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Summary. This paper presents an approximate analysis of torsional rigidity and of tor-
sional vibration of aerodynamically heated wings having a small amount of pretwist. The
combined effects of pretwist and thermal stress on the torsional rigidity are made clear and
are shown to be considerably large even if the amount of pretwist is small. As for the free
vibration of pretwisted wing, the author shows that, regardless of whether the thermal
stress is present or not, the vibration can be characterized by the following differential
equation
&+ew4cox?+esx?=0,

whose solution can be expressed by the Weierstrass’s elliptic function. The third term of
) the left hand side of the equation shows the asymmetricity of vibration for such pretwisted
Gl wings.

INTRODUCTION

3

; When the thin wing is subjected to the aerodynamic heating, the reduction of
i torsional rigidity may occur because of the thermal-stresses arising in the plane of
. the wing. This effect of thermal-stresses is individually pointed out by N.J. Hoff
‘ [1], B. Budiansky and M.J. Mayers [2], and John Duberg [3]. This reduction
can be expressed as :

0 %: 1+ [ [ amrsz/G’J],

where GJ is the torsional rigidity of the wing, GJ,; is the effective torsional rigi-
dity, oy, is the thermal stress in the direction of the span, 7 is the distance from
the torsional axis and A is the sectional area of the wing.

In general, as the integration in above equation becomes negative when oy is
the compressive stress in the region of both leading edge and trailing edge of the
wing, the increase in thermal-stress results in a reduction in torsional rigidity. The

. * Presented at the Symposium on Structure and Strength, Japan Society for Aeronautical and
Space Sciences, Tokyo, February 21, 1959. It was done by the author in partial fulfillment of
the requirements for the degree of Doctor of Technology at the University of Tokyo; the
author is indebted to Professor Ken IKEDA for suggesting the study and for helpfull discussions.
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78 K. Miura

distribution of thermal-stress which makes GJ,. zero gives the criterion for tor-

sional thermal buckling of the wing, and such a distribution of the temperature
may take place in the vehicle usually considered.

The temperature distribution in the wing is, in general, a function of time and
so is the effective torsional rigidity. Thus, Budiansky and Mayers calculated the
reduction of torsional rigidity of the wing having a diamond section for various
types of flight missions. Hoff and Singer [4] further developed the theory by the
finite deflection theory of the plate and showed that the torsional rigidity dose not
become equal to zero even if the thermal-stress reaches at such value that thermal
buckling should take place as predicted by a small deflection plate theory, and
also analysed the torsional vibration of the wing subjected to thermal-stresses by
the Rayleigh-Ritz’s procedure [5]. It was shown that if the torsional rigidity
reduces, the vibration frequency reduces as a matter of course, but if the effect
of finite deflection is taken into account, the rigidity increases as the increase
of amplitude and thus the reduction of frequency is moderated, and also that this ‘
effect is notable even if the amplitude is in a moderate value. ¢

Above-mentioned discussions, however, are based on the assumption that the
wing does not possess a pretwist and, therefore, the wing should have an additional
twist, if the wing possesses some amount of pretwist. Budiansky and Mayers
comment on this effect that the torsional rigidity of wing having a moderate value
of pretwist will be the same as that of the straight wing, unless the thermal-stress
comes up to such a large value as to cause buckling, where the wing suffers ex-
cessive deformation.

In contrast with this weakening influence of a pretwist, however, it was observed
that a pretwisted bar, even a slightly pretwisted one, is considerably stiffer against
torsion than the same straight bar. This'was explained by Chen Chu [6] to be
caused by the appearance of secondary longitudinal stresses. Physically the reason
is as follows: a longitudinal fiber, following the same element dA of the cross
section, is not a straight line but a spiral about the center fiber of a symmetrical
section. When the bar is twisted (keeping the length of the center fiber unchanged),
the spiral becomes longer, if the elastic twist is in the same direction as the pre-
twist, and shorter in the opposite case. Elongation of the spiral causes tension in
it, following the spiral direction. This tension is mostly longitudinal (parallel
to the center fiber), but it has a small component in the plane of the cross section
and directed tangentially. All these horizontal components over a complete sec-
tion form a torque, which must be added to the Saint Venant torque caused by
the shear-force distribution, and this secondary torque can become substantially
larger than the Saint Venant torque itself. This fact was afterwards discussed by
E. Reissner and K. Washizu [7], too.

