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Chemical Nonequilibrium Boundary Layer
Behind a Moving Shock Wave
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Summary. An analysis is attempted for the boundary layer in a chemical nonequilibrium
region behind a moving shock wave into diatomic gases. The rate of mass production of
atoms is taken into account for the boundary layer as well as for the external flow. By
introducing an appropriate expression for the mass production rate of atoms, the approxi-
mate solution for the problem has been obtained. Actual calculations have been worked out
for the distributions of mass fraction of atoms, heat transfer rate and temperature rise along
the wall. From the results it is found that the dissociative relaxation process for the gas of
external flow is appreciably amplified in the relaxing behaviors of surface temperature rise
as well as heat-transfer rate. Such an amplification of relaxation process at the wall depends
strongly on the catalycity of the surface material, while not strongly on the mass production
rate of atoms within the boundary layer.

1. INTRODUCTION

We shall consider the boundary layer which grows along a straight wall of
arbitrary catalycity in the nonequilibrium dissociating flow behind a strong
plane shock wave moving into a stationary diatomic gas. In general the transi-
tional behavior of diatomic molecules to the equilibrium state in passing through
the strong shock wave is so complicated that the rigorous treatment for the pro-
blem is anomalously difficult. Therefore we shall take into account only the
dissociation mode of gases. That is to say, the dissociative mode is assumed to
approach an equilibrium state through an appreciable region behind the shock,
while the translational, rotational and vibrational modes are assumed to be in their
equilibrium states throughout the entire region behind the shock wave. This
simplifying assumption may be permitted when the shock wave is strong enough
to produce an appreciable fraction of atoms due to dissociation, so that the chemi-
cal state of gas is mostly affected by dissociation process. _

So far the boundary layer associated with the equilibrium dissociating external
flow has been investigated by several authors [ /], [2]. Recently Chung [3] has
presented an analysis of the boundary layer in nonequilibrium dissociating flow
behind a moving strong shock along a straight wall. In his analysis the chemical
reaction within the boundary layer was assumed frozen. This assumption may be
approximately valid for the case when the shock speed is extremely high. For
cases of finite shock speed, however, the frozen-boundary-layer assumption is
not compatible with the conditions of reacting external flow at the edge of the

[175]
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boundary layer. Therefore, we must deal with the problem in taking into account
the rate of production of atoms due to chemical reactions in the boundary layer
as well as in the external flow. The net mass rate of production of atoms is ex-
pressed as a complicated function of the temperature and mass fraction of atoms,
so that an appropriate approximation will be looked for to simplify the analysis.

In actual calculations the distributions of mass fraction of atoms, heat transfer
rate and surface temperature along the wall will be evaluated for several ex-
amples, because these are of significance in the application to the shock-tube
diagnostics.

2. MATHEMATICAL FORMULATION

We conveniently choose the coordinate system fixed with respect to the shock.
The z-axis is taken along the wall and the y-axis along the shock front (Figure 1).
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Ficure 1. Illustrative Sketch of Flow.

In this coordinate system, the boundary layer flow is steady so long as the shock
speed is assumed constant.
The steady boundary layer equations for nonequilibrium flow are

ﬁ%@Jr%%)_:o @-1)
() 203 “ ¢
(o2 )= [ 1) 5 ()]
-_(% (%-1) pDh,,%g_] (2-3)
p(u-g% -+ v%%) = 3% (pD%%-) Jw (2-4)

p,=pRT(1+a)

In these equations,  and v are the x and y components of the velocity, respecti-
vely. The symbols p, p, T' and « are the density, pressure, temperature and mass
fraction of atoms, respectively. The symbols #, D and R are the viscosity, binary
diffusion coefficient and gas constant of molecules, respectively. P and L are the
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Chemical Nonequilibrium Boundary Layer Behind a Moving Shock Wave 177
Prandtl number and Lewis number. The total enthalpy H can be expressed as
H= [cpudT +_;_u2+hpa

where h, and c,, are the specific dissociation energy and the specific heat for
molecules, respectively. The term @ is the net mass rate of production of atoms
due to chemical reactions.

It is worthwhile noting that the term @ in Eq. (2-4) vanishes for the frozen-
boundary-layer case which was analyzed in Reference [3]. Since, in general, w
is a complicated function depending on the temperature and mass fraction of
atoms, we shall introduce an approximate expression for @ in order to simplify
the analysis. This will be discussed in the succeeding section.

