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In order to investigate condition to grow semiconductor crystal with a convex solid-liquid
interface under microgravity, numerical calculation is carried out. In this study, the
boundary fitted coordinate (BFC) method is used. The thermal conduction equation in the
cylindrical coordinates is used as the governing equation. To get the better numerical
stability, several transformation techniques are considered. To evaluate the reliability of
the numerical result, the calculation result is compared with the experimental one.

1. Intreduction

In a melt growth technique using a crucible
such as the Bridgeman method, a shape of a solid-
liguid interface should be convex toward melt in
order to grow a single crystal.  This is because it is
expected that polycrystallization can be reduced by
the convex shape. Generally, an interface and a
grain boundary macroscopically grow
perpendicularly to the interface. Therefore, a
nuclear appearing around the crucible wall will
impacts with the wall, and will be extinguished
before developing into a grain boundary if an
interface shape is convex.

On the earth, it is achieved that an interface
becomes convex by optimizing a furnace for the
specific  material, including the fumace
modification.  However, in the microgravity
experiments, it is difficult to optimize a furnace for
a specific material due to a multipurpose furnace.
Furthermore, limitations such as safety, power
resource, weight and size make this optimization
more difficult. Therefore, an interface shape is
concave > ? in the past melt growth experiment

under the microgravity. Since only polycrystals or
small single crystals can be obtained due to the
concavity, the effectiveness of the microgravity
experiments begins to be doubted.

In order to clear away such a doubt, it is
required that a large single crystal enough to
evaluate the characteristics should be obtained in
the microgravity experiment. For this purpose, it
is one of the extreme priority subjects to make the
interface shape convex under the microgravity.
However, the timely and various improvement of
the furnace for the microgravity experiment similar
to that on the earth is difficult as mentioned above.
Then, it is required improving the performance of
the ampoule and the cartridge to compensate the
fumace performance > .

In this study, numerical analyses on the
ampoule and the cartridge were carried out in order
to obtain the convex shape that is not achieved in
the microgravity experiment until now. These
analyses are not only useful for the microgravity
experiment but also wuseful for the ground
experiment such as the vertical Bridgeman method,

-61-

This document is provided by JAXA.




which is the similar configuration to the
microgravity experiment. Namely, there is the
possibility that the results of the research related to
the microgravity experiment can be applied to the
research on the earth. This is one of the most
important points of view in the present
microgravity experiment,

In this paper, the numerical model is described
in the next section, the numerical results in §3,
discussion:in §4, and finally summarized.

2. Numerical Model

In this study, in order to obtain the solid-liquid
interface shape, the boundary fitted coordinate
(BFC) method *” which is a kind of the difference
method is used. The BFC method solves the
governing equation on the virtual rectangular space
by using the coordinates in the actual space where

is mapped onto the virtual space.

 Generally, when a discrete equation is solved
numerically, it is required satisfying a following
~ condition;

(1) a boundary shape can be handled accurately,

(2) a node can be configured densely to the area
where a physical parameter varies greatly,

and,

(3)a node can be configured smoothly in the
whole calculation area.

If the above condition can not be satisfied, the
accuracy of the solution, the stability, the
convergence and so on will be deteriorated. - The
finite element method (FEM) can satisfy the
condition (1) easily. However, many experiences
and the amount of activity are often required so that
the FEM may satisfy the condition (2) and (3).
The BFC method can also generate a node along
the boundary automatically due to the inverse
mapping from the virtual space to the actual space.
Therefore, the BFC method is applied in this study.

In this paper, the interface shape is determined
by only the temperature, that is, the material is
assumed to be the element or the binary compound.
In addition, since the gravity under the
microgravity is less than or equals to 10* as
compared with that on the earth, the amount by the
thermal transport by the thermal convection is
neglected.  Namely, in order to obtain the

temperature  distribution, only the thermal
conduction equation in the steady state is solved.
The steady statc means that the heat flux by the
latent heat is assumed relatively small. This is
true when the solidification progresses slowly like
the semiconductor crystal growth. Thus, the
governing equation is represented as follows;

o’T 1 :
.._.].: —ﬂ+22—T=0 (D)

o7 ror or

.where, T is the temperature, » and z are the

cylindrical coordinates in the physical space,
respectively.