Chen’s theory is comprehensible to us that it extends the Saint Venant’s theory
held for the straight bar to the theory including the effect of the pretwist, and
that, in conclusion, it gives consideration to the contribution of the normal stress
in the plane of the bar besides the shear stress calculated by the Saint Venan’t
theory. Thus, the thermal-stress in the plane of the wing which may become

;
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On Torsion of Aerodynamically Heated Wings 79

considerably large value, must have naturally notable influences upon the torsional
rigidity of a pretwisted wing. Then it is required to establish a unified theory
treating this problem having these overlapping effects and it is necessary that the
theory is based on the finite deflection theory for purpose of including the effect
of amplitude.

The author conducted the analysis which includes the effect of finite deforma-
tion in the same degree as Hoff’s analysis and he analysed these overlapping effects
in the pretwisted, thermally stressed wing by using the theoretical method analo-
gous to the one of Chen. It should be noted that the effects of finite deformation
can not be limited to the one mentioned above and there is such effect as the
change of thermal stress due to this finite deformation. In applying the method
described in the paper, therefore, it is necessary to pay attention to that influence,
though it is not yet solved.

ToRrSIONAL RIGIDITY

Now let us consider the thin wing having a small amount of pretwist, whose
thickness is given by a function of % as shown in Fig. 1. The span of the wing is
assumed to be so long that the local effects of the tip may be neglected and that
both the temperature and the thermal-stress may be expressed by a function of ¥
alone.

hiy)

T —--

o

Thermal stress Temperature

Plate thickness

FIGURE 1. Configuration of wing considered.

It is assumed that the deflection of the midplane of the wing can be expressed
by the sum of w, and w,, where w, is due to the pretwist and w, is due to the
elastic torsion by the torque applied at the tip of the wing. Then these deflection
functions are assumed as follows :

Wo= kY, (1)

w,=kxy, (2)
where k,(rad/m) and k, (rad/m) are the angles of twist per unit length of the wing
due to the pretwist and the applied torque, respectively. J.Singer discussed about
the validity of above expression as an deflection of the thin wing. Singer reported
that there is 59 discrepancy in torsional vibration frequency between the value
obtained by Eq. (2) and the one obtained by using the following expression when
thermal-stress is so large as to be sufficient to cause thermal buckling (the pre-
twist is not considered).

This document is provided by JAXA.



80 K. Miura

w1=k11my+kslxsy+kwx'y3- (3)
This result is obtained in case of constant thick wing, but it was also verified in
case of parabolic distribution of the thickness. It may, therefore, be allowed to
use Egs. (1) and (2) as deflection functions of the present problem.
The strain in the direction of # caused by the deflection w, is apparently
L[a_(’“’_____ﬁwl) ]2_ L[%T_ (4)
2 ox 2L ox
On account of the condition that no external normal force is applied at the tip in
the plane of the wing, the integration of the stress over a complete section of the
wing must be zero and, therefore, the aforementioned strain is accompanied by
the shortening of the wing, €,, in the direction of z uniformly distributed over
the section. This can be expressed by the following relation :

P[ATdwtw) T L %'2}hd ——efbhd —0 5
f_b{z[ e 7| e ) P ()
Then,
1 > {1 [a(wo—{—wl) :]2 1 [awo T}
- 2| AWy |~ 220 ) Shdy. 6
’ j”_,,hdyf_b AN 2 o y (6)
In consequence, the strain in the direction of x is the sum of Egs. (4) and (6).
1 1 d
=(—ki+Fkk — hy*dy |. 7
e=(gti) [ v'= g | P v] (7)

If the thermal-stress in the direction of 2 is denoted by 0., then the total stress
can be expressed as follows:

a,=am+E(—-:lz—

b
)| g | bhy?dy]. (8)
As the direction of this stress is inclined with respect to the plane by

o(w, +w,)/ox=(k;+k,)y on account of the twisting, it gives rise to the force as
much as ¢,(k,+ko)yhdy per infinitesimal sectional element, hdy, normal to the
z-y plane. The torque increment AT due to this force can be obtained by in-
tegrating the product of this force and arm, y, over a complete section. Thus

b b
4T= [0 (etyhdy= (ot [ ouythdy

+Ek1(%k§+%klko+k§>[ j_:, bhy‘dy—j—g%&—?;( [b bhyzdyy]. (9)

The total torque 7 is assumed to be the algeblaic sum of the torque due to the
Saint Venant’s theory, provided that the angle of twist and the pretwist remain
reasonablly small value. It has been verified experimentary by Chen that the
limitation in which this assumption is valid is that the angle which the leading or
the trailing edge makes to x axis is about 0.15 radian. This limitation which is
thought not to be exceeded in almost any practical case of the problem considered
here is followed by us in this analysis. ’
Then we have
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T=GJk,+4T. (10)
Substituting Eq. (9) in Eq. (10) we obtain the following expression for torque.

