn Craon cO8 2b Fsin 2b pm:ezv;m Cramo €08 2a :|’
1—y _ SR [ & 3 s MY
- aE T‘”J 0M p%l qzudd T COSh 2b m%&ncpqmo st 2a
PITE < nry
+cos 5a MZVGHCW,,.sm 5 ]
where coefficients, Cpymo» Cpgons Chamos a0 Cpoom, are defined as follows:
c -4 1 m*p
pqmo Z 3 Z 59
T s, ¢*(l—v)a*m*—p
™t
c =4 1 n’q
o p¥(1—w)b® 1 nt—q*’
2a° (19)
o =2 2 11—y mpq
"o + A(1—v) a m*—p*’
T2 b
Ce _2 1—y npq
P a p(l—vw) b . a4 nP—q*’
N S AN Y /A gl
2 a b /

EFFECTS OF THE TEMPERATURE AND THE STIFFNESS OF WEB
ON THERMAL-STRESSES IN THE PLATE

In the preceding section we obtained the rigorous solution in the case where
the midplane displacements at the edges of the plate are zero, i.e., the boundary
is rigid. In practical cases, this condition usually can not be satisfied exactly and
the midplane displacements at the edges are permissible to a certain extent. In
consequence, the thermal-stresses in the plate are subjected to the influence of the
edge displacements due to the temperature and the stiffness of the web. The edge
displacement, however, can not be obtained independently on the stresses within the
plate. Then the problem becomes the one having variable boundary conditions
which is far more difficult to solve exactly than the former one. Subsequent analy-
sis will show the principle of virtual displacements used in the preceding section
can also afford a powerfull means for solving approximately the problem.

Let us start from the step of Eq. (8). In the case now under consideration, the
component of the midplane displacement normal to the edge must be uniform
along the edge so as to conform the requirement about the conservation of straight-
ness of the web. The displacements then sould be expressed as

oo

— = Mmrx nry
u(x’ y) —‘ul(w)-l—m:ezv%n 'n%d mn Sln 2(1 Sln 2b >

o (20)
X i
e, 1) =)+ 3 3 Busin G sin 5,
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58 K. Miurdg

where u,(x) and v,(y) are the unknown functions of # only or y only, respectively,
and are the displacement functions of the boundary. From this it follows that
the requirement about the conservation of straightness of the web after defor-
mation can be satisfied in all cases, since ,(x) and v,(y) are constant at x=0 and
x=2a, y=0 and y=2b, respectively, and the second terms of the right hand of
Eq. (20) vanishes at the boundary.

To decide the correct form of the boundary displacement functions, u,(x) and
v,(¥), satisfying the condition aforementioned is relating to the solution of the
problem itself which we shall now intend to obtain. This inconsistency arises
from the approximate manner of treating the problem, i.e., the single system
consist of a plate and webs is divided into separate but yet relating two systems
of a plate and webs and then, the latter system is regarded as the boundary condi-
tion as if it were given previously. Thus, some ingenious procedure is required
to avoid this difficulty.

It is reasonable for first order approximation to assume that the edge displace-
ment parallel to the edge is linear along it. This corresponds to the condition of &
uniform temperature of both plate and web and it seems to assure a good approxi-
mation unless the temperature differs considerably from the uniform one. Then
the following functions are taken for the boundary displacement functions.

uy(z)=Ax, }

v(y)=By,
where A and B are the unknown coefficients which are to be determined by equat-
ing resultant displacements of both the plate and the web.

The principle of virtual displacements affords a means of making the approxi-
mation more correctly. For example, we can take the boundary displacement
functions as follows:

(21)

Uy (%) = Ayus() , :

v.(u)=B), j @2
where unknown coefficients A, and B, are to be determined by the same method
as the preceding one, while the functions u,(x) and v,(y), which are constant at
=0 and 2=2a, y=0 and y=2b, respectively, are to be determined by the equi-
librium conditions within the narrow strip of the plate and the web being cut by
the two lines of # and 2+ 4% (or ¥ and ¥+ 4y). In other words, the total amount
of the boundary displacement is decided by the method mentioned before, while
the local distribution of the displacement is determined by the forms of function
uy(%) and vy(y).