Here, the coordinates of » and z in eq. (1) are
transformed to the coordinates of & and 7 in the

‘virtual rectangular space. The coordinates » and

z can be represented by using the coordinates &
and 7, thatis,

&= 2 e
dZ - Z; Z” d77 >()

where, the subscriptions represent the partial
differentiation.  Equation (2) is rewritten by
multiplying the inverse matrix as

(945 )0 o
dn) " I\z, )@

where, J is Jacobian, 7z, -7,2,.
Another expression of £ and 7 can be written

as

dg §r gz dr
(dnj - (n, UJ (dz)- @

By comparison between eq. (3) and eq. (4), the
expressions partially differentiated of £ and 7
can be obtained;

z ¥ Zz ¥,
fr =-‘-}L, §z=_.‘}1’ 77r=“JJ', 7. =§ (5)

Thus, eq. (1) can be transformed by using eq. (5) as
described in the appendix A

2 v
aTy = 2T, +y T+ [2,- T,2,)=0 . 6)
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where, a =7 +z}, B=rr,+2,2, ¥y =5 +2; .
By solving this equation, the temperature in the
virtual space can be obtained.

The heat flux must be equal at both side of the
boundary, that is,

e,
—Kgﬂ = censt. (D

By transforming this equation, two expressions are
obtained; ‘

J_KF (,BTg _}/T;’): const. , and, (8)

J—’}—;(a I - ,BT,,)= const, . (9)

The first equation is perpendicular direction to the
fanction #'= const., and the other one is to the
function & = const.

In order to convert the temperature in the virtual
space to that in the real space, the relationship
between the virtual and the real coordinates is
required, In this paper, the relationship based on
the Laplace equation is used, that is,

o¢ 19 FE_

ort r0”r 7z =0, and, (10)
dn 19n _Qé

17 +r6 oz} =0.ay

The nodes generated by the Laplace equation are
well known to be suitable for the BFC method .
Equations (10) and (11) can be transformed as
~ described in Appendix B;

1
ar, =2pr, +vr, +;J2 =0,and, (12)

az; 2Pz, +yz, =0.(13)

These equations are applied for the ampoule
shown in Fig. 1. The ampoule is based on the
ampoule used in the past Japanese experiment
under microgravity > ¥, however, it is more
improved in order to obtain the convex interface
shape. In the past microgravity experiment, the
highest temperature side is adiabatic due to vacuum,

heat flows along the axis.

and the lowest temperature side is near adiabatic in
order to save the power. Therefore, the heat flows
from the ampoule surface at the highest
temperature to the surface at the lowest temperature.
Since the interface shape is perpendicular to the
heat flux in principle, if the container seal is near
the sample, the shape becomes concave. In order
to prevent the concave shape, it is required that the
The heat sink installed
adjacently to the sample would modify the flow.
Since the ampoule is usually set in the cartridge
as shown in Fig, 2, the whole cartridge is modeled.

Movabls Piug

pBN Crucible  SiO; Container
Cu Heat Sink

Graphite Spring

sigr=
835 - 1. -
oo L8
{ T
E Lzo‘o| 1000 ; 1100 ] ;
e 20
Fig. 1 Schematic View of Ampoule

Fig.3 Generated Grid

One example of the generated grid by using eqs.
(12) and (13) is shown in Fig. 3. Byusing sucha
grid, the temperature distribution is calculated.

3. Calculation Results

In this section, the interface shape is
investigated from the calculation results of the
temperature distribution by using the generated grid.
To calculate the distribution, the thermal
conductivity of the solid sample is assumed to be
1.2 W/m-K and the melt is to be 2.5 times as
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large as the solid. The boundary condition at the
end of the highest temperature side is adiabatic, and
that at the opposite end is constant temperature.
On the cartridge surfage is given the fixed
temperature  profile. Although the actual
temperature profile of the furnace can be expressed
as a polynomial function, this profile makes the
shape variety complicated. Hence, in order to
understand more easily the shape behavior, the
temperature profile is approximated to simpler one.

The interface usually exists at the point of
inflexion.  This means that the temperature
gradient is low in the region where the temperature
is higher than that at the interface, and the gradient
is high in the region where the temperature is lower
than that at the interface. Namely, the two kinds
of the temperature characteristics are used for the
crystal growth. Therefore, the combination of the
two linear profiles is used in this analysis. The
used temperature gradients are 20 K/cm and 80
K/cm. The temperature is clipped at the highest
temperature of 1527 K and the lowest one of 317 K
to prevent giving unrealistic profile.