b
T=GJ ley+ (s + ko) f owyhdy
-b

oL Jurorm) [ (P

—-b

If we define the effective torsional rigidity by the following formula,
T: GJeffkl (12)
then, GJ ¢ can be expressed as

_%fjiLz H"élj‘(l +-’;—‘:> f_ :omyzhdy

41t (it 3hdey+ 28] [ hydy— j”,,lh dy( |/ ‘wpdy) | (13)
. 2 o

Eq. (11) contains Chen’s solution when there is no thermal-stress and Hoff’s so-
lution when there is no pretwist and, as expected, the mutually related term exists
when both the thermal-stress and the pretwist are present. The concept of the
effective torsional rigidity defined by Eq. (12) is due to the direct extension of the
concept in case of linear problem to non-linear problem in which the angle of
twist is no longer the linear function of the applied torque. In other words, this
definition is simmilar to that of secant modulus. Naturally, the new concept of
effective torsional rigidity corresponds to so-called tangent modulus may be defined
and let it called the effective torsional rigidity GJi, which is the tangent of the
torque-to-angle-of-twist curve.

oT °
GJlee= =GJ+ | owhy’dy
ok f_ )

1

+E(%k§+3kl k0+k3)[ f_ :hyuy—m( f_ ihy2dy)2:|. (14)

GJ/ff 1 o
=1t —— | owhy’dy
GJ f_ b

GJ

+

LE i+ bk + 28] [ :hy‘dy— i Zhyzdy)ﬁ]- (15)

Let us consider the magnitude of the following terms.
b
I:f athhyzdy’

Kﬁh*d 1 (fbh2d>z}
- . y y J‘b_b hdy Y y y .
I, the only terms including the thermal-stress, is the quantity calculated from
the temperature distribution and the shape of the wing section and it takes usually
negative value, when the vehicle is in a accerelated stage.
K is the quantity calculable from the shape of the wing section and is positive.

If the Egs. (11) and (15) are rewritten using these quantity, the following equations

(16)

This document is provided by JAXA.



82 K. Miura

are obtained.

T:(GJ+I+EKkg)k1+Iko+EK(_12__kg+%kﬁko), 17)
GJ;“-—-(GJ+I+EKk3)+EK(%ki+3k1ko). (18)

T is expressed by the third order polynominals of k,, and if GJ+I+EKk;>0,
the equation, that the right hands of Eq. (17) is taken to be zero, has one positive
root and two either negative or imaginary roots (Fig. 2). It is necessary to note

.
}
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FIGURE 2. Torque and ‘effective’ torsional
rigidity versus angle of twist for pre-
twisted wing.

that T-k, curves do not pass through the origin since the torque — Ik, is induced
by the interaction of the thermal-stress and the pretwist even if the torque is not
applied. That is

——Iko:(GJ+I+EKk§)k1+EK(—;—-Ic§+%—kik0>. (19)

The effective torsional rigidity GJ/;; becomes minimum when k;= —Fk,. GJ e,
when the angle of twist %, equals to zero, are GJ-I+EKKk;, whose second term
is the reduction due to the thermal-stress predicted by Hoff and others and the
third term is the strengthening effect of the pretwist predicted by Chen and others.
Then, if the deflection is infinitesimally small, the total effect of the pretwist and
the thermal-stress on the torsional rigidity of the wing is merely the sum of each
independent effect. But if the deflection is finite, the aforementioned formula,
GJ+I+EK k2, does not correspond to the rigidity for zero applied torque, because
the wing is still subjected to the induced torque —Ik, due to the thermal-stress
and the pretwist, and the wing is twisted as much as an angle calculable from
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On Torsion of Aerodynamically Heated Wings 83

Eq. (19) and, therefore, the effective torsional rigidity GJg,. usually increases from
the value mentioned above. '

Next, the condition, that the GJ/;; must be neither zero nor negative, can be
obtained by (0T/0k,)s, -, >0.

GJ+I—%EK'A~,§>0. | (20)

In a case where this condition is not fulfilled, there exists either an inflection point
or a maximum and a minimum, which corresponds to the unstable condition.
This case is shown to exist practically in case of a propeller which has consider-
ably large k, by Niedenfuhr [8], though it is an isothermal problem. But in
every case of the thin wing of high speed vehicles considered in this paper Eq.
(20) is satisfied, and it is no use to take into account, unless the thermal-stress
reaches closely to the buckling criterion.