This local distribution, however, seems to have merely a secondary effect on
the stresses in the plate, and so it would not be advisable for us to use the latter
complicated form for the purpose of comprising this second order effect, because
it can not exclude the possibility of missing a wide view of the whole matter.
We, therefore, will use Eq. (21) for the boundary displacement functions in the
following analysis.

Using Eq. (20) in place of Eq. (8) and after the same manipulation as before,
we have the following equations in place of Eq. (18):
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j 1—v  _ _ A+vB = 2 ( pTE }
E} . - C(E T== a(l+v) +BEVT00+01W p%.‘{d q%d Sln 2a ’ i;’
1—v __ B4vA SR NPT ]
; e a’E Gy— a(l+ ) +0an00+oaV :%m q:‘zﬂd qu sin 24 s (23)
1=y _ l: qry :I )
aE' Cev= p%ld q%d qu €S2 2b ' )
The first terms of the right hand of first two equations are newly added to the :
solution for the rigid boundary problem and apparently indicate the effect of
boundary displacement.

In the calculation of the coefficients A and B the equilibrium conditions of
applied loads and stresses are to be used. They are

f “ho.dy+2P,=F, ,
(24)

0
[“ho,do+2P,=F,
0

where F', and F, are the external forces in the z and y directions, respectively, and

P, and P, are the axial forces in the webs in the  and y directions, respectively. '
3 The boundary condition about the edge displacement parallel to the edge should

be satisfied approximately by equating the elongation of the web due to the temper-

ature and the axial force to the elongation of the plate. Denoting A4,, A,, E,, and

E, the sectional areas and the Young’s moduli of webs, respectively, then the

total elongation of the web in the x direction by the force P, is

_ 2abhaE [_A+uB @ @ 4] oF,
Utz = AIE,(l—v)[ a(i+ )+‘9“< Tt 2 2 pd p")]JFA - @

Substituting Eq. (4) into (25) we obtain the following expression for u; ,, and v, s

2abha K [__ A+vB L aF, f
AE(—D)L al+) +0u | L wonk
S 2abha E [_ B+vA 18 j|+ bF, (26) :
LRTA K (1—) a(l+y) 7% AE,’
And if we express the temperature rises and the coefficients of thermal expansion
of the web in the directions of  and y by the term 4,, ,, a,, and «,, respectively,
there exist the following relations:

Uy, 2=

] A(za)=u1,2a+axﬁx(2a) ’ } (27) ‘
% BQa)=1v, 4, + a,0,(2b) . e
¢ Substituting Eq. (26) into Eq. (27), we obtain |
% — { 2 2 _ .2 _ATE |
f [ (1 +v)ab+(1—H) 5 bhE .0, +(1—2?) thE}{a ) a;LE’,‘—H}
! B W AE _» F, ]
i {(l+v)a0w+(l %) ;Ef’ a,0,+(1—v )Q—h”E—}v}
[fo-rig 1o *
-{0-"%g (A=) e 1} |, o (28)

¥

i
?J
4]
o
¥
5
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B=[{(1+)ab+(1 -9 Ay 4 (1 5ars g =9 5 11l
——{(1+v)a0ﬂ+(l——v2) e, +(1-—J)2£E} }
[ju-n g rifa—ngele 11} ] |

Here, for both convenience and better understanding, we will define ‘equivalent
uniform temperatures’ T,, and T\, as follows:

A +DB
z = —_——
0av ox 0uvT00{1 a(l ' p)oav To } ’

B+yvA }
auvT = avT WY N
0y =0 °°{1 «(1+26..T,
When A equals to B, T, equals to T,,, too. Further we will define the stiffness
ratios B, and B, of the webs to the plate as follows:

(29)

‘B J— A:L‘E-E

*T bhE (30)
ﬁ — AZ/EV .

