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On the open boundary conditions for incompressive unbounded flows
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Abstract

Four open boundary conditions for incompressible unbounded flows are evaluated in the framework of the Leith type
third-order upwind scheme(QUICKEST scheme), and each effectiveness is compared by two means of difference of
flows among open boundary conditions and between short and long open boundaries. Three test problems used for the
open boundary condition evaluation are the backward-facing step flow, the blunt based body flow and the rectangular
cylinder obstacle flow in a channel. The investigated open boundary conditions are four. The author proposes to take
the uniform inlet velocity as the phase speed in the Sommerfeld radiation condition. As the conclusion, we show that
this is the most excellent open boundary condition within four open boundary conditions.

1. Introducing remarks
In many computational problems, we are faced with infi-
nite domains, which for computational reasons must be made
finite. One possibility is to introduce an artificial boundary in
order to reduce the infinite computational domain to a finite
one. Then, the introduction of the artificial boundary makes
it necessary to formulate appropriate artificial boundary con-
ditions. However, mathematics does not tell us how to select
artificial boundary conditions.
2. Some qualities that candidates as open boundary
conditions should display
" They should permit the flow to exit the domain gracefully
~and passively, and not have any effect on the behaviour of the
solution in the domain near the open boundary, especially
far from it. They should be transparent, and lead to the
same solution inside the common domain no matter where
truncation occurred.
3. Boundary conditions

Figure 1 shows geometry definition of three test problems.
In (A), B1, B2, B3 and B5 are the no-slipe solid walls, B4 the
inlet and B6 an open boundary. Coordinates of points 1 and
2 are (2JH,JH) and (IN,2JH), respectly. We take IN=14JH
as the short open boundary and IN=20JH as the long open
boundary. In (B), B1l, B2, B3, B4 and B6 are the no-slipe
solid walls, B5 the inlet and B7 an open boundary. Coordi-
nates of points 1, 2 and 3 are (0,JH), (2JH,2JH) and (IN,3JH),
respectly. We take IN=14JH as the short open boundary
and IN=20JH as the long open boundary. In (C), B1, B2,
B3, B4, B6 and B7 are the no-slipe solid walls, B5 the inlet
and B8 an open boundary. Coordinates of points 1, 2 and 3
are (8JH,2JH), (9JH,3JH) and (IN,5JH), respectly. We take
IN=30JH as the short open boundary and IN=35JH as the
long open boundary.

In all the numerical computations, grid size is decided
based on JH=40. At the inlet, a uniform inlet u-velocity
profile
=1

u(y) (1)

is chosen. We note that truncation occures at x=IN.

4. Four candidates of open boundary conditions(OBC)

OBC:no.1
The following open boundary condition was firstly used
by Thoman and Szewczyk(1966):
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OBC:no.2

The following open boundary condition was proposed by
Mehta and Lavan(1975):
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in case that at the open boundary the inertia terms are dom-
inant.

OBC:no.3

The following open boundary condition is the Sommerfeld
radiation condition firstly used by Orlanski(1976):
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(4)
where ¢ is any variable, and ¢ is the phase velocity of the
waves. Orlanski proposed the following method which numer-
ically evaluates the phase speed at the closet interior points
every time: Using a leapfrog finite-difference representation,
we have

n—1
oB _

n+1
Y
24t

(5)

T (05h + b5 — 25s..).

Hence the phase speed is numerically evaluated at the closet
interior points from the above equation as follows:
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From the above two equations, we can also obtain the bound-

ary conditions {¢g§1} as follows:
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OBC:no.4

The following open boundary condition is the Sommerfeld
radiation condition used by Bottaro(1990) and Kobayashi,
Pereira and Sousa(1993):
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(3)
where ¢ is any variable, and ¢ is the phase velocity of the
waves. Bottaro took the average streamwise speed in the
channel as ¢, and Kobayashi et al. the mean channel velocity
as ¢. The author proposes to take the uniform inlet velocity
as ¢. Therefore, c=1.

5. Results on the backward-facing step flows

In this problem, we show results for Re=1,000. Firstly
we compare difference of flows among four OBCs in case of
IN=20JH=800. From results, we can see that variation of
flow does not yet arrive at the open boundary at t=30, find
that variation of flow already arrives at the open boundary
at t=35, and hence it is the same as well at t=40. As seen
from these results,there is severe difference among four OBCs
in flows in the domain near the open boundary. Hence we
can not at all conclude which of four OBCs gives the most
excellent solution. While it is surely true in the domain near
the open boundary, we can also show complete coincidence in
flows among four OBCs in the domain within x=14JH=560.
That is, there is no difference of flows among four OBCs. This
fact promotes us next step. (We here note that computation
of flow by OBC:no.2 was breaked off due to occure overflow
in computation of ¢ at ¢ > 35.1.)