It is to be noted that the lowering of torsional rigidity itself by the thermal-
stress results in a more rapid increase in the influence of the pretwist upon the
torsional rigidity. For better understanding of the aspect of the problem it is
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FIGURE 3. Angle of twist versus thermal-stress for pretwisted wings.

usefull to evaluate the examples of the wing with various values of pretwist
(Fig. 3). Taking a wide view of the matter in these examples, the following
summary may be concluded.
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84 K. Miura

1) If I=0, i.e., there is no thermal-stress, the angle of twist %, reduces as the
pretwist k, increases.

2) In the region of 0<I<]I,,, the increase in k, results in the increase in k,.

3) In the region of I <I, the increase in k, results in the decrease in k;.

4) Even if there is no torque applied, almost the same order of twist occurs as
in the case with torque.

Budiansky and Mayers comment that the increase of the influence of the pre-
twist will be appreciable, only if the thermal-stress closely reaches to the buckling
criterion. This view of the matter, however, is not true in respect of the ex-
amples considered here, where the effect of pretwist is rather small, if the thermal-
stress in wing is so large as to cause buckling. In general, the effect of pretwist
must be predicted by the quantative evaluation of Eq. (17) and the conclusion
derived from the results may be considerably different in every individual case.

SOLUTION FOR TUBULAR SECTION ' .

.

The method of analysis developed in the preceding section can easily be applied [
to the case of thin tubular section. In this case, the integration must be done along
the closed line S (Fig. 4).

4
!

o
|
FIGURE 4. Configuration of thin tubular member.

The stress can be expressed as follows :

1 1
s=0nt+E (-—k§+k k )[ e 2ds]. 21
;=0 5 1ko )| T(9) §7(d)ds f"'@s) 1)
The relation between the torque and the angle of twist is .

T=GJk,~+(y+ ko) 56 G (P)Phds

4Bl Lt 2t ] $royas— o $riovas) | @2

TORSIONAL VIBRATION

In this section the torsional vibration of the thin wing with a small amount of
pretwist subjected to the aerodynamic heating is analysed. It seems that the non-
linearity as well as the asymmetricity will appear in the torsional vibration, as
these characteristics are observed in the case of statical twist of the pretwisted
wing. It should be noted that the torsional vibration of the wing in the flow is
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On Torsion of Aerodynamically Heated Wings 85

influenced by the aerodynamic moment. These effect, however, may be neglected
in the case of the wing with symmetrical section in the supersonic air flow, be-
cause the center of the aerodynamic forces acting on the wing coincides with its
elastic axis.
The pretwist is assumed to be given by the following formula :

wo=kyxy. (23)
It is assumed that the same deflection function as in the case of statical twist ex-
presses the deflection of the wing in vibration, too. The displacement at any
time, then, can be expressed as follows :

wy=kaxyF(¢), , (24)
where F(t) is the time function accompanied to the deflection w;. The total dis-

placement from the plane, then, is the sum of w, and w,. The potential energy
measured from the position of w, is

U:-lz-GJkinx 20

+[f bh{am%——;—E (SHhF 2+klkoF>[y2——I—,,_—fW f_ :hyzdy}

—a =b

1 f b

—~ hy'dy |dyds. 25

mohdy) YN (25)
It is to be noted that the coefficient 1/2 of the second term in the braces {} in

the right hand of the equation is for the following reason; the first term o, in

the braces is constant with any deformation but the second term varies from zero

where w, =0 to the following value for w,=w,,

B( P+ ki F )[y“ ’i,,;wl:q— f_:hyzdy]’

x (_;_kzF 2+klkoF)[y2

and the strain changes from zero to

? (.-;—kin—i—klko F)[y2~ B b;z m f_ :hy?dy},

thus, the former stress term has a linear relation to the latter strain term. The
same results can also be obtained by integrating Eq. (11).
The kinetic energy is

After integration, Egs. (25) and (26) can be written respectively as follows :
U=2Iak.k,F+(GJ+ 1+ EK kj)akiF*+ EK kakiF ”—I—-}TEKak{F ., (27)
r—J0KH F, (28)

39
where
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b
H= | hy*dy,
f"’ (29)
p=9F
_ ot
The Lagrange’s equation is
d (oT ) ou
=0. 30
dt \ oF T oF (30)

Substituting Eqgs. (27) and (28) in Eq. (30) we obtain the following ordinary differ-
ential equation for F'(?).
F4AF+pF?4-vF? =, (31)
where 2, ¢, v, and « are
_ GJ+I+EKEK;
N ra*H ’
39
3 EK ki,
2

A

/,l:

ra*H
3g
-;—EK e (32)

y=—

ra*H
39

7.k
k

= —
ra*H.
3g

F)=1, } - (33)
F(0)=0.