V' ahKE

Substituting Eqs. (28) and (30) into Eq. (29) we obtain the following expressions
for the equivalent uniform temperatures:

TW:TOO—[{HU—»)m j*“ >26h%0}<ﬁy+1><1—v2)

—[{(l—vz)ﬁ +1}{(1-—v2)ﬁy+1}—v] ,

(31)
T(,,”=T0(,-—[{l+(l—u)ﬂ @ ‘9v L(1-)

+1D(1—»%)

2ahLz (9,“,[(13”
{1+(1~v)ﬁr = 0’” =+(1- ”)zbhE 0“}5"”(1_”2) J
=B, (=98, + 1) =511 ‘

Thus, in cases where the midplane displacements at the boundary are allowed, we
can use entirely the same equation (18) as in cases of the rigid boundary so long
as we use the equivalent uniform temperature T, and T, in place of the uniform
temperature Ty, in the formulas of ¢, and g, respectively.

THERMAL BUCKLING OF PLATES

When the temperature of the plate rises to some value, the plate will becomes
to buckle. The deflection function of the plate can be expressed by the infinite
series as follows:

w= 31 S} w,sin B sin LW (32)

foad ¢ioad 2a
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Thermal Buckling of Rectangular Plates 61

The deflection mode in the x direction, for example, will be symmetrical or a-
symmetrical depending upon whether 1 is odd or even, respectively.

The total change of energy of the system at buckling is due to (1) the energy of
bending of the plate U,, and (2) the total work done by the forces acting on the
middle plane of the plate during buckling U,. The assumption is made that the
stresses acting in the middle plane of the plate remain constant during the de-
flection, and thus the stresses in the webs must also remain constant. Thus the
total change of energy is the sum of U, and U, then,

U= U+ U:e
Lo (58 + 2 —aofe 22 (22 o
b LT o) e e, o

Since the total change of energy at buckling must be stationary, then,

U _, (,;:1, 3,5...)
0w, t=1,3,5..

Substituting Eq. (32) into Eq. (33) we obtain the following expressions for U,

and U,:
=40 5 5 () () oo

(34)

_2— s:o0dd Z:0dd 2a
. _L oo o0 o oo <_£?2_{t_>< 0'7:71')
U=k 2 3.2 3 vl (57 (57 oty b 09
5% (%)(%) J
+( 55\ 55 I, (s a0t 7)+2 T I.(s0,t7)
In these formulas, I,,(s,0,%, 7), I,,(s, 0,¢,7), and I, (s, 0, ¢, 7) are
I Al Siwx oinx . tiny . tiwy
I,.(s, 0,t, r)—f [ 0408 —5-—=COs 55 Sil—5p sin 5 dydzx,
2 26 ; ; ; ;
L8 0,t,7)= f f g, sin s;;;x sin a;ga: cos tazzi)y cos ”27;)2/ dydz, (36)
(]
(P B Sinx . oinx . tjn'y r,yny
I,,(s0,t, z-)—[ [ 74y €08 == sin 5g il % % dydx ,
and if [ is connected to Z by the following relation,
1=—1 1-v 37)

then, I are expressed by the following equations:
I_,,_,,(S, g, t, T)= T0,5(s, 0') -B(t, ‘C')

e 4
R

D p
p*—(s—a)%* + P*—(s+a)" }

q - q
== ~ T
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+ZZ T,, Z Cpqmo[b‘ {m, |s—ali} +6{m, (s+0)i}]

1 q
o e {q ¥ —(t+r)a }
+§Zq quCpqon Lo {m, [t—z|7} —d{n, (t+12)5}]

1 P /4 }
X {pz—(s—a)2i2+ P —(s+o0)%2) ’

I.(s0,t7)= TOJB(S, 0)-6(t, 7)

SRS 4 [ P _ P
T3 T —oe pz—(s+o)2‘2}

q )
oo e X{ (t 7 T q2—(t+r)2j2} (38)
+;2¢) TP‘I; Cpqon [5 {na It'—TlJ} +5{’n, (t«{-—z‘)J}]
1 P P
X?{pe_(s__o.)ziz— pz—(8+a)2i2}