We next proceed to specify the boundary conditions. The particles have no
mean motion relative to the wall surface, so that in the present coordinate system

u=U, at y=0 7 (2-5)

where U, is the shock speed. The wall temperature may be assumed constant,
because the deviation from the room temperature is comparatively small in the
concerning region. We thus obtain the condition for the total enthalpy H of
gases at the wall as

H=H,+hya at y=0 (2-6)

. where H, is the total enthalpy of gases ahead of the shock. As regards the mass
fraction of atoms, we should take into account the reaction of atoms on the cata-
lytic wall. The rate of diffusion of atoms to the wall should be equal to the rate
of recombination of atoms at the wall. For the diatomic gases as oxygen and
nitrogen, the rates of recombination of atoms on the solid surfaces have been
found to be linear with the mass fraction of atoms [4]. If this is the case,
we have

Ly oa
-=,, t =0 . 2-7
P oy pa at y (2-7)

where &, is the coefficient representing the catalycity of wall. For a limiting
case of k,, infinitely large, the condition of Eq. (2-7) reduces to
a=0 at y=0 (2-8)

Using the solution for the inviscid flow behind the plane shock wave, we can
derive the conditions at the outer edge of the boundary layer. Since the total
enthalpy is conserved across the shock, we have

H=H, at y—>oo

Following the usual way for the steady boundary-layer problem, we introduce
the transformations

§=Uypp),x ' (2-9)
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2 NaY
_ U, f
pdy (2-10
=t )
1 f of _ u
=— |udy, —Lt=—- 2-11
f A 7 T, (2-11)
g=H|H, (2-12)
2=/ (2-13)
where the subscript w denotes the quantity at the wall and a.., the mass fraction
of atoms in the external flow downstream at infinity.
Applying these transformations to Egs. (2-1) and (2-2), we obtain
82f> a"’f dlnu (p ui) (af *f of af)
+ < 2 — 2-14
an ( o’ f +2 dln¢ \ p U} i oy otoy 0 ot (2-14)
where C is defined by ‘) M
C=pp/(ot). | 8 )
Eq. (2-14) is so complicated for the solution that we introduce the following sim-
plification. Since, in the present paper, we are concerned with the region in
which the external flow is in dissociative nonequilibrium, the external flow vari-
ables depend on x or £&. It is however known that no appreciable variation in
pressure or velocity occurs across the nonequilibrium region. Therefore the
external flow velocity %, may be assumed constant. In order to simplify the
formulation, we assume that Prandtl number P and Lewis number L are constant
and that C=1. The function f then depends on 7 alone consistently with the
boundary conditions. Then Eq. (2-14) reduces to
fll/_+_f //:0 (2_15)
With the foregoing simplification, applying the transformations of Egs. (2-9)-
(2-13) to Egs. (2-3) and (2-4), respectively, we obtain the following equations in
terms of ¢ and z.
l 3g ag Uo( ) 1 pr '—_1_ a_z__ ’ 2_16 -
Fartiaty L") ~B=5 2672 @16 p )
L 9% ( , 02 T)
=2 ——w 2-17
P ot +f &f % (2-17)
where 8 and w are given, respectlvely, by
hp
=20, 2-18
p=2a (2-18)
- w
S — (2-19)
pUi(o1) o
The boundary conditions of Egs. (2-5)-(2-8) become
. f(0)=0, F(0)=1 (2-20)
96, 0)=1-+p2(¢, 0) (2-21)
0 v
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az E 1/2 i
3;(5, 0)=K (?) 2(¢, 0) for k, finite (2-22)
(¢, 0)=0 for k, infinite (2-23)
Here K is defined by
K=Jy2 L1 VR ky , R=LuUs, 2-24
J L Ms Qg Ko ( )

In this equation M, is the shock Mach number defined by M,=U,/a,, where q, is
the sound speed of gases ahead of the shock. The &, is the & corresponding to the
dissociative relaxation distance z, in the external flow, that is

Er: Uo(Pl‘)wxr

or, in terms of the dissociative relaxation time £,

& =Ui(op)ut,

The conditions at the outer edge of boundary layer are given by

S'(0)=u./U, | (2-25)
9§, ©)=1 ’ (2-26)
2(§, 00)=2,(&/¢,) (2-27)