If the cordinate of F/(f) is shifted as much as —¢&, F(t) can be written as follows:
F@)=£(@®)+5¢, (34)
where & is to be determined by the following relation.
A6+ pE2+vEi=x. (35)
By this transformation of the coordinates Eq. (31) can be transfered to the follow-
ing equation, '

The initial conditions are

FA Q4206+ 3080 f+ (14 306) 2 oS =0, (36)
with the initial conditions
f:(O)Zl——E, } (37)
f(0)=0.
Now, let us examine into the roots of the following equation of &.
X (&) =08+ p6*+26—£=0. (38)
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On Torsion of Aerodynamically Heated Wings 87

The problem considered in this case where the torsional rigidity GJ is positive,
the angle of twist k, is positive, and the integration of thermal-stress I is negative
and, therefore, four coefficients v, ¢, 2, and « are all positive. Thus, from the
Descartes’s Law the number of positive roots of the equation X(§)=0 is one,
besides, there are either two negative roots or two imaginary roots. If there are
two negative roots, it must have the £ which satisfies the equation X '(6)=0, this
relation results in the following relations:

p“‘—-3v2=GJ+I——-;—EKk§§O. (39)

This condition is the same as the one which defines the region where the torque-
angle-of-twist curve has an either negative or zero value of tangent, i.e., where
so-called jumping phenomenon may take place. For our present purpose it is
meaningless to take account of the region as such where the system is statically
unstable, as the wing on that condition is already useless for engineering purposes.

)% L Datum line of vibration

\/Ttionar position

Vibration range

Pretwist

FIGURE §. Several positions for vibration of pretwisted wing.

The relation between F(t), f(t), and & is illustrated by Fig. 5, where their

amplitudes and datum lines of vibration are shown. As the vibration is asym-

metric, it must be used, in place of the center of vibration, the datum line of

? vibration which displaces from the -y plane by an amount of k,+&k, and the
wing vibrates across the line. :

When £=1, Eq. (35) reduces to the following equation.
— Th,=(GJ + I+EKkﬁ)k{—}—EKk{(—;—k{z—k%kok{). (40)

This relation is the same one as the Eq. (19) where the wing is at a standstill at
the position displaced by k,+k, from the x-y plane. Assuming & =-1, the func-
tion f(t) is transformed to F(t) by the following relation,

F@O)=(1—5F (), (41)
then, the differential equation of the time function F'(t), Eq. (31), can be trans-
formed to the following differential equation of F(?).

F+aF+ uF*+yF*=0. (42)
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The initial conditions are transformed to the following equations.

FO=1 } 43)
F(0)=0,
A, pu, and p are
A=2+42pE+30E,
p=(1—8)(k+36), } (44)
p=(1—&v.

The relation between F(t) and F(t) is defined by the Egs. (31) and (41) and is
written as

F@)=(1-¢)F ) +¢. (45)
Thus, the initial conditions are the same in both functions. Conclusively, the
vibration frequency of the function F'(t) never changes by the upper transforma-
tion and is the same as the one of the function F() and, further, the amplitude
of the F(t) is 1/(1—¢) times as much as the one of the function F'(t). Every
characteristic of the time function F'(t), therefore, is included in the function
F(t), which we will discuss in the following.

Integrating Eq. (42) we obtain the following equation.

tzf ) 2 £ I : (46)
1 /2(1—F2)+—§p(1—F"‘)+3u(l-—F‘)
The solution of this can be written as
F(t)=1— 6(a+p+) (47)

p(6)Fa+2pu+3

where s= £(t) is the Weierstrass’s elliptic function. It is defined by the following
formula.

_[c__4ds _ _ (" ds
t’f, Jast—g,s—gs 'f, Ja(s—e)(s—e)(s—es)

where the zeros e,, ¢,, and e, are related to the invariants g, and g; in the following
manner.

(48)

e;+e,+e;=0,

€403+ €30, 4 €,00= — - g, = __4!8ﬁ{——,,(3,,+4,,+61)+12},

4 (49)

1 1
€,6:63—=— (3=

i 0 (3A(3p+4p+62)+ 2 — p*(3v+4p+62)}.