.. +313] 7,03 Cpama [0 {m, |s—oli} =3 {m, <s+a)z‘}]
i X {

q
(t 7)’s* +q2—(t+r)“’j2}’

:v 1 Ixy(sa g,t, T)
1l =313 T,y 3:Conmol(m, (5-+a¥i) +5{m, Js —oli} [1 —23(m. (s—a)i}]]

L] (t+r)J (t—1)J
Z\EToF—¢ (t—r)zjz—qz}

3357, 33 CoL0lm, (4 2)g} -0, el 1 B

L[ (s+o)i (s—0)i
X“{{(s-.ta)%z—-pz G—o)ii— } ’

where ¢ is the Klonecker’s delta defined by the following formula

1 ; = g ‘,
8{m, (8+0)’5}={0 : ::#(:;-3;.

i Substituting Egs. (37) and (38) into Eqgs. (33) and (34) we obtain an infinite set of
linear homogeneous simultaneous algebraic equations as follows:

(Y NE

| +h 3510 (S )(92) L (5,0, 9+ (L2 )(E2) 1,65, 0,1,
+(£’_’i)(_ib”_> 1,,(s 0,1, )+(%£>(_?_;_§_> LG 5)=0 (0
(ki)

It will be convenient to define the buckling parameter K, instead of the temper-
ature itself in the following analysis, i.e.,

KT_-——(I—i—v)aﬁu(;:)z. Y

(39)
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Using this buckling parameter, Eq. (40) can be written as

ol (a 2 _1?2_ 22 2 -2}’
X (FNet ze o +ef o
+§:i w“{SU’iz—g— I..(s,0,t7) +t7j2%'—1w(s’ 0,1, 7)
+seifl, (s, 0,1, 7) +atifL, (o, 8, 7, t)} =0 (42)

(a=1,3,5- .. )

r=1,3,5---

This set of simultaneous equations constitute a characteristic-value problem, the
solution of which gives sets of relative values of the coefficients w,, and associated
values of the buckling parameter. One method of solving Eq. (42) is a matrix
iteration process which is described in reference [J].

If only the terms w,,, w5, Wy, and w;; are retained in the deflection function
(Eq. (32)), Eq. (42) may be written in a matrix form as

K, K; K, Ky Wiy Wy
Ly, L3 Lg Ly Wy | 1 W3
M, M, M, M, Wy Kr | wy,
Ny Ni; Ny Ny Wys Wss

The elements K,,, L,,, M,,, and N,, are defined as follows:

12 z{807:2—1)—14,,,0 (s, 0,1, z')+tz'j2—(—z— (8,0, ¢, 7)
a 2 2 | os2 a b v
QF “';?@+f9} . g
i +srijl,, (s, 0,t,7)+0tijl, (0, 8,1, t)}
=Ksn Lsu M:cs -szt (44)

where K, for example, is taken in the right hand of the equation, if (¢, 7)=(1, 1)
and so on. That is,

(43)

K, ; (o,7)=(1)
L, ; (o,7)=(13)
M, ; (6,7)=(3,1)
N, ; (0,7)=(3,3).

The solution for the largest value of Kl- , and hence for the smallest value of K,
is obtained from the matrix iteration of Eq. (43).

EXAMINATION OF THE SOLUTION

By the method developed in the foregoing sections it is always possible to calcu-
-late the non-dimensional thermal buckling parameter K, for various types of
temperature distribution. In this section K, will be calculated in the case where
the temperature distribution in the plate is expressed as

6=0N( b0+ T“sm sm ;g ) (45)
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which is the most representative of non-uniform temperature distributions and is
the most easily applicable form. It is assumed that 8, and B, are infinitely large
and 0., 0,, F,, and F, are all zero. These assumptions are the very condition that
every component of the midplane boundary displacements is zero and, therefore,
the solution thus obtained does not contain any error due to stresses.

K, contains only two independent parameters, a/b and T,,/T,, (Poisson’s ratio
y may be another parameter, but its effect is negligibly small and v=0.3 is used
in the calculation.) which are plotted in various forms as shown in Fig. 1.