We here note that, as is easily shown from Eq. (2-17) and the boundary condi-
tions (2-25) and (2-27), f'92/6¢ —w must vanish at p—>oco. This means that the
frozen-boundary-layer assumption w=0 is inconsistent with the nonequilibrium
external flow conditions for a finite value of w,/U,, because then f’02/0f remains
finite at »—>oo. Therefore the analysis of Reference [3] based on the frozen-
boundary-layer assumption is applicable only to a limiting case of u,/U,=0 at
n—>co. In the present analysis, however, the conditions are specified to satisfy
f'02/06 —w=0 at y—>oo. Therefore the analysis is applicable to cases of u,/U,
finite. ’

The present problem has thus been reduced to look for the solutions of Egs.
(2-15)-(2-17) satisfying the conditions (2-20)-(2-23) and the conditions (2-25)-
(2-27).

3. APPROXIMATE EXPRESSION FOR W ‘

In this section we shall introduce an approximate expression for the net mass
rate of production of atoms w. Gas molecules with which we are concerned are
assumed to follow the reaction

kp
A+M = A+A+M (3-1)
kg '
where A, and A represent molecules and atoms, respectively, and M the third
body which may be either molecules or atoms. The symbols k,, and k, are the
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rate constants of dissociation and recombination, respectively.
The net mass rate of production of atoms for the reaction (3-1) can be given in
terms of the mass fraction of atoms « and the density p as

3 2
o= —n_ _g_(1+a)(_cz_-_ )
2p‘ Mz a,*2
where M is the molecular weight and a* represents the local equilibrium value
of . The rate constant k, can be expressed in the form

kDOC Tme—ﬂ/T

where @ is the characteristic temperature of dissociation and m a constant perti-

nent to the gas.
We introduce a function W as the ratio of the net mass rate of production of
atoms @ to that in the external flow w,, that is

Wz, y)=w(x) W(x, ¥)

Since w, is given by

. d
we(x)=p¢ue‘_dg;'
Eq. (2-19) can be rewritten as
w=_te Le &W(g, 7 (3-2)
U, v ds )

It follows from the definition of W that the function W is equal to unity at the
outer edge of boundary layer. On the other hand, w decreases from a finite value
to zero as proceeding from the shock front towards infinite downstream. There-
fore we may expect that the term w plays a significant role only in the region
close to the shock wave. In view of this fact, we approximate the function Wz,
y) by W(0, y), the value immediately behind the shock wave. With this appro-
ximation, Eq. (3-2) is written as

< 2 LA
W= U d e,L_2—me—Tei(r 3] (3_3)

U, dg

where, with the temperature T,; of the external flow immediately behind the
shock, 7 is given by

T oo (o)
SR R e A IO ROy

The g,(n) represents the function g(y) immediately behind the shock. It should
be noted that g,(n) =1 when Prandtl number P is close to one. The expression
Eq. (3-3) for w leads our analysis to a great simplification, because w given by Eq.
(3-3) does not depend on « so that Eq. (2-17) reduces to a linear equation.

We turn to obtain the solution for f, g and z. Eq. (2-15) for f has already been

‘\\ ...\

..4
-
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Chemical Nonequilibrium Boundary Layer Behind a Moving Shock Wave 181

solved numerically by Mirels for several values of u,/U, [1], [5], [6]. If the
mass fraction of atoms z, of the external flow is expressed in the power series of

£/¢, in the form
()=5e(E) G4

the function z should be written in the following form consistent with the bound-
ary conditions of Egs. (2-22) and (2-27).

o6, =3 Kapusd i)+ 0B ) () (3-5)
where the constants z, can be calculated by the relation
z,=Kz, A ,,(O)+—~——~l+(_1) as28.(0)
For a limiting case of K infinite, we have instead of Eq. (3-5)
266, =31 a.0u () (3-6)

Substituting Eq. (3-5) or (3-6) into Eq. (2-17) and equating the terms of the same
power in £/£,, we obtain the equations for A,, B, and C, as follows:

%Aﬁ,’-{—fA{,:n f'A, n=0, 1,2 (3-7)
%B::+fB:.=n[f'Bn— W] n=0,2,4--- (3-8)
7L3‘02’+fc,:=n[f'c,,—-vff1 n=0,2, 4. (3-9)

where W is given by
W= e r2-mg- gD (3-10)

The boundary conditions reduce to

A0)=1, A (x)=0, n=0,1,2-- (3-11)
Bl(0)=1, B,()=1, n=0,2,4--. (3-12)
C,(0)=0, C.(0)=1, n=0,2,4.-. (3-13)
For actual calculations the parameters %,/U,, L/P, m and 6/T,, involved must be

given.