The obtained typical result is shown in Fig. 4.
The interface location on the axis is about 174.3
mm, where 13.2 mm far from the lowest end of the
sample. At this location, the interface shape is
convex as shown in Fig. 5. The convex length,
which is defined as the difference between the
locations on the axis and on the crucible inner wall,
is about 3 mm. Since this length should decrease
with increasing the distance from the heat sink, the
dependency of the ‘convex length on the interface
location is investigated and is shown in Fig 6.
This figure shows that the interface is convex in
about 80 % of the total sample length. This is
valuable result for the microgravity experiment, but
this result seems that the effect of the heat sink is
different at the interface location. The reason
should be due to the temperature profile, that is, the
saturated temperature profile in the lower
temperature region makes the heat flux towards the
lower temperature side decrease. To improve this,
the temperature gradient must keep steep, however,
it might be essentially impossible because the
present lowest temperature is set near the room
temperature.

Fig.4 Typical Result of Temperature Distribution
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4.Discussion

In order to evaluate the reliability of the
numerical analysis, the calculation result is
compared with the experimental one obtained on
the earth. In this experiment, the ampoule shown
in Fig. 3 is used. The temperature profile and the
ampoule location are shown in Fig. 7. The right
side in this figure is actually top and the left side
bottom. Therefore, the influence of the thermal
convection should be small.

The temperature gradient is set as large as
possible, however, it is not large enough to make
the interface convex because of using the
isothermal furnace. To solidify the sample, the
gradient freezing method is used. In the
experiment, the sample is InSb, the binary
compound semiconductor, since the interface
location and shape are determined only by the
temperature.  This is suitable for the present
numerical analysis solving the steady state thermal
conduction equation.

The external view of the InSb sample is shown
in Fig. 8. In Fig. 8, several lines can be observed.
The first one, that is the most left one, is the initial
interface, and the others are the marking generated
by holding the temperature for about 30 minutes.
The longitudinal cross section is shown in Fig. 9.
The marking can be observed on the sample surface,
however, except for the initial interface, it cannot
be observed on the cut plain, that is, the inside of
the sample. Therefore, the initial interface shape
is compared with the numerically obtained shape.
The comparison is shown in Fig. 10. From Fig.
10, it is clarified that the numerical results well
agree with the experimental ones. This represents
the reliability of this analysis.

Temperature [K]

i 'l L . i
0 0 100 150 200 250 300 350
z [mm]

Fig.7 Temperature Profile and Ampoule Location

Fig.8 External View of InSb Sample
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Fig.10 Comparison of Numerical Result with
Experimental One

5. Conclusions

The method of the coordinates transformation
in the cylindrical coordinates is established. By
using this method, the ampoule and the cartridge
are modeled. The grid can be generated and be
obtained numerical solutions. From the numerical
results, it is clarified that the initial interface shape
is convex and the convex shape can be kept in
about 80 % of the total sample length.  Although
the effect of the heat sink is decreases with
increasing the distance from the sample end at the
lower temperature side, about 0.4 mm of the
convex length can be kept.

In order to investigate the reliability of the

- 65 -

This document is provided by JAXA.



numerical results, these results are compared with
. the experimental results. It is clarified that the
numerical results well agree with the experimental
ones. This represents the reliability of the
numerical calculation.
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Thermal conduction equation in steady state can be written as
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Each term is transformed by using virtual rectangular
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Equations (A-2) - (A~4) are substituted to eq. (A-1), that is,

o'T 18T &°T
SRt
ort ror 0zt

1
=£T, +26,1,T, +n,°T, +T,¢, +T,1, +7(T§§, +T,7,)

+& T, +2£,0,T,, +n,'T, +T,6, +T,7, (A-5)
=(§r2 +§:2)r§{ +2(§r”r "'i’lJT;q +(7772 +77:2)Tm7

] .
(&, +&) + (0, +0. ), + -0, + 7))
Here, the relationships between real and virtual space are described as shown in Appendix B;

&, +6.=2¢, and a-9)

1 .
77;1 +7’z =7’7r * (A_7)

Therefore, eq. (A-5) can be rewritten as

T 19T T

or* ror 02°

=&+, +2Em, +Em), + 0+ ),
LT 8 T+ (08 +Tn)

=(e +&7 ), +2Aen, +En.)T, w2 0,

+2(1,¢,+T,,)

(A-8)

1 2
=F{a:rﬁ = 28T, +1T,, +=I(1, 2, - T, 2, )} =0

where, a=r+z2, B=nr,+zz,, y=r}+z . Equation (A-8) is solved to obtain the temperature
distribution in this study.

