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ABSTRACT

The NWT computer system available at the NAL since February 1993 comprises two system
administratorsn processing elements (wharevas 140 at the beginning, and is 166 at present)
and a crossbar network, and operates as a distributed-memory message-passing MIMD computer.
Each processing element itself is a vector computer. This paper reports parallel computations of
incompressible viscous flow in a lid-driven square cavity on the NWT computer system. In order
to obtain numerical solutions of this flow, consistent finite-difference approximations on non-
staggered grids and four iterative solution methods are used. Computations are performed on the
Reynolds number range Be= 0~10, and effects of the Reynolds number, number of processing
elementse) in the parallel processing, solution method and grid size on the computational results
are examined. Actual rates of the parallelised square cavity programs on the NWT computer system
are measured, and two characteristic parameters of these programs are estimated for the cases that
the actual rate is considered as a functiopexnd that the actual rate is considered as a function
of the grid size. Measurements of the maximum actual rate and estimations of the speedup and
efficiency againspe on the NWT computer system are indicated as well.

Keywords: square cavity problem, non-staggered grid, consistent finite-difference approximation,
iterative method/Jacobi/red-black/CG/ADI, SIMD/MIMD computing, synchronization/
data-transfer overhead, program performance, maximum performance, half-performance
grain size, characteristic parameters of parallelised program, speedup/efficiency, NWT
computer system
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conditions. By the way the maximum Reynolds
number dealed with in previous studies mentioned
The incompressible viscous flow in a lid-driven above isRe= 10¢, and the maximum grid size is
square cavity has been investigated from more than 25%257 [3, 7], where we note that [8] and [17] had
thirty years ago as a representative problem of closed dealed withRe= 1(° andRe= 3+«1(*, respectively, but
separated flows. Experimental studies of this flow are that both numerical solutions could not capture the
found chronologically in [15, 16, 23, 19, 6], and secondary and tertiary vortices located at the corners
analytical studies by means of the finite Fourier series of the square cavity due to a rather small grid size.
expansions found in [15, 23, 5]. Studies on numerical ~We have extensively examined the difference
solutions of this flow are found in [19, 8, 21, 4, 20, 3, between numerical solutions based on marching the

1. INTRODUCTION

2, 7] which deal with only the vorticityY and stream- unsteady equations in time and on treating the steady-
function ), and found in [14, 16, 5, 6, 22, 17, 1] state equations, and the difference between numerical
which deal with the pressurp)(as well agf andy or solutions based on staggered grids and on non-staggered

the primitive variables. In general, as the Reynolds grids during this investigation. In this report we
number is larger, the time required to obtain numerical indicate numerical solutions based on consistent finite-
solutions for{ and ¢ is much longer, but the time  difference approximations on non-staggered grids for
required to obtain numerical solutions for p is shorter. steady-state Navier-Stokes equations [1], which look
However there becomes more difficulty in treating the like to be most superior. We deal wite=1C as the
pressure Poisson equation with Neumann boundary maximum Reynolds number, B@.6k (1k =1024) as
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the maximum grid size, and the Jacobi/red-black/CG/ Reynolds number, the selected number of the process-
ADI methods as the iterative solution methods [18]. ing elementsge) for MIMD computings, the solution
All the computations are performed in parallel on method and the grid size on numerical solutiong ,of
the Numerical Wind Tunnel (NWT) computer system ¢ andp.
available at the National Aerospace Laboratory since  Next for making clear the above problem (2), we
February 1993 [9, 10, 11, 12]. This system consists examine in detail processing speeds of all kinds of
of two system administrators, n processing elements parallelised programs by increasepef and make its
(wheren was 140 at the beginning, and is 166 at present) bounds clear. Next for making clear the above prob-
and a crossbar network, and operates as a distributediem (3), we examine in detail overhead of each com-
memory message-passing MIMD computer. Each piler directive of the NWT Fortran which is inserted
processing element itself is a vector computer. The into the general Fortran program. Finally for making
language to bescribe parallel processing is the NWT clear the above problem (4), we measure actual rates
Fortran. Main memories of the NWT are physically of the parallelised square cavity program adopted each
distributed across the processing elements, but to easesolution method, and estimate in detail ©haracteris-
programming, the logical model of the NWT assumed tic parameterg(r, , pe,,. pe n) and @, , s,,) of these
a hierarchical memory parallel computer system for programs on the NWT computer system with respect
programming offers the virtual global space (or global to the cases that the actual rate is considered as a func-
memory) shared by the selected processing elememtstion of pe for a fixed grid size [13] and that the actual
to users. On the other hand, each local space (or localrate is considered as a function of the grid size for a
memory) is the memory specific to each processing fixed pe respectively.
element. Details about the machine architecture and  For almost all results for the actual rate on the
logical model of the NWT, the NWT Fortran, com- NWT computer system, we show both values when
munication and synchronization are shown in [10].  applied to the system software had been available at
The prime motive of this study is to make clear the the NAL during the period April to June 1993 and
following problems which originate from parallel  during the period April to May 1994. Hence the degree

processing on the NWT computer system: of improvement on the NWT system software
(1) Is the numerical computation of flows possible becomes self-evidently, which is the result had been
to how degree of accuracy practically? vigorously continuing subsequent improvement during

(2) Can the processing speed of parallelised one year.
programs improve to how degree along with increase
of pe? 2. FORMULATION

(3) Are all kinds of system overhead bringing the We consider an incompressible viscous flow in a
processing speed bounds how degree? square cavity by a uniformly moving upper surface as

(4) How degree of value are the characteristic shown in Figure 1, wherd is the depth of cavity,
parameters of the NWT computer system? the width of cavity andd =L = 1. The dimensionless

In this paper, for making clear the above problem stream-function vorticity conservation form of the two-
(1), we adopt a lid-driven square cavity problem that dimensional incompressible Navier-Stokes equations is
there is the long study history mentioned above, and as follows:
obtain numerical solutions of this flow by the consistent

finite-differrence schemes on non-staggered grids. As = —yy{x+ Yly + 1 (O + ), (1)
. . Re

the solution method used at this juncture, we adopt

four iterative solution methods of Jacobi/red-black/ W+ Py =—, (2)

CG/ADI. From the obtained results, we show the

process of stabilization of the eddy system and the where( is the vorticity,i the stream-functiorRethe
location of the center of the primary vortex in the Reynolds numbet,the time, anck andy the axtial
square cavity on the Reynolds number range of and normal coordinates, respectively. The subscripts
Re=0~10, and examine in detail effects of the t, x andy refer to partial derivatives with respecttto
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x andy, respectively. - | D= —ul+ 1 7, aty=0, 1. (11)
The boundary conditions on the stream-function y Re
equation (2) for flow in a lid-driven cavity with the Solutions to (7) with (10) and (11) are unique

upper surface translating to the right with uniform within an arbitrary constant, which can be determined
velocity u = 1 and with no flow at the other boundaries by using the relation
are at the upper surface

I 1 J 1 pdxdy= constant (12)
W»=14=0y=0, (3) e
The existence of a solution for (7) with (10) and (11)
and at the bottom, left and right surfaces requires the satisfaction of the following compatibility
condition:
%:014]X:01w:0' (4) L L
I y:J i adxdyj’ p.dS (13)

The boundary conditions on the vorticity equation (1)
are obtained by applying the boundary conditions for wheren is the outward normal to the boundary contour
the stream-function at the solid boundaries as follows: S, enclosing the solution domain.

{=- (Y +hy), atx=0,1landy=0,1.  (5) 3. FINITE-DIFFERENCE APPROXIMATIONS

In this Section we discuss the numerical method
The steady-state Navier-Stokes equations are deducedhat we used to obtain the steady-state solutions to (1)-
from (1) and (2) if we sef: = 0. When we could obtain  (11), on non-staggered and uniform grids. l.etl/N
the steady-state solutiodgndy, the primitive variables be the mesh size in both the x- and y-directions so that

can be computed from the following equations: the plane X, y) is discretized ag = ih andy = jh
where i, j =0, 1,...N. We denot€;; =  (ih, jh), and
u=uk, U=-(k, (6) so on. All partial derivatives are approximated using
second order accurate formulas.
Poct Py = (U x = (U y = O, )
3.1 Finite-difference approximation for steady-
wherep, u andu are the total pressure, the velocity state equation (1)
component in the x-direction and the velocity component
in the y-direction, respectively. (g™ ) G Gd) — W~ ) (ay=6y)
The boundary conditions on the velocity equations 4
(6) are at the upper surface =- Re ({ory* 4oyt Gt Gy 44, (24)
u=1,u=0, (8) wherei, j =1, 2,...N - 1.
and at the bottom, left and right surfaces 3.2 Finite-difference approximation for equation (2)
u=0,0=0. (©) Vit Yoyt T, — A, = _hzzi,j’ (15)