As was mentioned before, the function f has already been solved numerically
by Mirels for several values of u,/U,. For diatomic perfect gases, u,/U, tends to
1/6 in the limit of shock Mach number infinity. The results of Reference [/]
show that the function f indicates no sensitive dependance on «,./U, so long as the
shock Mach number is high. Therefore we have chosen u,/U,=1/6. The charac-
teristic temperature of dissociation @ is equal to 59,000°K for oxygen and 114,-
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000°K for nitrogen. We have chosen §/T,,=5, 10, 15, 20 for actual calculations.
Following Wray’s recent work [7], an approximate choice for m is suggested to
be m=—1 for oxygen and m= —1/2 for nitrogen for the temperature of 3,000°K
—38,000°K. We have chosen m =—1. 'As can be seen from Eq. (3-10), W is
insensitive for the variation in m. Therefore we may expect the results for
m=—1 is applicable to the case of other diatomic molecules as nitrogen. The
parameter L/P has been chosen 1.95 with L=1.4 and P=0.72.

With these values of parameters u,/U,, L/P, m and 6/T,,, Egs. (3-7)-(3-9) with
the respective boundary conditions (3-11)—(3-13) have been numerically solved
for A,, B, and C, from n=0 up to =40, 20 and 20, respectively, by the use of
digital computer OKITAC 5090 A. The values of A,(0), B4(0) and C,(0) are
given in Table 1. To see the dependence of solution on m, the case for m= —1/2
and 0/T,;=15 has been calculated (Table 1). Though the values of A’ (0) are

n

given up to #=40 in Table 1, we can obtain the approximate values for larger
n, if necessary, by the relation

TaBLE 1.
m -1 —1/2
n | —Ax0) | n —Ax(0)
0/Ta| 5 10 15 20 15
0| 2233 | 21| 3133 | « B(0) B4(0)
; ;g‘;'gz ii ;g:;’ 0 |1.0000 |1.0000 |1.0000 |1.0000 | 1.0000
2 | 291 | 2506 | .2309 | .2191 | .2298
S s R B s | um | o3 | Le2iot | 1004
Tl B0 o g | em | sasor | asiat | saies
S| 00 26 B2 g s | st | Lame-t | omet | 327
S BB AT I g s | o | oteot | a7t | 2129
TR B 25y s | 0sr | aasrr | 1021 | 1asse
SN B 26y g | Lasas | tess | st | 1o
O A2 30299 g | deert | awret | mrest | st | 7ssse
10| 4005 3L 2555 e | paa | o1sze | Lseast | Lasae-r | sesa-s
o B2 B2 gy igee | masre | aazse | aers | azaaes
12 | 419 | 33 | 2472
13 | 4020 | 34 | 2434 | = Ci(0) Ci(0)
Mo B85S BT o g0 | 4399 | 4399 | 4399 | 4399
1> B2 36 B2 ) o0 | 462 | 2269 | 2153 | L2258
161 609 3T BB g 66 | L1600 | L1381 | L1256 | .1369
o 3T 3825 6 01 | a4 | Lom7se | 846t | o061t
18 3395039 ) 2264 g | yagg | 829671 | .e4deet | L5472 | 63457
1900 300040238 g | iss | 63 | 4T | 3es3 | 4623t
0] 3] - T | 12| 98681 | 49817t | .35487 | 28457 | 3471
14 | 85357t | L3994t | 27367 | .21387 | 2670~
16 | 747471 | 325871 | 215170 | L1641 | 2093
18 | .66121 | .2696 | .17197 | .1281° | 1669~
20 | 59007 | .2258- | .1393 | L1015~ | 1349~
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Chemical Nonequilibrium Boundary Layer Behind a Moving Shock Wave 183

A4,(0)=4/ 2 4,(0)

Consistently with the boundary conditions of Egs. (2-21) and (2-26), g can be
expressed in the series of & as follows:

) n/2
o6 m=0.)+B330,()(£) (3-14

The function g,(») should satisfy the equation

1 4 / Ug( 1 > r L

1 iy Yo L =0

Pg¢+fg+Ho 2 L]
and the boundary conditions

9:(0)=g(0)=1

The numerical results for g,(y) have been given by Mirels for P=0.72. For P=1,
we obtain g=1. As for g,(), we seek for the expression for ¢,(0) alone, because
we need only ¢4(0) to calculate the heat transfer rate. We obtain the expression
for ¢,(0) from the solutions of Egs. (3-7)—(3-9) by the use of the approximate
expression for f, as follows:

for k,, finite

700 — T l"“("‘l)n ——;B_"L(p_)_. = -
g(0)=Kz, VL 1)+——-—2 QpsoV L 4.0) n=0,1, 2, (3-15)

and for k, infinite
9.(0)=a,,:(y L —1)C}(0) n=0,2,4,--- (3-16)
The detailed derivations of Egs. (3-15) ard (3-16) are shown in Appendix.

4. HEAT TRANSFER RATE AND SURFACE TEMPERATURE RISE

The heat transfer rate ¢ to the wall is given by

_q=%v_(%)w+huwa(%;i>m (4-1)

where & is the static enthalpy of gases. For cases of nondissociating gases, intro-
ducing the transformations of Egs. (2-9)—(2-13) into Eq. (4-1), we obtain

2
—i,= e Bl g0 Lo 77 0)]
The values of ¢i(0) and f"(0) for C=1 and P=0.72 have already been obtained
by Mirels [5]. It is convenient to introduce the dimensionless heat-transfer rate
(9—4,)/4; in order to see the magnitude of deviation of the heat transfer rate
from nondissociating case. By the use of Egs. (3-4), (3-5), (3-14), (3-15) and
(3-16), we obtain
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for k,, finite

ﬁ:l{(LH«/f——z)Kzn_l_ 1+(=D" am«/L“B,,(O) } ( _2:_ )n/z

q ;.qi =B ; U22 A.0) (4-2)
gi(o) ——ﬁ‘:f (0)
for k,, infinite
LT =93 0,cL0(L)
—% _g °U2 & (4-3)
% gi0) —pf"(0)

The surface heat transfer rate can be determined from the measurement of wall
temperature by means of surface thermometory. That is, the wall temperature
T(t) at a measuring point is related to ¢ there as follows [8]:

1 f ‘ CI(T) d
- c (4-4
Jﬂ(pclzk)b 0 A/t‘—'T )
where (ocyk), signifies the quantity pertinent to the wall material. Here T, is
the wall temperature ahead of the shock. With ¢, for the nondissociating gases,
Eq. (4-4) gives the surface temperature T, as

T Ty Zi e PO~ 7 0]

The temperature T, is constant independently of both time ¢ and location z or &.
Therefore T, is identical with the temperature immediately behind the shock
wave for the case of dissociating gases. Combining Egs. (4-2) and (4-3) to Egq.
(4-4), we obtain .

for k, finite

T(t) — Ty=

< - _1+(=1)"  JLB,(0)) ( t\"*
T(t)-—Ti s ;{(L+2‘/L Z)Kzn-l 2 Qp/2 A,,(O) ]In(tr>

T.—T, n{gi(O)—%if"(O)}

(4-5)

for k,, inﬁnite‘
LT =2 $a,CLOn(LY
B ° T r (4-6)
n{¢<o>—7{;f )

where I,’s are the numerical constants given by

T@®)—T, _
Ti - To

for even n

[ |35 @+])

. for odd =

4

4 -y

|
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Chemical Nonequilibrium Boundary Layer Behind a Moving Shock Wave 185

For k,, finite the mass fraction of atoms at the wall vanishes downstream far
from the shock front as &/6,—>o0. For k, finite the surface temperature rise, as
£/&,— oo, tends to a constant asymptotic value which is equal to the temperature
rise for the case when the wall is fully catalytic and the external flow is uniform,
i.e z,=1,2,=0. This asymptotic value T, is given from Eq. (4-6) by

21100—22:'5 -y (L+~/Z'I;22)CS(O) (4-7)
e gﬁ(O)-—~H—°f "(0)

It can be easily shown from Eq. (4-3) that the dimensionless heat-transfer rate
(¢—4,)/4; has the same asymptotic value as Eq. (4-7) as £/§,—~c. In quite the
same way, for the case when k,=0 the asymptotic value of temperature rise (or
dimensionless heat-transfer rate) is given from Eq. (4-5) by