Secondly we compare difference of flows between short
and long open boundaries by each OBC. Clearly from re-
sults, there is severe difference of flows by OBC:no.1 in the
domain near the open boundary of IN=560. Hence OBC:no.1
can not at all say as a good OBC. Next we examine the case
of OBC:no.2. As seen from results, OBC:no.2 shows com-
paratively good coincedence of flows in the domain near the
open boundary of IN=560. Regretably this OBC can not
bear practically due to occure overfiow at ¢ > 35.1. Next we
look into the case of OBC:no.3. Clearly from results, there
is severe difference of flows by OBC:no.3, especially at the
open boundary of IN=560. Hence OBC:no.3 is better than
OBC:no.1, but we can not yet say that it is a good OBC.

Finally we examine the case of OBC:no.4. Figure 2 shows
its difference of flows between short and long open bound-
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Hence we can conclude that OBC:no.4 is the best OBC among
four OBCs, and is the excellent OBC.
6. Results on the blunt based body flows

This problem is more complicated than the previous one,
and hence OBC:no.2 could not bear practically for this prob-
lem due to this complexity. We discuss about OBCs for this
problem similarly to the previous problem. We show here
results for Re=1,000. Firstly we compare difference of flows
among three OBCs in case of IN=20JH=800. From results,
we can see that variation of flow does not yet arrive at the
open boundary at t=30, find that variation of flow already
arrives at the open boundary at t=35, and hence it is the
same as well at t=40. As seen from results, there is severe
difference among three OBCs in flows in the domain near the
open boundary. Hence we can not at all conclude which of
three OBCs gives the most excellent solution. While it is
surely true in the domain near the open boundary, we can
also show complete coincidence in flows among three OBCs
in the domain within x=14JH=560. That is, there is no dif-
ference of flows among three OBCs. This fact promotes us
next step.

Secondly we compare difference of flows between short and
long open boundaries by each OBC. Clearly from resuluts,
there is severe difference of flows by OBC:no.1 in the domain
near the open boundary of IN=560. Hence OBC:no.l can
not at all say as a good OBC. Next we look into the case
of OBC:no.3. Clearly from results, there is severe difference
of flows by OBC:no.3, especially at the open boundary of
IN=560. Hence OBC:no.3 is better than OBC:no.1, but we
can not yet say that it is a good OBC.

Finally we examine the case of OBC:no.4. Figure 3 shows
its difference of flows between short and long open bound-
aries. As seen from (C), OBC:ro.4 shows tolerable coince-
dence of flows even at the open boundary of IN=560. Hence
we can conclude that OBC:no.4 is the best OBC among three
OBCs, and is the comparatively good OBC for this problem.
7. Results on the rectangular cylinder obstacle flows

This problem is the most complicated among three prob-
lem, and hence even OBC:no.1 could not bear practically for
this problem due to this complexity. We discuss about OBCs
for this problem similarly to the previous problem. We show
here results for Re=1,000. Firstly we compare difference of
flows between two OBCs in case of IN=35JH=1400. From
results, we can see that variation of flow does not yet arrive
at the open boundary at t=45, find that variation of flow al-
ready arrives at the open boundary at t=55, and hence it is
the same as well at t=65. As seen from results, there is severe
difference between two OBCs in flows in the domain near the
open boundary. Hence we can not at all conclude which of
two OBCs gives the most excellent solution. While it is surely
true in the domain near the open boundary, we can also show
comparatively good coincidence in flows between two OBCs
in the domain within x=30JH=1200. That is, there is a lit-
tle small difference of flows between two OBCs. This fact
promotes us next step.

aries. As seen from {C) which is drawed in piles the streamfunction- Secondly we compare difference of flows between short

profile and the vorticity-profile of flow by each OBC on sev-
eral vertical internal points, OBC:no.4 shows tolerable good
coincedence of flows even at the open boundary of IN=560.

and long open boundaries by each OBC. Clearly from results,
there is severe difference of flows by OBC:no.3, especially at
the open boundary of IN=1200. Hence we can not yet say
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that OBC:no.3 is a good OBC.