The following Neumann boundary conditions on the wherei, j =1, 2,...N - 1.
pressure equation (7) are obtained by applying the

momentum equations at the solid boundaries [1]: 3.3 Finite-difference approximations for equations
1 (3) and (4)
px:UZ—R—eZy,atx=0, 1, (10)
Lle,j = wN,j = Llji,o = l'Ui,N = 0’ (16)
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wherei, j =0, 1,...N. 3.8 Finite-difference approximations for equations
(10) and (11)
3.4 Finite-difference approximations for equation (5) For consistency, the pressure gradigmtand P,

The finite-difference approximations for (5) are computed from (10) and (11) should be evaluated at
obtained from (15) and (16) by enforcing reflection at x=h2,x=1-h/2,y = N2 andy = 1- h/2, respectively,
the boundaries as follows: at the upper and bottom as follows [1]: at the upper and bottom surfaces
surfaces

1
Bo=P:1~ 5= (Zi+1,1 + Zi+1,o - Zi-1,1 - Z|10)
(=l U ¥ D=2y, @) e
+ Z U, (le + Z.o)’ (22)
wherei =1, 2,...N—-1, and at the left and right surfaces 1
) 5 Pn=Pnat ARe (Zi+1,N + Zi+l,N—1_ Zi—1,N - Zi—1,N—1)
G = 2 Gy =2 Uy (18) h
T4 (ui,N+ ui,N—l) (ZlN + Zi,N—l)’ (23)

wherej =1, 2,...N - 1.
wherei =1, 2,...N —1, and at the left and right surfaces

3.5 Finite-difference approximations for equation (6) 1

Po 4Re

:le_ +

(Zl,j+1 + ZOJ+1_ le—l - ZOj—l)

1
u; =E (l’Ui,j+1_ (’Ui,j—l)’ Ui h
1 =4 Uy (G4 (24)
=~ E (l’Ui+1,j - (*Ui—lj)’ (19)

_ 1
Pyj = Py HG(ZNJH + ZN—l,j+1 - ZN,j—l_ ZN-u—l)

+ % UN—J_,j (ZN,j + ZN—l,j)’ (25)

wherei, j =1, 2,....N—- 1.

3.6 Finite-difference approximation for equation (7)
In order that the compatibility condition (13) is wherej =1, 2,...N- 1.
exactly satisfied on a non-staggered grid, we must use

the following consistent finite-difference approximation 4. ITERATIVE METHODS FOR NUMERICAL

[1]: STEADY-STATE SOLUTIONS
In this Section we discuss four iterative methods
Pyt Py t P TR~ 4P, that we used to obtain the steady-state solutions to
_h equations (14)-(25) [18]. Letbe am-column vector,
= Z{( Uy T Uy) (G + G) = (U5 0y let the superscripE refer to the transposition, and let
(G ) = Ut u) ) us be
(U, +u,) (G + ¢ )k (20)

X' = (51,1’---’ ZN_M; 51,21---’ ZN_LZ; ..... :
wherei, j =1, 2,.N- 1. (i Cuaned) (26)

3.7 Finite-difference approximations for equations or

(8) and (9)
X' = (l'Ul,l""’ Uy s Wy Wiy oo
Un = 1, Upj = Unj = Uio = Yg; = Uy, wl,N—l""’ wN—l,N—l)’ (27)
=U,,=U, =0, (21)

or
wherei, j =1, 2,..N- 1.
XT = (p1’11'-'1 pN_lyl; p1’21---, pN—l,Z; ..... .,
pl,N—l""’ pN—l,N—l)’ (28)
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where the i — 1)* variablesZ,;, ¢; andp; (i, j =
1, 2,...,N—1) at the interior grid points are unknowns

4.2 Red-black ordering
The grid points are divided into two classes, red

in (14), (15) and (20), respectively. Hence we can write (or odd) and black (or even), and then ordered left to

(14), (15) and (20) as a linear systerm¢f (N — 1)?)
equations in the formx = b, whereA ={a;} is an
nxn coefficient matrix, ant ann-vector. LetD = diag
(,.-»a,) be a diagonal matrix containing the diagonal
elements ofA. The matrixA for (14), (15) or (20) is a
block tridiagonal matrix of the form

C D

11 12

D

21 (29)
D

N-2N-1

D C

L N-1 N-2

N-1N-1

where all the tridiagonal§; and diagonal®;; (i, j =
1, 2,....N—1) areN1*N1 (whereN1 =N - 1) matrices
of the forms

| a(i—l)N 1+1 (-1N1+1 a(i—l)N1+1 —1N1+2
a(i—l)N 142 (-1N1+1
C= ,
f . A\i-1ing
L aiNl iNH a'|Nl iN1
(30)
a(i—1)N 1+1 (—1N1+1
D, = - , (3D)
L a|N1 iNL
respectively.

4.1 Jacobi's method

Given the linear systerx = b, the Jacobi iteration
follows from the splittingdA =D — (D —A), which leads to
the iteration

Xl = Hx< +d, k=0, 1, 2,..., (32)

right, bottom to top within each class. The unknowns
at the grid points are ordered analogously. Then the
given linear systemx = b will become of the form

D, C X b

R 1 F 1
= : (34)
CZ DB XE b2
where under reorderings
DR XR bl
D= , X = b= (35)
DE XB b2
Then the red-black iteration is
x &t =Dgt (b, - Cx¥), (36)
xgt = Dg (b, — C X&), (37)

which show to uncouple into the two separate parts.

4.3 CG method

Given the linear systedwx =b, let , y) = X"y be
the inner product and = b — Ax the residual at the
kth step. The conjugate gradient (CG) iteration is the
following scheme:

Choosex?, setp® = 1° compute(t°, 19,
fork=0, 1, 2,....,

a, == (1% T9/(p* ApY,

¥ K+l = yk — akpk’

Tkl = Tk 4 akApk,

if not converge, continue,

Bk = (Tk+1' -l-k+1)/(-l-k’ -l-k)’

pk+1 = 7kl 4 Bk pk_

(38)

where the superscript indicates the iteration number, 4.4 ADI method

and

H=D'(D-A),d=-D. (33)

Given the linear systeix = b, letA=H +V be
the following splitting:
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T,
H= ,
L LN
D, D,
D - -
V= 2 : : , (39)
e e Dyg-1n1
L Duinia Puina

whereH is a block diagonal is a block tridiagonal,
and all the tridiagonal§; and diagonal®; (i = 1, 2,...,
N — 1) areN1*N1 matrices of the forms

a(i—l)N 1+1 (-1) N1+1/2 a(i—l)N 1+1 -1N1+2

a(i—1)N 1+2 (N1+1

T= e e ,
1 . : Ani-1ing
ANt Bna Nz
(40)
a(i—l)N 1+1 (-IN1+1/2
D = L . (41)

aINl iN1/2

respectively. Then the alternating direction implicit
(ADI) iteration is

(ol + H) x*12 = (al - V) x* + b, (42)
(ail +V) x*¥ = (al = H) x*2 + b, (43)
wherea; > 0 ( = ¢,  orp) is a constant.

4.5 Remarks
(2) Initial values
We set in all the iterative solution methods

x°=o. (44)

(2) Iteration number ofy

Let My be the iteration number af per each
iteration of{. For the red-black, CG or ADI method,
we setMy = 1. For the Jacobi method, we k&t= 4,
of which case we call J1. Talking from the point of

of (,Uik’j, but only when we sé#l,= 1, we can remove
these overheads, of which case we call J2.
(3) Relaxation parameters

We used the following relaxation parametess,

@ =¢ worp):
)2k+1:Xk+a)l(xk+1_xk)’xk+1:X"k+1. (45)

(4) Convergence test
In order to test for convergence of the iterates, we
used the following test:

maX,. ., = xk10°. (46)

(5) Steady flow methods

It is known that some steady-state flow iterative
methods are strictly equivalent to time-dependent
unsteady flow methods, with under- and over-
relaxation adjustments being equivalem\tochanges,
and most steady-state iterative methods are at least
analogous to time-dependent unsteady methods [24].
Hence, we can see the transient behavior of the flow
by steady flow methods too until iterative solutions
converge to the steady-state solution.

5. RESULTS OF PARALLEL COMPUTATIONS
OF SQUARE CAVITY FLOWS ON THE
NWT COMPUTER SYSTEM

A large amount of numerical information on the
Reynolds number range Be= 10° ~ 10 has been
collected during this investigation. All the computations
were executed in parallel on the NWT computer system.
In this Section some selected results are presented with
the particular aim of describing the asymptotic
behaviour of square cavity flows at the high Reynolds
numbers. Furthermore we show comparisons between
results of square cavity flows at a fixed Reynolds
number in the cases that we vary the selected number,
pe of the processing elements, the solution method and
the grid size, respectively.