For practical evaluation of the results, it is more convenient to rely on the
Jacobian elliptic function sn [9]. First, if the time is transfered to the dimen-
sionless form by the following relation,

r=J7t, (50)
and the following parameters are defined,
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=

b

v »R

(51)

="

finally, Eq. (42) can be transformed to the following differential equation where
the independent variable is the dimensionless time 7.

d’F

== 4+ F+pF*+oF?*=0,
dz?
F(0)=1, (52)
- AF0) _
dr
The solution of this is

1
= f
1l - 2 1 -, 2
F —— P2 p =7 —v+ = 1
]/ ) v 3 H + > v+ 3 L+
In this problem b is positive. The zeros of the inner terms of the denominator of
Eq. (53) are denoted by Z,, Z,, Z,, and Z, in the decreasing order and Zyiym',m’

m, n', n'’, and k are defined by the following equations.

Zki:Zk_Zi’
m' =4 Z3Zoy, m'=yZZy, m:w_ s
2 (54)
, - v —— . m —m'
n =1/Z13Z23, n,—JZ14Z24: k—m-
Further, the new variable ¢ is introduced.
1—sing _ W'Z,—Z
14sing n'Z—2Z; (55)

nWZAn"Zy—(n'+n")Z
— W ZAn Zy+ (' —n"NZ

sin p=

Finally we obtain the following expression as the solution of F(z).
n' +n""Zy+(n'—n'" Z;)sn [K — _’32_ 75 Ic{]
Fo)= . . (56)
n'+n'" —(n" —’n’)sn[K — .1’2_ 7; sz

The period of the vibration is

7= 4K

s

(57)

- dzZ
K"{QO—Z%O—WZ>'

It is also usefull to evaluate the approximate value of the function F(t) by the
successive approximation procedure. It is assumed that the function F(t) can be

This document is provided by JAXA.



90 K. Miura

approximated by the following cosine series. |
Fit)=A,+ A, coswt+ A, cos2wt+ A, cos 3wt. (58)

Substituting Eq. (58) into Eq. (42) and performing the term by term comparison
we obtain the following approximate expression for the vibration frequency.

?=2—— 4y - (59)

The reasonable accuracy of this method was assured by the solution obtained by
an electronic analogue computor provided that the vibration is not excessively
asymmetric.

In conclusion, we can briefly state influences of the pretwist upon the torsional
vibration of thermally stressed thin wings as follows :

1) In the case where there exists the thermal-stress (/< 0) and not the pretwist,
the vibration frequency reduces as the thermal-stress increases and this decrement
in the frequency decreases as the increase in amplitude. This special case is the
same as the one treated by Singer [5].

2) In the case where there exists some amount of the pretwist and not thermal-
stress, the vibration frequency increases as the pretwist increases unless the ampli-
tude is large. This special case is the same one treated by Reissner and Washizu.
The matter, however, will be fairly changed, if the amplitude increases. In this
case the reduction of the frequency due to the second and the fourth term of Eq.
(59) may become predominent.

3) Finally, the most general case treated in this paper is the one where there
exist both the pretwist and the thermal-stress. The aspect of vibration in this
category is featured by many complicated phenomena and it can not be stated in
a unified manner. The overall aspect can, however, be predicted by the quanta-
tive evaluation of Eq. (5§9). The more strict discussion on the matter must be
done by the use of Eqgs. (47) and (56).

In short, the variations in such parameters as the pretwist, the thermal-stress
distribution, the sectional form of the wing, may results in various conclusions
about the aspect of the subject. And, such lack of the knowledge about the com-
bined effects of the pretwist and the thermal-stress stated in this paper may lead
to an erronous conclusion.
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SYMBOLS
GJ =torsional rigidity
GJ ot —ceffective torsional rigidity
O —thermal stress in the direction of span
r =distance from the center of twist
A =sectional area of wing
z, Y —coordinates
h=h(y) =thickness of wing
ko, w, =pretwist and its deflection
ki, w, =angle of twist and its deflection
k115 kqg, kg =coeflicients
T =applied torque
€, € =strains .
g, =stress
r,$,X  =cylindrical coordinates
r(9) =section of tubular member
| F(t) =time function
A U =potential energy
7 =gpecific weight
s=p(t) =Weierstress’s elliptic function
9ss 93 =invariants
T =dimensionless time
t sn =Jacobi’s elliptic function
% ® =vibration frequency
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