The accuracy of the solution will be examined here. In Fig. 1 K" is the solution
obtained by approximating the deflection by the first term only of the deflection
function (chain lines) and in like manner K by the first four terms (solid lines).

Physical meaning of approximation in the former case, i.e., the use of the first
term in the double series for w, is to use the exact solution for the buckling pattern
of the plate subjected to the uniform temperature as a substitute for the case of
non-uniform temperature. Therefore, if the non-uniformity of the temperature
T/ Tyo is small, this should be a good approximation. Let us now compare the
relative magnitude of first four terms of the deflection function with each other
for various values of non-uniformity T',/Ty when a/b=1. (Table 2)

It is seen in this table that the first term always predominates over the other

Temperature distribution in the plate:

0 0&V(Too + T11 Sln sln T:)

Boundary coditions:
(deﬂectlon)—~sxmply supported
(displacement in the plane of the plate)
—rigid boundary

20 @
\ K"m Thermal buckling parameter:
\ il 5 43 b\?
Ke=13(1+v)aber(5 )

16 Symbols:

) \ wv=average temperature rise of the
\ I\ plate
4 \V \ a:linelaartethermal expansion of the
ke & T P .
\ 00

2q, 2b=length and width of the plate

2 \%\\ & h=plate thickness
\ \\_\ 8 5 K$P =solution obtained by approximat-
1.0 N — - ing the deflection by only the
\\ 2 first term of deflection function
08 s (dotted lines in Fig. 1-1)
o o0

b/b a\® b a
(D) - — .= - —_—t
06 Kz —{a(a+b>}'[(a+b>T°°

16 b ,a 4(b/a)?—3v+1
04 Sz {2<a % >+ 4(£)+_1:_£<£>
; 2 \b
2
02 + 4(:/ by ~3v+1 }Tu
(5)+7(2)
0
| 2 . 3 4 (see Eq. (55))
y K@ =solution obtained by approximat-

) ing the deflection by the first
FIGURE 1-1. Thermal buckling parameter for four terms of the deflection

rectangular plate (rigid boundary) function (solid lines in Fig. 1-1)

This document is provided by JAXA.

P




Thermal Buckling of Rectangular Plates 65
20
a-\0
5 ;E/\ L —]
o / ///
16} ]
% B //oo /
14 = ] 10 %] — — ]
/_/ // ——
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FIGURE 1-2. Thermal buckling _Z_

parameter for rectangular

—- 1 1)
plate (rigid boundary). FIGURE 1-3. Error in K¢

TABLE 1. Numerical values of K

Tu. oo 2 1 0.5

Ky 00 (To0=0) (T11=0)
-l 0 0.25 0.5 0.707 1

1.0 Kp® 1.5396 1.7637 1.8410 1.9040 2.0000

) Kp® 1.5378 1.7632 1.8410 1.9040 2.0000

1.5 Kp® 1.1114 1.2734 1.3295 1.3750 1.4444

a ) Kp@® 1.1081 1.2723 1.3289 1.3749 1.4444

b 2.0 Kp© 0.9590 1.1004 1.1493 1.1890 1.2500

’ K,® 0.9516 1.0977 1.1480 1.1886 1.2500

4.0 Kp® 0.8076 0.9308 0.9738 1.0089 1.0625

’ K@ 0.7709 0.9171 0.9669 1.0062 - 1.0625
TABLE 2. Relative magnitude of first four terms of the deflection function (a/b=1)
Ty/Tw 0 0.5 1 2 oo

Wi /Wy 1.0000 1.0000 1.0000 1.0000 1.0000

Wi/ Wy, 0.0000 —0.0009 —0.0016 —0.0024 —0.0045

Way /W1y 0.0000 —0.0009 —0.0016 —0.0024 —0.0045

Wes/Wyy 0.0000 —0.0005 —0.0008 —0.0013 —0.0022
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terms, provided the temperature distribution is expressed as Eq. (45). Hence, the
deflection of the plate submitted to the action of such a non-uniformly distributed
temperature will be closely akin to that of the uniform temperature, even if the
non-uniformity T,,/T,, is considerably large. This very important fact found
here will readily suggest us that the use of the first term of the series may be a
good approximation and also that it affords us some possible way of obtaining
the compact formulas for thermal buckling, which we shall discuss in the following

section.
In Fig. 1 it is seen that the buckling parameter K3 closely coincides with the