5.1 Effect of the Reynolds number on the behaviour
of square cavity flows
First of all, we indicate the process of stabilization
of the eddy system in the square cavity (see Figure 1).

view of overheads, only the Jacobi method incurres Square cavity flows at the representative Reynolds
overheads due to hold and update the current valuesnumbers are shown in Figures 2-10, where we note
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8 TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1363T

that (1) and (2) of Figure 6 agree almost completely 5+10%, but becomes unsteadyRe:> 5<10*. The third
with Figure 3 and Figure 4 in [7], respectively. The secondary eddy located at the upper part of the left wall
computational conditions used to obtain these Figures begins to appear &e> 1¢, and grows monotonously
are given in Table 1, and the values of minimum, with Re It is steady at all the Reynolds numbers.
maximum and each contour f@ry andp given in Table
2. (3) Tertiary and fourth-order vortices

The flows on the low Reynolds humber rang&ef The tertiary eddies located at the corners of the
= 10% ~ 1 are characterized by three eddies: one, the bottom wall appear slightly &e= 10°¢, and grows
primary eddy and two other, secondary eddies located atwith Re The right tertiary eddy is steady uri@ié<
the corners of the bottom wall (see Figures 2-4)RAs 2+10% but atRe> 2+10* becomes unsteady. The left
increases beyond 3@he secondary eddy located at the tertiary eddy is steady unfte< 5«10 but becomes
upper part of the left wall appears within the cavity (see unsteady aRe> 5<10*. On the other hand, the right
Figure 5). AsReincreases furthermore, the tertiary and fourth-order eddy at the corner of the bottom wall
fourth-order eddies located at the corners of the bottom becomes to appear Be= 2+ 1, and the left fourth-
wall become to appear (see Figures 6-7) Res order eddy aRe= 3«10 These repeat to slightly grow
2x10%, however, the secondary or/and tertiaddies and decay, as the secondary and tertiary eddies at both
located at the left or/and right corners of the bottom the corners of the bottom wall become to be unsteady.
wall become unsteady (see Figures 8-10). Figure 11

shows effect oReon the profiles ofy, u, { andp 5.2 Comparison between results obtained by

through the center of the primary vortexRat= 109, varying pein the parallel processing

1@, 1@, 10t and 210 corresponding to Figures 2-4 and Comparison betwegme=2(i =0, 1,..., 4) for each

6-7, respectively. solution method was done for square cavity flows at
Re=1C, where computational conditions are as shown

(1) Primary vortex in Table 3. Complete agreement was obtained for the

Figure 12 shows the location of the center of the Jacobi, red-black and ADI methods. For the CG method,
primary vortex as a function of the Reynolds number. complete agreement was obtained amdagu’s and
Until the Reynolds number comes up to 120, the center s, but slightly disagreement was indicated amgag
of the primary vortex moves upstream. As the Reynolds as shown in Figure 13, of which reason is due to be
number increases further, it moves monotonously necessary for this method to compute a global summation
towards the center of the cavity. In the inviscid limit in the parallel processing each iterationsaen from
the total pressure is conserved along the streamlines, in(38).
which case the total-pressure contours should coincide
with the streamlines. Hence the close similarity between 5.3 Comparison between results obtained by
(1) and (3) of Figures 5-10 in the core region is evident. varying the solution method
On the other hand, the vorticity changes rapidly at the ~ Comparison between results obtained for the four
boundaries and is flat in the middle of the cavity at the solution methods in caseRé= 1¢ andpe=16 showed

high Reynolds numbers. that complete agreement with profiles Re= 1¢ of
(1)-(4) of Figure 11 was obtained amanig, v’s and
(2) Secondary vortices {’s, but that a little disagreement was indicated among
The secondary eddy located at the right corner of p's as shown in Figure 14, where computational condi-
the bottom wall grows witRe attains maximum &e tions are as shown in Table 3.

= 1, and aRe> 1 begins to thin out monotonously.

It is steady at Re& 2+10%, but becomes unsteady at 5.4 Comparison between results obtained by

Re > 210" On the other hand, the secondary eddy varying the grid size

located at the left corner of the bottom wall grows with Comparison between results obtained far 2k

Re attains maximum ®Re= 710, and aRe> 7+ 1(° (i=-2,0,1,.., 4; k=1024) grids aRe= 1 by the
begins to thin out in monotone. It is steadyRat< red-black method is shown in Figure 15, where
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computational conditions are given in Table 4, includ- these statements is executed in parallel by multiple
ing the values of the execution time until convergence processing elements.
and the center of the primary vortex obtained when (2) SPREAD DO (CD3); This statement specifies
we executed in parallel under the selected number of partitioning of repetitions of the DO statement, and
the processing elements mentioned in this Table. execution of each segment on the specified processing
Sufficient agreement was shown amarsg v’s and element.
{’s, but considerable disagreement was indicated among (3) SPREAD MOVE (CD4); This statement
p’'s. Figure 16 shows contours of the total-pressure specifies assignment between local variables and global
solution for each grid size, of which values are same variables on each processing element.
as given for Fig. 4 in Table 2. We cannot make its (4) END SPREAD (CD5); This statement verifies
reason clear at present, but there is a possibility of hiding the exit of the SPREAD DO/MOVE statement.
an elementary problem. By the way, we note the  (5) END SPREAD SUM (abc) (CD6); By this
followings: statement the global summation operation among the
(1) For &*8k and 116k grids, data of 128128 subregions generated by the spread-do-construct is
grid points of the intermediate computational results performed at termination of the spread-do-construct.
for { andy were stored at regular intervals into the (6) OVERLAPFIX (CD7); This statement specifies
secondary memory device, and retrieved to restore full replacement of the overlap range of partitioned local
data by means of interpolation before start of the arrays with overlap, with the values of the range cor-
successive iteration. This process had been continuedresponding on another processing elements.
until convergence. (7) MOVEWAIT (CD8); This statement verifies
(2) Computations for a X816k grid were con- completion of assignment and data transfer that are
ducted for another purpose of obtaining data concernedstarted by the OVERLAPFIX and SPREAD MOVE
with the mean time between failure (MTBF) of the statements, respectively.
NWT computer system. Figure 17 shows measurements of each overhead
for the above-mentioned compiler directives against
the selected number of the processing elemeats 2
(i=1, 2,..., 7). For (5) of this Figure we note the
In this Section we indicate results for the actual following: There is an optimum number of the process-
performance of the parallelised square cavity programs ing elements corresponding to the amount ofdihiz
on the NWT computer system. Most of the overheads transfer. The smallgseis than the optimum number,
incurred in the parallel processing arise from the time the more the data-transfer overhead increases due to
spent in system software routines supporting user bottleneck of the amount of the data transfer. The
programs. Hence the obtained results in this Section largerpeis than the optimum number, the more the
apply only to the system software had been available data-transfer over-head increases due to bottleneck of
at the NAL during the period April to June 1993 which the packet creation.
we call v1, and during the period April to May 1994 Furthermore we had used the following NWT-
which we call v2. The v2 is an improved version of the Fortran-compiler directives for MIMD computings
v1. By the way all the programs were run with other without any overhead:
users on the NWT computer system. (8) PROCESSOR (CD9); This statement is used to
declare the number of the processing elements required
6.1 Measurements of overheads of the used NWT-  to execute a program in parallel.
Fortran-compiler directives (9) INDEX PARTITION (CD10); This statement
We had used the following NWT-Fortran-compiler is used to indicate the index range of the association of
directives for MIMD computings of the square cavity DO loops and arrays with processing elements and the
programs: partition type, and to specify the overlap if necessary.
(1) PARALLEL REGION(CD1)/END PARALLEL (10) GLOBAL (CD11)/LOCAL (CD12); These
REGION (CD2); Only the programortion between statements specify the allocation of variables to the

6. PROGRAM PERFORMANCE ON
THE NWT COMPUTER SYSTEM
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global and local memory spaces, respectively.
(11) EQUIVALENCE (CD13); This statement

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1363T

= 1 (pair of CD3 and CD5) and 1 (pair of CD7 and
CD8),N;,=Ng,= 2 (pair of CD3 and CD5) and 1 (pair

specifies the sharing of the storage by two or more of CD7 and CD8)N,,= Ng,= 1 (pair of CD3 and
variables in a program. When a global variable and a CD6), andN, = 1 (pair of CD3 and CD6) and 1 (pair
local variable are combined, a global and local memory of CD3 and CD5). On the other hand, the numbers of

spaces are shared.