Tw— Tt — ﬁ ‘/ f/ Ao(o)
feto  go-Ziro

5. RESULTS AND DISCUSSION

Following the analysis in the previous section, we can evaluate the surface heat
transfer and surface temperature rise, provided that the mass fraction of atoms of
the external flow is expressed by the power series in terms of £/£,. For actual
calculations we assume the form of 2, as follows:

z2,=1—e %
and then a,’s in Eq. (3-4) are given by

— l)n-l
!

a,=0, a,= ( (n:l, 2,3.. )

The mass fraction of atoms z,, at the wall, surface heat transfer ¢ and surface
temperature rise T— T, from the temperature just behind the shock have been
calculated for 6/T,,=5, 10, 20 and K=0, 1, 2, co. In Figures 2, 3 and 4 the

Zw

T

10 2

A L
0 / 2 3 4 5

6 X/Xr(={/fr)
FiGUure 2. Atom Concentration at the Wall.
(ue/Up=1/6, P=0.72, L=1.4)
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Asymplotic value for K>Q

6 x/x(=¢/&) E

-025

Agxmpfoffc value for K=Q
FiGURE 3. Heat Transfer Rate. (u,/U,=1/6, P=0.72, L=1.4)

I T-T
2T

0251 Asymelotic value for K>O

0 HWie(=¢/&)
-025
\\\ K=
tic =
..05__

FIGURE 4. Surface Temperature Rise. ./\}
(4e/Up=1/6, P=0.72, L=1.4) h

results are plotted against £/¢,. It can be seen from Figure 2 that, for a fixed K,
the mass fraction of atoms 2, at the wall indicates only a weak dependance on !
0/T.. The similar tendencies can be seen from Figures 3 and 4, respectively, for
the surface heat transfer rate and surface temperature rise. As can be seen from
Eq. (3-3), the rate of mass production of atoms depends mainly on the magnitude :
of the parameter 6/T,,. Therefore the mass fraction of atoms, surface heat trans-

fer and temperature rise are less sensitive for the variation in the rate of mass
production of atoms. This can be expected qualitatively from the fact that in

Eq. (3-10) W, the term for the mass production of atoms, is the order of magnitude

of u,/U, which is small for a strong shock wave.
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Chemical Nonequilibrium Boundary Layer Behind a Moving Shock Wave 187

As is seen from Figures 2, 3 and 4, the atom concentration, heat transfer and
temperature rise at the wall depend mainly on the value of K, the parameter
defined by Eq. (2-24). The parameter K is proportional to k,vp,t, where k, is
the rate constant for recombination on the wall and ¢, the dissociative relaxation
time for the gas of the external flow. For oxygen and nitrogen the magnitude of
k, is about 1,000 cm/sec for metal walls and about 1cm/sec for glass walls [4].
If, for example, a combination of oxygen and steel wall is considered, the existing
dataon k, [4] and ¢, [9] give 0.5 < K <3 for M, from 8 to 15.

For the limiting case of K=0 or for the case of noncatalytic wall, the dimen-
sionless surface-temperature rise (7'— T',)/(T;,— T,) approaches a negative asym-
ptotic value as £/£, increases. On the contrast to this, it approaches a posititive
asymptotic value for cases of non-zero K, no matter how small. The dimension-
less surface-heat-transfer rate (¢—¢,)/4, shows the similar behavior to that of the
dimensionless temperature rise. In order to see the behavior of approach to the
asymptotic value, we use a characteristic distance &,, which is chosen as the value
of & for the point where the surface temperature rise reaches 1/e times the asym-
ptotic value as £/6,—co. In the similar way we choose the characteristic distance
¢,q for the surface-heat-transfer rate. For both limiting cases of K=0 and K—
oo, the dimensionless temperature rises monotonically approach the respective
asymptotic values. In these cases, the ratios &,,/¢, and &,4/¢, are estimated roughly
about 5 and 2, respectively. For cases of finite K, the dimensionless temperature
rise follows a curve close to the values for K=0 when £/¢, is small and then
approaches a positive asymptotic value as £/&,—>c0. As can be seen from Figure
4, the ratio £,,/£, seems to be much greater for smaller K, so long as K is finite.
Indeed, if the curves calculated for K=1 are extrapolated to the region of larger
&, the ratio £,;/&, is estimated roughly about ten. From the above-obtained
results it follows that the dissociative relaxation process for the gas of external
flow is appreciably amplified in the relaxing behaviors of surface temperature
rise as well as heat transfer rate. Such an amplification of the relaxation process
depends strongly on the value of K or the catalycity of surface material, not
strongly on the value of /T,; or the mass production rate of atoms within the
boundary layer.