20 20
1.8 T, |.a>\\
Too
16 08 16 k
{
14 14 N
2
KT = \\ b
12 S RN 3
00
T
— NS S
10 1.0 ~ — 25
—1 2
08 08
08 06
04 04
02 02
0 0
[ 2 . 3 4 | 2 P 3 4
r) b

FIGURE 3. Solution by Klosner & Forray
(rigid boundary).
Temperature distribution:

0=0us] Toat Tuu{1 - (9%@)2}{' - (1,_;1,)4}]

K. This may be a logical conclusion deduced from the consideration about the
relative magnitude of each term of the deflection function, and then it is reason-
able, if we expect that the use of the first four terms will be sufficient for our
present purpose. :

The uppermost curve in Fig. 1 corresponds to K, of the uniform temperature
and is given by the formula 14-b%/a®. The larger the non-uniformity, the lower
the K;. In cases where the temperature is high in the vicinity of the center of
the plate compared with that of the edges of the plate, that may occur quite likely
in supersonic flight structures, the true K, should be lower than K, obtained by
assuming as if this temperature were uniformly distributed over the plate, provided
the total heat contained are the same in both cases.

The comparison with the earlier theories Figs. 2 and 3 (It is not a exact com-
parison with Klosner and Forray’s result as their example is evaluated in case of

FIGURE 2. Solution by T. Hayashi
(rigid boundary).
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parabolic temperature distribution.) shows us that these estimated buckling temper-
“atures are higher than those given by the present theory, or it may be said that the
earlier theories rather underestimate the effect of non-uniformity of temperature
on thermal buckling. In fact, the effect of uniform temperature on buckling is
directly weakened by the reduction of the stiffness of the web, and on the other hand,
the effect of non-uniformity seems to increase its relative importance. Take, for
instance, a plate without any web where the uniform temperature never partici-
pates in buckling and suppose buckling solely depends upon the non-uniformity
of the temperature. In short, the K, for T,,/T,,= c takes far lower value than
the K, for Ty,/Ty=0 as the stiffness of the webs becomes weak and it should be
noted that in these cases the differences between the present theory and the earlier
theories, too, become remarkably large. We will examine this web effect in detail
in the subsequent section.

FORMULATION OF THE BUCKLING CRITERION

The use of the first term alone of the series of deflection has been proved to be
a good approximation and suggested as a possible way of obtaining an approximate
formula for the buckling criterion. That conclusion may be largely based on the
type of temperature distribution used, but if the temperature distribution is
roughly akin to the one used in the preceding analysis, the same conclusion may
be formed on a reasonable basis. A compact general formula for the criterion of
thermal buckling will now be presented in the following.

The temperature distribution is assumed to be given by Eq. (1), which is repeated
here for convenience, i.e.

_ S & . prx . qmy
0_000+p§1dq§m 6,q 8in 3a sin TR (46)

The deflection function is assumed to be expressed as

_ . sinx . tiny
W=, sin—=sin 5%
(s: odd, t: odd).
Substituting Eq. (47) in Eq. (44) we obtain the following simple expression for the

buckling conditions:

(47)

(K,, — —I—{l-;)wt = (48)
or

b( 220 202 @\
2o g +erg)

szﬁ_glm(s, 8,8, 0)+2stig I, (s, 8,8, 0)+122 L 1 (s, 3,1, )

‘Z‘w

K,=

) (49)

where I, I,,, and I,, are given in Eq. (33).
In the following, several typical examples are presented.
1) 6=6,, (uniform temperature)
I..,1,,and I, are
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I, (sstt)=1,
I, (s s, tt)=1, (50)
I,(s,s,t,t)=0,

then, K, can be written as

_ 2b 2 s:odd, t: odd
K,=s% +t%5 (i,j:lorz ) (51)

where 7 and j are the number of half-waves in the directions of « and y, respective-
ly. These are obviously the exact solution of the problem. '