6.2 Some remarks on the parallelised square
cavity programs
The flow of the square cavity programs is as follows:

(A) Declare the CD9-CD13 statements, etc.,
(B) insert the CD1 statement,
(C) setthe initial values of (16), (21), (44), etc.,

(D) fork=1, 2, 3,....(iterations fof and ),

(D.1) hold the current values Gf; andy

(D.2) update the boundary values §f by
(17) and (18)

(D.3) compute the internal values §f* and
Yl by (14), (15) and (45),

(D.4) test for convergence of the iterates by

(46), and ifconverge, continue,

compute the internal valueswf andu;;

by (19),

(E)

(47)
(F) compute the values of the right hand side
of (20),
(G) fork=1, 2, 3,.... (iterations fq),

(G.1) hold the current values pf,

(G.2) update the boundary valuespbfby (22)-
(25),

(G.3) compute the internal valuesplf?fl by (20)
and (45),

(G.4) test or convergence of the iterates by (46),

and if converge, continue,

compute the particular solution pfby

(12),

insert the CD2 statement,

store the computational results,

(H)

()
(J)

Nps N andNg, are different every solution method
used as follows: Let HU used below mean to hold or
update the current values @}fj or l,Uik,- .

(1) Jacobi method

The scheme of this method is given by (32). Hence
for J1,N, ;= 10 of which 5 are used for HU (pair of
CD3 and CD5) and 4 (pair of CD7 and CD®)~= 1
(pair of CD3 and CD5), aNg,; = 2 (pair of CD3 and
CD5). For J2Np 3= Ng ;= 2 (pair of CD3 and CD5),
andN = 1 (pair of CD3 and CD5).

(2) Red-black ordering

The scheme of this method is given by (36)-(37).
HenceN, ;= Ng,= 8 (pair of CD3 and CD5) and 1
(pair of CD7 and CD8), and. = 1 (pair of CD3 and
CD5).

(3) CG method

The scheme of this method is given by (38). Hence
Np ;= 10 of which 2 are used for HU (pair of CD3 and
CD5), 2 (pair of CD7 and CD8) and 4 (pair of CD3
and CD6)N-=1 (pair of CD3 and CD5), arid, ;=5
of which 1 is used for HU (pair of CD3 and CD5), 1
(pair of CD7 and CD8) and 2 (pair of CD3 and CD6).

(4) ADI method

The scheme of this method is given by (42)-(43).
HenceN, ;= 26 of which 4 are used for HU (pair of
CD3 and CD5b), 4 (set of CD4, CD5 and CD8) and 4
(pair of CD7 and CD8)\ = 1 (pair of CD3 and CD5)
and 1 (set of CD4, CD5 and CD8), aNg,= 15 of
which 2 are used for HU (pair of CD3 and CD5), 2
(set of CD4, CD5 and CD8) and 2 (pair of CD7 and

where only the program portions for (D.3), (F) and (G.3) CDS8).

differ with each other every solution method.

Let N. be the number used the pairs of CD3 and Finally we note the followings with respect to the
CD5 in the program portion (C), and so on provided partition of two-dimensional arrays adopted in this
that the numbers for (D) and (G) are the values per eachstudy: All the computations of (12), (14)-(25), (32),
iteration. These numbers for the portions common to (36)-(38) and (42)-(46) can be executed in parallel. For
all the parallelised square cavity programs are as the Jacobi, red-black or CG method, we had adopted
follows: N =N¢ =1 (pair of CD3 and CD5N,; = Ng; the band partition of the index range in the y-direction.
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Hence in FORTRAN we can take advantage of con- we define the following:

tinuous loading and continuous storage on each
register-to-register processing element except when
(18) and (24)-(25) are executed, which time becomes
to periodic loading and periodic storage. On the other
hand, as is obvious from (42) and (43), for the ADI
method, we must adopt the band partition of the index
range in the y-direction for computation of (42) and
of the index range in thedirection for computation

of (43), where the case of the former is continuous
loading and continuous storage and the case of the
latter becomes both periodic. If we would adopt the
band partition of the index range in only yhdirection

for computations of (42) and (43), the executing time

d., = 7,/7, = degree of degradation of the actual
rate of the part (D) excepted (D.4) in (47)
mainly due to the local memory access bottle-
neck.

By the way the loop coalescing is the technique that
restructures certain types of multiply nested loops into
single parallel loops. When we adopt this technique
to the square cavity programs, each code segment must
be executed conditionally in the transformed loop to
assure correct execution of the original code segment
corresponding. Hence we can almost double the

should increase about three hundred times. Furthermoreamount of arithmetic operations every parallel loop by
we must suppress the occurrence of the memory-bankthe loop coalescing, but a new source of degradation

conflict in case of periodic loading and periodic storage.
When the bank conflict would occur, the performance
of the execution should deteriorate about half.

6.3 Definition of several actual rates for the square
cavity programs
We use below the following actual rates defined for
the square cavity programs:

actual rate of the part (D.3) in (47)

actual rate of the kernel part for iterations of
Jandy,

actual rate of the part (D) in (47)

actual rate of the overall part for iterations of
Jandy,

actual rate of the part (D) excepted (D.4) in
(47)

actual rate of the overall part for iterations of
{ andy, when the convergence test is ex-
cepted,

actual rate of the part (D) excepted (D.1), a
pair of CD7 and CD8 in (D.2), and pairs of
CD3 and CD5 used for HU and pairs of CD7
and CD8 in (D.3) as well as (D.4) in (47),
actual rate of the part (D) excepted (D.4) in
(47) in case of using the loop coalescing
technique,

whereT, indicates the actual rate when execution of
the local memory access statements with no arithmetic
operation, etc. is intentionally suppressed, and hence

of the actual rate is introduced.

6.4 The characteristic parameters of the square
cavity programs on the NWT computer system

In practise we find for many parallelised programs
that aspe becomes larger, synchronisation and other
overheads usually increase rapidly wiigy with the
result that there is often a maximum in the program
performance and with a subsequent reduction in
performance ape further increases. This measured
behaviour can be fitted to the function [13]

_ Pe..0 1 gpedr|™
T (pe)=1_ |1+ pe% 1+n_%p~eBE , (48)
where
1 t
=1 P&, = tz:: : (49)
and
T = actual performance of the parallelised
program,
T, = asymptotic performance of the parallelised
program
= maximum possible performance of the
parallelised program when overheads are
negligible
= Amdahl ceiling,
pe,, = number of the processing elements required

to achieve half of the asymptotic perform-
ance,
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pe = value ofpewhen the maximum perform-
ance given below occurrs
= value ofpe more than which the parallelised
program cannot usefully utilise,
n = index of synchronisation and other over-

heads

rapidity with which overheads incregse
time of execution for the essentially serial
part of the parallelised code,

time when executed sequentially for the
part of the parallelised code that can be
executed in parallel.

ser

par

The maximum performance, _, occurs wheipe
= pg and has the value
i

The overhead of synchronisation and others is
represented by the factor in braces { } of (48). Hence
it is desirable fon to be as small as possible, a larger
value ofpe means a smalle roverhead, andpes—

0o, T The values of the characteristic
parameters mentioned above are likely to vary con-
siderably between different computer software
systems.

Figures 18-21 show measurements of the actual
performancer, of the parallelised square cavity
program used each solution method against the
selected number of the processing elemguts, 2 (i
=0, 1,..., 7). As shown in these Figures, the actual
performancer, of each parallelised program is fitted
very well by equation (48) in the range okpe<
128, with the estimated values of the characteristic
parameters given in Table 5, and the degree of
improvement on the actual ratgof v2 to vl is at its
maximum each solution method as follows: For the
Jacobi method (J1), it is 2.85-fold®28 grid) and
2.50-fold (2% 2 grid). For the red-black method, it
is 2.84-fold (2«28 grid), 2.24-fold (2*+2'° grid), 1.65-
fold (2'*2' grid), 1.21-fold (2% 22 grid), 1.06-fold
(2'% 22 grid) and 1.07-fold (2+2grid). For the CG
method, it is 3.73-fold @22 grid) and 1.58-fold
(2% 210 grid). For the ADI method, it is 1.28-fold
(255255 grid).

n
n-1

Pe,,

% (50)

T =T {1+
max o

- T,
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6.5 Effect of the grid size on the actual performance
of the square cavity programs on the 128-
processing element system
Figure 22 shows effect of the grid sizes of2(i
=8, 9,..., 14) provided that the maximum grid size for
only the CG method is 12,0002,000, on the actual
rate 7, of the parallelised square cavity program used
each solution method for v2 whpa= 128. As shown
in this Figure, the actual ratg of each parallelised
program is fitted very well by the equation
-1
T,=T, {1 +B%§ } ,
O~ 0
with the following estimated values of the characteristic
parameters:

(51)

Jacobi(J1) for v2 :
T, = 1.0373761C° (Mflop/seg,

S, = 2.1165241C (flop), (52)
Jacobi(J2) for v2 :

T, = 1.34646910° (Mflop/seg,

S, = 2.28633810C (flop), (53)
red-blackfor v2 :

T, = 6.83557910 (Mflop/se9,

si2= 257406410 (flop), (54)
CG forv2:

T, = 1.0990381C (Mflop/se9,

S,, = 3.2236181C (flop), (55)

where

s = N+1 where the grid size is*ss,

T, = maximum performance of the parallelised
program,

s,, = square root of the half-performance grain

size of the parallelised program.