Department of Aerodynamics
Aeronautical Research Institute,
University of Tokyo, Tokyo.
February 15, 1964
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APPENDIX

Approximate Expression for g,(0)

We shall derive an approximate expression for g7(0). Substituting Eq. (3-14)
into g given by Eq. (2-16) and equating the terms of the same power in £/§,, we
obtain a set of equations for g;(0)’s as follows:

for k., finite
T‘)-g:'+fg;—i3%1—[Kzn-1A;'+—‘i(—2‘—‘)—"-an,2 B;']znf'gn (n=0,1,2---)

for k,, infinite

| r_ L—1 1+(—1)"a C!’=nf' n=0.2.4-..
T)‘gn—l_fgn P 2 n/2¥n fgn ( 3 s )

From the condition Egs. (2-21) and (2-26), we have
for k,, finite

0.0=Kz, 1 A0+ T 0,,B,0),  a.()=0

for k,, infinite
7.0)=0,  g,(0)=0

Let us introduce the functions G,(7), H.(1), J.(7) and K,(y) which are the solutions
" of the following equations,

%G;’—{—fG{.:nf’G{, n=0,1,2--- (A-1)
%H,{’-}— fH,=nf'H, . n=0,1,2--- (A-2)
%J,’.’+fJ,’.=n[f’J..— W] n=0,2,4.- (A-3)
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_113K,{’+fK,’.:n[f’Kn— W] n=0,2,4..- (A-4)

satisfying the respective boundary conditions
G,(0)=4,(0), G, (0)=0 (A-5)
Hn(o)an(O) ’ Hn(oo):() (A-6)
Jn(o):Bn(O) ’ Jn(oo)z 1 (A'7)
K.(0)=0 K, (0)=1 (A-8)

We then obtain the following expression for g,(7) in terms of the above-defined
functions,

for k,, finite .
g,.(n)=Kz,.-ltzG,.@)—-A,.(v)J+L“f%‘ilian[Hn(v>+Jn(v)—Bn(n>J

n=0,1,2,--- (A-9)
and for k&, infinite

9N =0 [ K.(0)—Co(n)] 7=0,2,4... (A-10)

Comparing Egs. (A-1)-(A-4) with Egs. (3-7)—(3-9) for 4,, B, and C,, the follow-
ing transformations are conveniently introduced,

7=vLy (A-11)

F@)=+Lf(y) (A-12)

Since f is proportional to 7 either in the region of » small or in the region of 7
large, we have the approximate relation as follows :

F()=1(@) (A-13)

Indeed the validity of this relation has been checked for the case of uJU,=1/6
and L=14 (see Figure 5). With this approximation Eq. (A-1) for G.(n) is
rewritten as ‘
L d*G,

P dp

()L :nd{;? G, n=0,1,2..- (A-14)

The boundary conditions given by Egs. (A-5)—(A-8) are invariant through the
transformations (A-11) and (A-12). The solution G, for Eq. (A-14) satisfying the
condition (A-5) is quite the same as the solution A, for Eq. (3-7) satisfying Eq. (3-
11). That is,
dG,
d7 |5=0

and hence

G| =y (A-15)
dn |,

In the same way we obtain

This document is provided by JAXA.



190 H. Honma and H. Oguchi

Exact

1.5

T

Aporoximate
Fiti)=f(%)

1.0

05

1 1
) i I

FIGURE 5. The Function F() versus 7. (u./Uy=1/6, L=1.4)

dH,| _ + B,0)
) o~ JT 28N
2/ P A,(0)

The function W involved in Egs. (A-3) and (A-4) has a form of Eq. (3-10).

Since dF/dj=d f/dy and g,(7)=1 for the Prandl P close to one, we have the
approximate relation as follows:

(A-16)

W) =W(z) (A-17)
By the use of the transformations Eq. (A-11) and (A-12) with the approximate
relations (A-13) and (A-17), Egs. (A-3) and (A-4) reduce approximately to the
same as the equations for B, and C,, respectively. Therefore we obtain

dJ,

3 ~0 A-18
dy |y= ( )

oK.~ Ty (A-19)
dn |,

We can thus determine g,(0) from Egs. (A-9) and (A-10) by the use of GZ(0),
H,/(0), J,'(0) and K,/(0) which are given by Egs. (A-15), (A-16), (A-18) and (A-
19), respectively.
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