If s=t=1, then
2
KT:izET +j2 . (52)
) 6= 0“<T00+ T,y sin 22 sin 7Y ) (53)
When s=t=1 and 1=5=1, then
K= b(b, ay
a\a b

b\? a\? '
b a 16|,/b, a 4<E) —3v+1 4<T> —3tl T

a 2 \b b 2 \a (54)
When the boundary is rigid (8,=8,= », §,=0,=0), thus Ty, =T, =T, and Eq.
(54) reduces to

K,= b/b , a\
2(at%)
b3 a )
b, a 16{,/b , a 4(3) —3v+l (7)—) —3vtl T
— -+ ) Toot+—5—| 2 —+ |+ + 11
a b 78 a b 4(_6_)+1——v(_l_1_) (_(i) 1=y _b_)
a 2 \b b a (55)
This is the formula for K shown by the chain lines in Fig. 1-1.
3) o:ou[Toﬁ—Tm(l_lw—alxl_ly—b ]
= — 1 F i Pz qry ]
=] oot T 33 37— (=17 (= )7 sin £ sin T (56)
(tent-like temperature distribution).
T .. is connected with the T, by the following equation:
Ty, ‘I‘ Tyni=1. (57)

The result is shown in Fig. 4.

It is interesting to note that the curves in Fig. 4 not only bear a resemblance
to the curves in Fig. 1, but give almost the same value for K, provided the non-
uniformity parameters T, /To and T,,/T,, are the same, notwithstanding that
the temperature distributions are fairly different between these two cases.

From all these considerations, it seems that the most important temperature
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FIGURE 4. Thermal buckling parameter for
tent-like temperature distribution
(rigid boundary).

Temperature distribution:

= R

parameters affecting the buckling criterion of plate subjected to such types of
temperature distributions are the average temperature rise ¢,, and the non-uni-
formity parameter representing the overall non-uniformity of the temperature
and not the local distribution of the temperature. Thus, the buckling parameters
for most representative temperature distributions must find there wide and con-
venient applications in practical cases.

EFFECTS OF THE TEMPERATURE AND THE STIFFNESS OF WEB
ON THERMAL BUCKLING OF THE PLATE

The temperature and the stiffness of web exert predominating influences upon
thermal buckling. Because, as it will easily be seen, the forces that produces
thermal buckling originate mainly from the differences of the temperature and
the stiffness between the plate and the web.

Let us consider first the case where the stiffness ratio 8 are the same in both z
and y directions, i.e.,

B.=PB,=8. (58)

For simplicity, F,=F,=0 and 6,=0,=0 are assumed. Then, the equivalent
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FIGURE 5-1. Thermal buckling parameter
of the plate (when the stiffness of web

is finite), Sz=p;.
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FIGURE 5-3. Thermal buckling parameter

of the plate (when the stiffness of web

is finite), B:=f5.
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FIGURE 5-2. Thermal buckling parameter
of the plate (when the stiffness of web

is finite), B.=B,.
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FIGURE 5-4. Thermal buckling parmeter
of the plate (when the stiffness of web

is finite), f;=p,.
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uniform temperature in the  and y directions are the same and can be expressed

as follows:
1
TOx:T0y=Too— ——ﬁ_(l—u)ﬂ—}-T' (59)

If the temperature is expressed by Eq. (53) the following result is obtained by
substituting Eq. (59) in Eq. (54).

a\? I- a ' a
Kool ) e Nt e S a2 )

4(%)'—3u+1 4(—%’—)2—3»—}-1 }Tu] e

53 )
In the case where 8=, it follows that
0o = Lo, =T (61)

thus, Ty, and T, are the largest and so K, is the smallest. In the case where
B=0, it follows that

+

T,,= T0y= Top—1, (62)

T, and T,, have negative values (Tyo=<1). This ‘negative’ temperature produce
tensile stress over the whole plate, and buckling is solely due to the non-uniformity
of the temperature. The K, thus, is the largest as shown in Fig. 5.