We note here the followings compared results of
[11] with results of this Subsection: The former has
considered the timing of the single work segment
which can be distributed amongst multiple processing
elements, and the latter the timing of the complete
program comprising many work segments. Both these
actual performances, however, can be fitted very well
by the pipeline function of the same form as (51),

because the programs of the latter except for the ADI
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method have been parallelised so as to become almosBYy the way there is no appropriate equation fitted to
all the local memory access. Furthermore, for example, measurements af__for the ADI method.

1 for the Jacobi method (J2) of (53) is 2.74 times We here remark the followings for the obtained
(dyads) and 1.93 times (triads) as large as the valuesresults:

for pe=128 in Table 2 of [11], angf,,is 3.21 times (1) The reason that actual rates of the red-black
(dyads) and 2.59 times (triads). This means that for method are inferior to ones of the other methods is
the complete program increases frequency of the chain-because the amount of works in each parallel section
ing of two vector instructions and the simultaneous use becomes half the others, as seen from (36) and (37).
of both the floating-point multiply and add pipelines with (2) As seen from (1) and (2) of Table 6, the degree
all vectors, so that the maximum program performance of degradation of, mainly due to the local memory
raises considerably and hence the half-performance grainaccess bottleneck is 1.10- to 1.42-fold. The reason that

size increases as well.

6.6 Measurements of the maximum actual per-
formance of the square cavity programs on the
NWT computer system

Lett

3mm

the values ofl _ for the Jacobi method (J1) are larger
than ones for the other methods is because dimensional
computer variables are stored to and retrieved from the
local memory each minor iteration fpr

(3) For example for the Jacobi method (J2)

TBmm

be the measured maximum of the actual of (58) is 2.75 times (dyads) and 1.94 times (triads)

ratet,. Table 6 and Figure 23 show measurements of as large as the values of (14) and (15) of [11], respec-
T, Of the parallelised square cavity program used tively. These values are same as ones mentioned in
each solution method against the selected number of Subsection 6.5.

the processing elemenge=2 (i =0, 1,..., 7), where

(4) To apply the ADI method to the square cavity

the grid sizes used to obtain these results are given inprogram is not advisable, because of incurring a large

Table 7. As shown in Figure 28, of the parallelised
programs except for the ADI method are fitted very
well by the following equations:

Jacobi(J1) for v1 :

T,..= 7.984252107 pe (Mflop/sey, (56)
Jacobi(J1) for v2 :

T, .= 8.3361851( pe (Mflop/seg, (57)
Jacobi(J2) for v2 :

T,.,= 1.05890810° pe (Mflop/sey, (58)
red-blackfor v1 :

T,.,= 5.41943810 pe (Mflop/sey, (59)
red-blackfor v2 :

T,..= 5.36209%1(" pe (Mflop/sey, (60)
CGforvl :

T, .= 7.81489%1( pe (Mflop/seg, (61)
CGforv2:

T,.,= 8.13535610" pe (Mflop/seg. (62)

amount of communication overheads due to the global
memory access. For three-dimensional cavity
programs, however, the scheme of the ADI method as
well as the other methods can be parallelised so as to
become almost all the local memory access, and hence
the ADI method becomes useful as well [12]. Further-
more the clear improvement thgt for v2 are about
1.17 times as large as ones for v1 is based on the fact
that communication overheads for v2 have decreased
about 5.0- to 5.7-fold for v1 [11].

6.7 Speedup and efficiency of the parallelised
programs on the NWT computer system
The speeduf,., of a parallelised program and the
efficiency or effect of the number of the processing
elementsk,, of a parallelised program with respect
to itself are defined as follows [18]:

_ T _ S
SJE_T7;1EDG_W1 (63)
where
T, = execution time of a program using a single
processing element by SIMD computing,
Tpe = execution time of a parallelised program

usingpe processing elements.
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The square cavity program of such a large-scale that ¢ _ DDS. _ CPU (66)
the grid size is greater than 1,500600, however, e DRWe CPUee
cannot be executed by SIMD computing on the NWT We now consider the case that the grid size is con-
computer system. Hence we must devise the methodsiderably large. Then, from the reason mentioned above,
to estimate the value df, for such the large-scale  we have the following relations:
programs.

We can use two time subroutines measured in  CPU, = ELP; = Ty, CPUpe = ELPye = Tpe,  (67)
microseconds on the NWT computer system: One, the
GETTOD which measures the wall clock time and the from which and (66) we can obtain the definition of
other, the CLOCKYV which measures the operating S. of (63). As seen from Table 7, the grid sizes used
time of the central processing unit and the operating to obtain Table 6 satisfy the condition necessary to
time of the pipeline unit or vector processing unit for derive (67). Therefore we can estimate the valug of
each processing element. The elapsed tthE,., and from the following relation:
the operating time of the central processing unit,
CPU,, and the operating time of the vector processing T. = CPU, =
unit, VPU,, between two points in a program using

VPU, _  VPUs
VTG DRWeVTG

pe processing elements can be measured by using a :%e(*:pe , (68)
pair of the GETTOD and CLOCKV, respectively, and g

generallyELPye = CPU,e = VPU,,, Where these values  from which and (66)-(67) we can obtain

mean the time for SIMD computing only whpa= VPU, pe

1 and the time for MIMD computing where> 1. For Se = ELP, * VTG - (69)

MIMD computing on the NWT computer system, the

compiler directives of CD3-CD8 are treated so as to Various experiments have shown that the larger the
wait for completion of these processes by means of values ofVTG. for the parallelised program are, i.e.,
the spin-loop on purpose to be decreased delays duethe larger the grid size is, the better the valu&of

to insert these directives, and hence overheads due tacomputed from (69) becomes to coincide with one

these directives are addedGRU,e. computed from (63).

Let | be the number of iterationg,TG. the ratio Table 8, as one instance, shows comparison be-
of VPUse to CPUse, DRWe the division ratio of works  tween the values &. computed from (63) and (69).
into each processing elemefiVK;. the total work, As seen from this Table, two values S coincide

TOH;e the total overhead)VKl.e the work per one  comparatively well despite for such a rather smaller
iteration, OH1,e the overhead per one iteration, and grid size as 1,024,024. Hence we can expect that the
DDS. the degree of degradation of the speedup. Then larger the grid size is, the more the accurac$.ef
we have the following relations: estimated from (69) will be raised. Table 9 shows the
speedup and efficiency computed from (69) and (63)
for the case of, and v2 of Table 6 provided that
VTG = 1.0 which results in the most underestimation,
TWKye = \\’/F;Lép , TOHe = CPUe~ TWK,, (64)  respectively.

1

VP Ue
CPU '

— VPUee
VPU, ’

VTGe = DRWe

7. BRIEF DISCUSSIONS ON THE SOLUTION

WKl = TWKe 51y, = TOH OF THE SQUARE CAVITY PROBLEM, THE
! ! SOLUTION METHOD AND THE CONVER-
DDS.= WKl (65) GENCE TIME

WK1pe + OHLpe ' : . .
P P Firstly we remark the followings for the numerical

from which we can obtain solution of the square cavity problem:
(1) We think that the non-staggered grid adopted in
this study is superior to the staggered grid when we
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use the consistent finite-difference approximations for Jacobi (J1), Jacobi (J2), CG and ADI for SIMD
the square cavity problem, and that numerical solutions computings provided thab (i = ¢, ) are optimum,
obtained by treating the steady-state equations areand at 600 Re< 5*1(® longer in order of Jacobi
superior to ones obtained by marching the unsteady (J1), Jacobi (J2), red-black, CG and ADI. This time
equations in time. becomes much longer &eincreases. ARe= 10,

(2) The solution off andy is scarcely influenced  we find difficulty in being converged to a solution if
by varying the number of the processing elements in we did not use the Jacobi-red-black or CG-red-black
the parallel processing, the solution method and the combination as a solution method. For example, this
grid size. time by the red-black method becomes more than