Finally we examine the case of OBC:no.4. Figure 4 shows
its difference of flows between short and long open bound-
" aries. Asseen from (C), OBC:no.4 shows considerably smaller
difference of flows than OBC:no.3 at the open boundary of
IN=1200. Hence we can conclude that OBC:no.4 is better
than OBC:no.3, and bears more well practically for this prob-
lemn.

8. Discussion
On the backward-facing step flows

(1) We also examined difference of flows between short
and long open boundaries computed under the condition of
Re=800 and OBC:no.1l. We computed this flows in the frame-
work of the first order upwind scheme. As seen from results,
OBC:no.1 can bear well practically for such the problem as
Re < 800.

(2) We examined the case of IN=400 where truncation
occures. As seen from this, there is a little difference of flows,
especially at the open boundary of IN=400. Hence we had
better not shorten location of truncation to IN=400.

On the blunt based body flows

(1) As we compare results, we clearly see that the com-
plete coincidence of flows between short and long open bound-
aries as Figure 2 can not obtain when the problem becomes
more complicated.

(2) This fact suggests that OBC:no.4 no longer is the com-
plete OBC for this problem, although it is the excellent OBC
for the backward-facing step problem. Hence we must be
studying to search for a better OBC.

On the rectangular cylinder obstacle flows

(1) Firstly we note that numerical solution of flows for
IN < 1000 can not give the right solutions even by OBC:no.4.
Because reflection occures at the open boundary, its effect is
changed the behaviour of the solution in the domain far from
the open boundary, and at last its accumulation leads the
wrong solution.

(2)In this paper, the author proposes to take c=1 as the
phase speed of the Sommerfeld radiation condition. When
we compare each results of ¢=0.7, 1 and 1.3, ¢=1.3 seems to
be the best among three phase speeds.

On the open boundary conditions

(1) Such the OBCs as OBC:no.1 and 2 force to prescribe
any condition at the open boundary. Hence they seem to
oppose some qualities that a ideal OBC would display. As its
poofs, lows by these OBCs are necessarily influenced heavily
whenever variation of flow arrives at the open boundary, as
seen in Figure 4, 5 and 10.

(2) Such the OBCs as OBC:no.3 and 4(that is, the Som-
merfeld radiation condition) do not force to prescribe any
condition at the open boundary, but seem to aid to permit
the the flow to exit the domain gracefully and passively. Such
phenomenon is one of qualities that a ideal OBC would dis-
play

(3) The Sommerfled radiation condition is used by some
researchers, but the method of deciding its phase speed is dif-
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ferent by each researcher. However there is not a firm ground
why the phase speed would be decided by their methods.
Then the author proposes to take a constant as the phase
speed, despite of being not able to state a firm ground.

(4) Clearly from comparison of results, OBC:no.4 is more
excellent than OBC:no.3 for all the problems. Moreover clearly
from comparison of results, the case of ¢=1.3 seems to show
the best result.

(5) Hence we will say that to take a constant as the phase
speed is also better than to take a mean channel velocity every
time as the phase speed. Because a mean value necessarily
becomes to ¢ < 1. From its reason, we can say that a larger
value of ¢ is profitable to premit the flow to exit the domain
gracefully and passively.

9. Concluding remarks

In this paper we studied about the open boundary condi-
tions for incompressible unbounded flows, reported numerical
solutions of lows by four OBCs for the backward-facing step
problem, the blunt based body problem and the rectangu-
lar cylinder obstacle problem, and evaluated these results by
means of difference of flows among four OBCs and between
short and long open boundaries.

As the conclusion in all the cases, we showed that the
OBC proposed by the author is the most excellent among
the investigated OBCs. It is a very simple method which uses
the Sommerfeld radiation condition as the OBC, and take a
constant as its phase speed. This OBC showed to be the ex-
cellent OBC for the backward-facing step problem. However
for the blunt based body problem and the rectangular cylin-
der obstacle problem, that is, as the problem becomes more
complicated, this OBC no longer is the complete OBC. Hence
we must be studying to search for a better OBC.
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(C) Rectangular cylinder obstacle problem

Fig 1 Geomsetry definition of three test problews
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(B) Aspects of flow every t=5 (IN=800)

Fig.2 Difference of flows between short and long open boundaries (Re=1,000, OBC:no.4)
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(A) Aspects of flow every t=>5 (IN=560) (B) Aspects of flow every t=5 (IN=800)

Fig.3 Difference of flows between short and long open boundaries (Re=1,000, OBC:no.4)
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Fig.4 Difference of flows between short and long open boundaries (Re=1,000, OBC:no.4)
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