For finite and non-zero values of B, Ty, and T, decrease and, therefore, the
effect of non-uniformity increases, while the effect of uniform temperature de-
creases. ‘

These effects can be plainly observed in Fig. 6 where K, is plotted for various
values of T,,/T,, and B8 (a/b=1). When = oo, the effect of T,/ Ty is 209% at the
most. Decreasing 8 results in a rapid increase in the difference of K, for different
values of T,/T,,.

Next, let us consider the case where the stiffness ratios are different in z and y
directions. In such case, primary characteristics will be found in the theory of
buckling of the rectangular plate uniformly compressed in two parpendicular
directions, where the deformation other than the aforementioned one (i=1, j= 1)
is possible for some combination of applied forces. But it may be said that these
deformations may not likely happen provided the buckling is due mainly to the
temperature difference between the plate and the web and not to the external forces.

The equivalent uniform temperatures T,, and T,, can be expressed by the
following equations when F,=F,=0, and 0,=6,=0:

T, =T, — (1—¥)[B,+1+8,v]
Loz 00 [(l——yz)ﬁx'i'l][(1'—92).3,,“—1]—1)2 N (63)
Ty, = Toy— (1—=)[B,+1+8,v]

[A=98,+1I[(I =B, +1]—%
Taking the temperature distribution Eq. (53) and assuming s=t=1, we can evalu-
ate K, by the following formulas.
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FIGURE 6. Effects of the web stiffness and the
non-uniformity of plate temperature on
thermal buckling.

1) ¢=j=1 (1 half-wave in both z and y directions)
KT=[%(—Z—+%>2]{%TM+ 2 Toytgr {2(2 +2)
+ C RS I COE 2 >}T

{2)+5105) 5)rle

2) 1=2,j=1 (2 half-waves in z direction and 1 in y direction)
Koo o 42Tt s el io(2)42(3)

16(—b—>2—~3u+1 (LY —150+1
+ a — + b - }Tu . (65)
s(g)+2(5) {5+ 23)

(64)
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FIGURE 7-1. Thermal buckling parameter FIGURE 7-2. Thermal buckling parameter
of the plate (when the stiffness of web of the plate (when the stiffness of web
is finite), B, By is finite), 8,7 By
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FIGURE 7-3. Thermal buckling parameter FIGURE 7-4. Thermal buckling parameter
of the plate (when the stiffness of web of the plate (when the stiffness of web
is finite), 8,35, is finite), B, B,.
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FIGURE 7-5. Thermal buckling parameter FIGURE 7-6. Thermal buckling paremeter
of the plate (when the stiffness of web of the plate (when the stiffness of web

is finite), Bz B,. is finite), Bz By
3) i=1,7=2 (1 half-wave in # direction and 2 in ¥ direction)
_b/bd a\).| b a 64 (_{)_) (_q,_)
K=o (g +45) |- [TET°”+4 5 Lot g5, {2 o) T

b

+ 4(7)”_15%1 + 16(%2_3”“)}'-’11}- (66)

{2+ 2(5) we )G

The results are shown in Fig. 7.
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SYMBoLS

f=temperature rise of plate
T'=dimensionless temperature
P, g=integral numbers
2a, 2b=Ilength and width of plate
x, y=coordinates
O zn> Tyns Txyn =Stresses due to fictitious hydrostatic pressure
Tz Ty Txyp —Stresses due to fictitious body forces
X, Y=body forces
u, v=displacements in the directions of z and Y, respectively
m, n=integral numbers
A,., B,.=coefficients
o(g, n)=Kronecker’s delta
, A, B, A,, B,=coefficients
3 Cpemo €tc.=coefficients
1 P, P,=axial forces in webs
F,, F,=external forces
0., 0,=temperature rises of webs )
@z, ay=coefficients of linear expansion of webs
B., B,=stiffness ratios of webs to plate
Ty, T,,=equivalent uniform temperatures
8, t, 0, r=integral numbers
U=energy
h=thickness of plate

This document is provided by JAXA.’ J

<4