(3) The solution op, however, is slightly influenced  double as large as one by the CG-red-black combina-
by varying the number of the processing elements in tion.
the parallel processing only when the CG method is  (2) At Re< 100, the time required untﬂ}fj
adopted, a little influenced by varying the solution converge becomes longer in order of red-black, CG,
method, and considerably influenced by varying the ADI and Jacobi for SIMD computing, at 180Re<
grid size, as shown in Figure 16. We can’'t make its 600 longer in order of red-black, Jacobi, ADI and CG,
reason clear yet. This indicates difficulty in treating and atRe> 600 longer in order of Jacobi, red-black,
the pressure Poisson equation with Neumann boundaryADI and CG. This time becomes shorter Rs

conditions that is yet in question. increases, and &e> 1 nearly constant for a fixed
grid size.
Secondly we remark the followings for the solution
method: Finally we mention that the solution method

(1) The solution of¢ and ¢ on the Reynolds presented a larger actual rate is not always advantage-
number range dRe= 0 ~ 51 can be easily obtained ous to be converged to a numerical solutiod,ap
whichever solution method is adopted.Rd¢= 510 andp, as seen from discussions mentioned above.
~ 10, however, it gradually becomes difficult to obtain
this solution, and d@e> 10, at last, it seems hardly
possible to obtain this solution by any single iterative In this paper we reported parallel computations of
soluton method. Hence it is necessary to alter the solu-incompressible viscous flow in a lid-driven square
tion method adopted for computations until development cavity on the NWT computer system, described the
of the boundary layer and after development of the asymptotic behaviour of this flow at the high Reynolds
boundary layer. The Jacobi and CG methods are very numbers, examined effects BE pe the solution
promising for computation of the former, and for com- method and the grid size on numerical solutiong of
putation of the latter, only the red-black method is ¢ andp by MIMD computings, and measured the
hopeful. actual performance of the parallelised square cavity

(2) The Jacobi preconditioning, preconditioned CG program adopted each solution method on the NWT
and incomplete Choleski CG methods are useful to computer system.
obtain the solution of and ¢ at small Reynolds In Section 5 we firstly indicated the process of
numbers, but become uselesdrass larger. stabilization of the eddy system and the location of the

(3) The solution op at Re= 10 can be easily  center of the primary vortex in the square cavity on
obtained whichever solution method is adoptedRét the Reynolds number rangeRé&= 0 ~ 16, secondly
< 1, however, we had better avoid adoption of the comparison between results obtained by varpmim
Jacobi method to obtain this solution. the parallel processing, thirdly comparison between

results obtained by varying the solution method, and

Thirdly we remark the followings for the con- finally comparison between results obtained by
vergence time: varying the grid size. Its results showed that the degree

(1) At Re< 600, the time required untdl }‘J and of difference of¢, ¢ andp by variation ofpe is
(,Ui‘fj converge becomes longer in order of red-black, negligible, but that the degree of difference,af and

8. CONCLUSIONS
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p by variation of the solution method is significant.  [2] R.K. Agarwal and M. Douglas, A three-order-

Also its results showed that the degree of difference accurate upwind scheme for Navier-Stokes
of { andy by variation of the grid size is negligible, solutions at high Reynolds numbers, AIAA-81-
but that the degree of differencep# by variation of 0112 (1981).

the grid size is very significant when the grid size is [3] A.S. Benjamin and V.E. Denny, On the con-
huge. Since this phenomenon does not happen in the vergence of humerical solutions for 2-D flows in
ordinary grid size, the new problem in treating the a cavity at large Relournal of Computational
pressure Poisson equation with the Neumann boundary Physics 331979) 340-358.
condition is possible to happen. We cannot make its [4] J.D. Bozeman and C. Dalton, Numerical study
reason clear yet. This is our answer for the problem of viscous flow in a cavity,Journal of Com-
(1) mentioned in Introduction. putational Physics 121973) 348-363.

In Section 6 we firstly mentioned some remarks on  [5] O.R. Burggraf, Analytical and numerical studies
the parallelised square cavity programs, and measured of the structure of steady separated fldayrnal

overheads of the NWT-Fortran-compiler directives of Fluid Mech. 24, part 11966) 113-151.
used in these parallelised programs. This is our answer [6] L.F .Donovan, A numerical solution of unsteady
for the problem (3) mentioned in Introduction. Secondly flow in a two-dimensional square cavi&lAA

we estimated the characteristic parameters pg, . Journal 8, 3(1970) 524-529.
pe n), of each parallelised program on the NWT  [7] U. Ghia, K.N. Ghia and C.T. Shin, High-Resolutions

computer system in case that the actual rate is con- for incompressible flow using the Navier-Stokes
sidered as a function p&for a fixed grid size. Thirdly equations and a multigrid methathurnal of
we estimated the characteristic parameters s(,), Computational Physics 48982) 387-411.

of each parallelised program on the NWT computer [8] D. Greenspan, Numerical studies of prototype
system in case that the actual rate is considered as a  cavity flow problemsComputer Journal 12

function of the grid size for a fixeple This is our (1969) 88-93.

answer for the problem (4) mentioned in Introduction. [9] S. Hatayama, The characteristic parameters of the

Finally we measured the maximum actual performance NWT computer system in the local memory access,

of the parallelised square cavity program every solution NAL TR(submitted for publication).

method againgte on the NWT computer system, and [10] S.Hatayama, The characteristic parameters of the

estimated the speedup and efficiency of these programs. NWT computer system in the global memory

This is our answer for the problem (2) mentioned in accessNAL TR(submitted for publication).

Introduction. [11] S. Hatayama, On an improvement on the NWT
We mention at the end that the system software of system software NAL TR(to be submitted for

the NWT computer system had been available at the publication).

NAL during the period April to May 1994 (v2) has [12] S. Hatayama, Elementary benchmarks of the

been drastically improved in comparison with the NWT computer system and program perform-

system software had been available during the period ance, Proc. of the 12th NAL Symp. on Aircraft

April to June 1993 (v1), as shown in Section 6. The Computational Aerodynamics, NAL SP-27

degree of improvement on the actual ratef v2 to (1994).

vl is at its maximum for a 25856 grid, 2.85-fold [13] R.W. Hockney and C.R. JesshopPBarallel

(Jacobi (J1)), 2.84-fold (red-black), 3.73-fold (CG), Computers ZAdam Hilger, Bristol, 1988).

and for a 255255 grid, 1.28-fold (ADI). [14] M. Kawaguti, Numerical solution of the Navier-

Stokes equations for the flow in a two-dimensional
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Table 1 Computational conditions used to obtain Figures 2-10
relazation paremelers
Fig. Ie grid solution meihod e | wy [
2 [1+107% [ 256256 | C,9,p:red - black 1.4 1.4 1.5
3 [1e+10° 256 + 256 | (,4,p: red — black 1.4 1.4 1.5
2 | 1+10° 256 + 256 | (, ¥, p: Jacobi(J1) 0.1 0.1 L0
5 | 2+10° 256+ 256 | (, ¥, p : Jacobi(J1) 0.1 0.1 1.0
OG = rh CG0.0093 | CG 0.8
6 |1e10 ¥ \
* 1024 « 1024 » .co b :0.45 b - 0.45 0.8
4 (v :CG-rb CG :0.0006 | CG : 0.8
T 210 1024 + 1024 p o6 b :0.35 b : 0.35 0.8
:CG - rb CG :0.0002 |CG: 0.3
8 3«10 1024 « 10 (¥ 0.
: i, .cc b :025 |rb:025|0%8
:0G —rb CG:0.0002 | CG: 0.8
9 5« 10% 1024 ¥
* $1024 | 0 Lee b 1010 |rb:010]°%8
06 —rb CG:0.0002 | OG: 0.8
10 | 6«10 | 1024 GV .
. Q2 o6 b :0.09 |rb:0.09|°8
note: CG-rb indicates that we used the CG method until development of the
boundary layer and that we used the red-black method for computation
after development of the boundary layer.
Table 2 Values of minimum, maximum and each contoulfay andp in Figures 2-10
stream — funchion vorticily { total pressure p
) ] confours
Fug. T mazimum | miniriure | mezimum | mimimum | marimum vitial | terminal | trcrement
2 —100+107" [ 200%10°F | 369107 | 141 =10° | —5.02=10% | 5.12«10° | 5.1 =108 | 5.1=10° 8.0 10%
3 ~1.02«10-T [ 130w 1077 | =375« 107 1.47 + 107 =4.700 6,292 —4.70 6,30 0.015
4 1181070 } 172107 | —415 107 | 2.23 « 107 —0.361 1.814 ~{,20 0.40 0.02
5 =110 10-7 | 2451077 | —4.42 = 107 2.90 « 10° =0,172 1.567 =16 0.40 0.0z
[ —1.22« 1077 [ 317« 107 | —180 = 107 1.26 = 107 —0.142 1.655 -0.12 0.40 0.02
T —1.21«1070 [ 30« 107 | —1.80 . 107 1.65 « 10% =(.088 1.540 =008 0.AD 0.02
[ =120« 1077 | 530« 10°F | —1.83 « 107 1.91 =« 10¢ —0.087 1.564 ~0.08 040 0.02
] —1.18 10T 4,90 « 1077 =1.97 « 1007 2.42 « 107 =0.086 1.610 =006 04D 0.02
10 1T 00°T [ 825.107F | =108« 107 | 2.64 =107 =0.08% 1.654 —-0.08 040 0.0z

notel:  The value of each contour for o in Figures 2-10 is as {ollows:

initial = =60.0, terrminal = 60.0, increment = 1.0,

note2:  The value of each contour for § in Figures 2-10 is as follows:
[ eddy [ cornrneant erenfial J terminal 1 iner ement
FRAITE —1.5=10"] 0.0 1.0+ 107
promary additional | =1.5= 107 0.0 1.0 10°%
left 0.0 Lo=10-T | 10.10-%

o -

ONCSTY [ vight |00 52+10°7 | 40+10-V
tesliay main —1.5=10-T 0.0 30«10
) ¥ sddetional | —8.0= 101 0.0 | 40107

Table 3 Computational conditions used to compare an effect on the number of
the processing elements and the solution methods

relazalion paramelers, elc.

solulion method | Re grid we o W} @ Wy
Jacobi{J1) 10° | 256 « 256 | 0.9; - 0.9; — 1.0; -
red — black 10* | 266256 | 1.0; = | 1.0; = | 1.5, —
CG 10° | 256« 256 | 0.8; — 0.8; — 0.8, =
ADI 10° | 2564256 | 1.4;5.0 | 1.6;5.0 | 1.4;2.0
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Table 4 Computational conditions used to compare an effect on the grid size
for the red-black method &e= 1, and computational results

computaiional condittons computational results 7]
relozation parameters ereculion time{sec) | cenfer of primary vorlez
grid we | wy | wp pe { and ¢ | r T | v
256 + 256 | 1.00 1.00 1.5 8 223 22.8 0.5284 0.5647
1k+1k 1.60 1.50 1.5 8 2,458 278.3 0.5308 0.5650
2k = 2k 1.75 1.75 1.6 16 8,681 694.7 0.5305 0.5647
1k « 4k 1.86 1.86 1.6 64 17,105 1,015.7 0.5304 0.5643
8k = 8k 1.50 1.90 1.8 64 | 166,595 | 4,234.8 0.5285 0.5648
16k + 16k | 1.93 1.93 1.8 | 128 | 773,548 | 8,608.0 0.5291 0.5645
note: 1k = 1024,
Table 5 Characteristic parameters of square cavity programs on the NWT
computer system
(1) Jacobi methad(J1)
grid size ]
256 « 256 1024 = 1024
parameler vl | vl vl | vl
7w || 1.034730 107 | 4.116968 « 10° || 1.288553 + 107 | 4.071686 # 10°
P12 1.256238 * 107 | 5.773551 » 10° || 1.687145 « 107 | 5.094211 « 10
pe 2.751874 + 107 | 2.341240 107 || 8.657361 « 10T | 1.112798 * 10°
n 2.541345 107 | 2.040465 » 10° || 2.790058 « 107 | 2.545650 * 10"
(2) red-black method
grid size
356 % 256 1024 * 1024 2048 * 2048
parametler vl | v vl | v2 vl | vl
Too 6.520393 % 10% | 2.372509 « 10° || 1.071891 « 107 [ 3.490736 + 10* || 3.596278 « 10% | 1.107416 « w"‘
pey s 1423487  10° | 5.878899 # 100 || 2.175465 « 107 | 6.855245+ 10" || 6.982452 « “:':1 2.174536  10°
pe 2.351380 + 107 | 2.819143 + 107 || 1.076090 « 10° | 1.072263 + 107 [| 1.723708 « 107 | 2.150169 + 10°
n 1.950822 + 10° | 2.041643 + 10° || 1671894 « 107 | 2.194413 # 107 || 2.340966 + 10" | 2.032085  10°

[:3] CG method

grid size

256 « 256

1024 1024

paramefer ]l vl

| vl

vl | v2

5841961 « 10*

Too

2.531970 « 107

1.113820 # 107 | 2.652857 # 107

Pe1 2 1.335510 * 107

5.133247 « 10"

5.820522 = 107

2.956315 = 10"

pe 2.704300 + 107

1.879162 % 10" || 1.165913 + 107

T.816255 * 10!

n 2.79599% + 107

2.311582 » 10"

2682125 « 107

3.7888972 » 107

(4) ADI method

parameier

grid size = 255 » 256

wl

vl

Too

1.035465 % 107

1.059556 « 107

Pey e

4.705021 + 10-T

4370313« 1077

re

6.416783 « 10°

9.729777 » 107 |

n

1.824020 « 107

2.061557 % 10° |
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Table 6 Measurements of maximum actual performance of the square cavity
programs on the NWT computer system (note: The valueseferl
are ones for SIMD computing)

(1) Jacobi method (J1)
pe [ v1/2 [ Ti(Mflop[s) | Ta(Mflop/s) | Ts(Mflop/s) [s(MFlop/s) | Ts(Mflop/s) | dme
=

w1 896.34 780.48 830.94 -—— -
b 393,57 809.20 904.00 T439.81 5113 || 1.693
vl 1771.97 1572.66 1592.52 - N -
2 vl 1813.18 1614.22 1818.99 2242.01 a01.95 || 1.233
4 vl 3232.06 2871.19 3153.80 -— Ep—— ——
vl 3315.69 2975.14 3324.60 4333.44 602.88 || 1.305
3 vl B635.02 5963.08 6336.21 - p—
w2 5948.61 6166.67 6979.90 2367.02 1203.61 |[ 1.270
L6 ] 13145.14 11691.32 13149.84 - == - -
vl 13726.62 12167.42 13720.87 17670.03 2402.97 || 1.288
a9 vl 26729.56 23817.70 26838.66 - - -
v 27385.34 24630.76 27201.76 35607.49 4791.38 || 1.309
64 vl 51103.70 45733.47 5203453 Ep—— -—= | --
vl 53630.43 47769.35 53689.25 70617.249 BEEE.TSH 1.315
1og |21 104003,26 91248.50 100884.89 133872.70 — == || 1.327
v 107277.71 94212.27 106333.47 142364.71 15072.32 || 1.340

{2) Jacobi method (J2)
| pe | vl,lri_" Ti(M flop/s) LT-;[Mﬂopfs} [ Ta(Mflop/s) | Ta(Mflopfs) | Ts(Mflopfs) || dms |

1 | w2 1125.67 | §91.02 1123.79 1257.17 326.71 || 1.119
7 | w2 9288.16 1788.17 7266.42 2526.72 651.63 || 1.115
a | v2 4432.07 3408.63 4307.02 500147 1298.71 || L.161
32 | wl 9047.68 7050.29 873422 10119.67 2594.06 || 1.159
16 | v2 || . 17987.69 12474.39 17508.94 30136.27 5173.42 || 1.150
32 | v2 36099.57 27893.81 3515331 40406.65 10298.00 || 1.149
64 | w2 72443.40 54959.25 68064.06 B0396.20 2058585 || 1.181
128 | w2 145065.44 108455.77 134983.03 157558.09 40829.21 || 1.168

{3) Red-black ordering
(e [ 9172 [ 52(MTop]s) [ Ta(MfTop]s) | T5(MJlop]s) | Ta(Mflop]e) | T5(M Top]s) | dma ]

vl 602.23 503.22 576.03 - - - --=T --
vl 507.32 508.22 531.88 617.45 41.32 || 1.061

. vl 1205,67 999.34 1145.04 - - = -—- 1 --
v2 1208.04 1013.47 1162.15 1243.81 32.45 || 1.070

. v 2350.78 1562.36 2263.02 -=-- - - = --
vl 2337.37 1979.46 2279.09 2472.13 164.37 || 1.085
T 4786.64 3990.67 4554.39 - == - == --
v | 4793.20 3989.34 4571.29 4953.45 329.49 || 1.084

6 vl | 9479.17 7863.72 9050.39 - — - S - -
2 9421.13 7840.44 8967.29 9911.65 658.43 || 1.105

3 vl 19010.27 15747.52 17844 .49 - - - — -
vl 18727.89 15625.85 17869.22 19801.27 1307.84 || 1.108
T 37518.83 30776.77 35333.05 - - = - — - ——
vl 36920.69 30596.73 34799.87 39311.40 2630.01 || 1.130

12 |_¥L 74108.23 5970251 §8853.69 76721.15 - —— | 1114
1 vl 72604.31 59932.71 68144.19 79179.64 5234.37 || 1.162

This document is provided by JAXA.



Parallel Computations of Incompressible Viscous Flow in a Lid-driven Square Cavity 21

Table 6 Continued

{4} CG method
(e T2 [ (M gTops) [ T (07 Ton]s) | Eo(Mlop]s) | TalMfTopfs) [ Ts(¥fTo5]5) || dma ]

: vl 913.22 823.35 885.91 - == --- 1 --
v2 918.92 524.03 908.78 969.86 150.05H 1.067
vl 1643.34 1510.85 1683.49 - — - - = - —— |
v2 1732.86 1567.75 1744.92 1841.04 297.44 || 1.055 |
. ! 3437.48 3100.03 3435.19 -—- — — - -—— |
v2 3556.33 3187.61 3563.72 3739.03 592.99 || 1.049
T 6388.46 5722.53 6361.37 - - - - — - -
v2 6689.05 6041.97 6645.19 7051.08 1183.99 || 1.061
6 ¥l r 13193.54 11825.71 13114.86 - - - - - - ——
2 H 13827.01 12415.07 13751.11 14547.61 2360.57 || 1.088
T 25836.20 23132.94 25571.54 - == - - - --
2 27065.42 24219.60 26804.95 28511.55 4701.43 || 1.064
6q vl 51665.29 46009.02 49594 .98 -—- e -
vl 53728.95 48068.44 53500.98 56370.13 9352.25 || 1.054
log |1 100915.97 885901.34 100005.14 105547.36 - —— | ross
vl 103640.27 52122.34 103110.37 110265.77 18591.26 || 1.069

(5) ADI method
[_Ee [v1/2 || 7.(Mflop/s) | To(M flop/s) [ Ta(Mflop/s) | Ta[Mflop/s) | Ts(Mflop/s) || dma |

vl | 642.44 §12.00 £49.47 -——1 --- 1 -

b £43.39 612.92 651.19 702.02 260.47 || 1.078
vl | 325.71 316.23 299.06 -—- -—— | —-
P 344.68 344.09 351.03 423,63 243.69 || 1.207
PR H 514.46 515.93 469.31 - ——= | -
v? 520.21 518.79 539.02 654.02 376.36 || 1.213

vl " T37.19 754.89 689.88 - - ——— | -

® w2 502.08 791.01 792.26 506.72 552.00 || 1.144
. vl H 1189.79 1198.45 1131.48 — -—— I --
18 1251.69 1236.71 1294.24 1516.69 758.25 || 1.172
1 L] 1591.71 1618.20 1480.48 — -—— || --
2 1769.16 1781.55 1722.00 1893.16 972.67 || 1.099

vl 27483.39 2567.46 2390.19 e == ==

% 2645.45 2687.21 2798.39 3034.59 1264.77 || 1.084
s LY 3323.38 3391.06 3114.13 3253.06 ——— || 1045
2 3178.33 3202.02 367187 3930.80 1589.60 | 1.071

Table 7 Grid size used to obtain Table 6 and Figure 23

m grid stze
Jacobt(J1]72)
pe red — black oo ADI
1 1,500+ 1,500 | 1,024+1,024 1,025+ 1,025

2 2,048 « 2,048 1,500« 1,500 1,501 = 1,501
4 3, 000 = 3,000 2,048 = 2, 048 2,049 + 2, 045
8 4,096 « 4,006 3,000 « 3, 000 3,001 * 3,001
16 5,800 = 5, 800 4,096 « 4,056 4,007+ 4,087
az 8,192 « 8, 192 5, 800 * 5,800 5,801 + 5,801
G4 12,0000« 12,000 [ 8 192 +8,192 8,193« 8,153
128 || 16,384 « 16,384 | 12,000« 12,000 | 12,001 « 12 001
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Table 8 Comparison between the value§etomputed from (63) and
(69) when the grid size is 1,024,024.

Jacabi(J1) red — black CG

pe | (63T (69) [ (63} | (69) [ (63) ] (69)
2 1,58 1.95 2.00 1.95 1.69 1.65
4 3.7 3.77 .89 3.80 2.83 2.75
8 7T 7.05 7.38 7.18 5.02 4.86
16 12,17 | 12.72 || 12.28 | 12.84 8.93 354
32 19,68 | 20,30 || 21.66 | 20.68 || 14.68 | 13.98
G4 2738 | 2757 || 30.01 | 27.85 || 15.07 | 17.569
128 || 30.10 | 28.68 || 32.23 | 28.28 H 17.21 | 15.19

note: The value of VTC) is 0.988(Jacobi{J1)), 0.988(red-black) and 0.800{CG),
respectively.

Table 9 Speedup and efficiency for the casg,f and v2 of Table 6
provided thatvTCl = 1.0.

Jacobi{J1) Jacobi{ J2) T red = black CG ADI
pe Spe ] E:u Spe | Lope E! Spe | By Spe I Epe Spe ! Epe
2 1.967 | 0.984 1.5966 | 0.983 1,959 | 0.979 1.915 | 0.857 0.726 | 0.363
4 3.903 | 0.976 3.503 | 0.976 1886 | 0.971 3.759 1 0.950 1.143 | 0.286
1 T.774 | 0,972 7.716 | 0.96% T7.713 | 0.964 7.503 | 0,938 2.414 | 0.302
16 15.328 | 0.958 15.296 | 0.956 15,153 | 0.947F 14.816 | 0,926 2,947 | 0,184
az 30.318 | 0.947 30.411 | 0.950 29,999 | 0,937 29.164 | 0.211 il 6. 708 | 0,210
64 59,375 | 0.928 60.048 | 0938 58.540 | 0.915 RT.047 | OLBOL 7.335 | 0.115
128 | 116.643 | 0.911 117.354 | 0,917 ]13.?31} 0.890 110,031 | 0860 (| 22.750 | 0.178 ]
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Fig. 1 Cavity flow configuration, coordinates, nomenclature and boundary conditions
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(1) Stream-lunclion contours {2} Vorticily contours [3) Tetal pressure con boucs

Fig. 2 Square cavity flows &e= 10°

(1) Stream-function contours (2] Vorticity contours {2) Total pressur & contours

Fig. 3 Square cavity flows &e= 1C

(1) Stream-funclion contours {2) Vorticity contours {3} Total pressure contours

Fig. 4 Square cavity flows &e= 1C¢
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{11 Stream-function contours (2) Vorticity contours {2) Tolal pressure contours

Fig. 5 Square cavity flows &e= 2<10°

{2) Varticity contours

Fig. 6 Square cavity flows &e= 10

{1) Stream-funclion canlours {2) Vorticity contours [3) Tolal pressure conlours

Fig. 7 Square cavity flows &e= 2+10*
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(1) Strecam-fenction contowrs () Vorticity contors [3) Total presaure contours

Fig. 10 Square cavity flows &e= 6<10* (a snapshot)
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[5) Vertical total pressure profiles

(6) Horizental total pressure profiles
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Fig. 11 Effect of Re on profiles af, u, { andp through center of primary vortex (note: The vertical and horizontal beelines
indicate the values of andy of the center of the primary vortex for eab
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Fig. 12 Location of center of primary vortex as a function of Reynolds number
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Fig. 14 Effect of the solution method on profilespathrough center of primary vortex in caseRdé= 1¢ andpe= 16
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{5} Vertical total presaure profiles
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Fig. 15 Effect of grid size on profile af, u, { and p through center of primary vortex in caseRé= 1C¢
and the red-black method
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{5) Bk = 8k grid (6} 16k = 16k grid

Fig. 16 Effect of the grid size on total pressure contours in caRe of1( and the red-black methodk(¥ 1024)
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Fig. 17 Overheads for the NWT-Fortran-compiler directives against the number of processing elements
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{(3) SPREAD DO plus END SPREAD
{note : This result is not very precise due to the indirect measurament.)
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{4) SPREAD DO plus END SFREAD SUM(abc)
{note : This result is not very precise due to the indirect measurement.)

Fig. 17 Continued
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(6) OVERLAPFIX plus MOVEWAIT (nota : This indicates the results when one or two arrays of
the overlap range = (1,1} are specified in the OVERLAPFIX statement.)

Fig. 17 Continued
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(2} Grid size = 102441024,

Fig. 18 Actual performancg, of the square cavity program used the Jacobi method (J1)
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(2) Grid size = 102441024,

Fig. 19 Actual performanceg, of the square cavity program used the red-black method
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(4} Parameter = grid size.

Fig. 19 Continued
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(2) Grid size = 1024+1024.

Fig. 20 Actual performancg, of the square cavity program used the CG method
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Fig. 21 Actual performance, of the square cavity program used the ADI method
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Fig. 22 Actual performance, of the square cavity program against the grid gies=(128)
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Fig. 23 Measured maximum of actual performamngef the square cavity programs

(note: The values fgpe = 1 are ones for SIMD computing)
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