It should be noted that the different expression of the thermal conduction equation is obtained by using
the different relationships instead of eqs. (A-6) and (A-7). For example, when the Laplace equations of
eqs. (A-10) and (A-11) are substituted into eq. (A-5), the term of }{, in eq. (A-8) can be eliminated, that
is,

o*T 18T &T
T ——
or* ror 0z°

(A-9)
—( )
=}T aly =2p7,, +7T,,)=0
£, +-1—§, +£,=0 (A-10)
Fr
1 ,
r
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Equation (A-9) is the same expression of the thermal conduction equation in the case of the rectangular real
space. This equation is simple as compared with eq. (A-8) and can be easily solved, however, it is
difficult to solve egs. (A-10) and (A-11) due to the effect of the term of %, as described in Appendix B.
These equations indicate that the cylindrical coordinates in the real space is transformed to the rectangular
coordinates in the virtual space by egs. (A-10) and (A-11).

Appendix B

It is well known that the good relationships between the real and the virtual rectangular coordinates are
described as the Laplace equation;

£, +}<§, +£.=0,and - ®-1)

1
ys +;77, +7,=0 B-2)

These equations are transformed by using the partial differentiationof 7, z by &, 7. Eachtermin
eq. (B-1) can be represented as

Z
=21 -3
gr J 2 (B )
a9z, 0 d |z,
= —— = —+ bl | Sl
foo22)-(e 2o 2]3) |
oz aJ aZ,’ aJ ,and, (B’4)
—rJy-z J——-z
2" 2" o on "
=§r JZ +77" Jz
ar’l _gr- ai _yr
ot o9& onm  on" '
£ ==&, e -n, 3 . B-5)
Now,
oJ @
Eza—g-(rgzq —r’lzg):r;;z” +r§2§,, "'rngf _r,,zgg 7and’ (B-G)
J
AT T 2y T2 Ty 2 T2, ®B-7)

on

are substituted to eqs. (B-4) and (B-5),
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1 ( 2 3 2
$,=—\rnz, z,-r,2,2,2, -2 r,~rz 2

J? &
+z€ znzréﬂ +r’l zrlzzﬁ —rf Zf Z’I zfm +rrl Z;zw
+Z§ zﬂzrfn +r§ z§znzrm_z§2‘zr1rrm _rrlzéz'tzgr/) ’ (B-S)
1 2 2 ¥
='JT{‘Z:;(Z” oy —22,2,7, +2, "m;)
2 2
+rv(z,, Z, -22§z,,z¢”+z¢ zw)}
and,
=t 2, (r -2 'r)
gz _F "’Z’, r'l r{f - rgr'lrf'l +r§ r'l'l (B_g)
2
+r’l(r7l 2y —2)‘5)‘”25” +r¢zzrm)} )
Finally, the transformation of eq. (B-1) is obtained as,
1
&, +=¢, +¢,
r .
1 J? ( _ ) 10
=7 ~-z,|ar, —28r, +y71,, = +r\az, -2Bz,, +yz, (B-10)
=0
Equation (B-2) can also be transformed by using the similar way in the case of eq. (B-1),
1
N, t=1n, +1n,
r
1 J?
=7 z,| ary —2fr, +r1,, . ""e(azse -2pz,, +7'zfm) (B-11)

=0

From e(;s (B-10) and (B-11), the relationships between the real and the virtual coordinates can be rewritten
as,

2

J
ar, =2pr, +rr,, ——= 0, and, (B-12)

azy -2z, +yz, =0 . : (B-13)

These equations are mathematically correct, however, it is technically difficult to solve the difference
equations based on eq. (B-12). The difference equation is represented as,

_ 2”:,] + ro ) _ ﬁrm,m g 2_r g T sa
e (B-14)
+7 (ri,j+l =2n,+ ri.j-x)— —=0
i,j

a("m,j

Equation (B-14) is the 2nd order polynomial equation of 7; o and the solutions can be obtained as,
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- -B+VB —-44AC

2 - ®-15)
where,
A=4(a +y), (B-16)
B=-2a Ty +’;—1J)+ﬂ(’;+l,j+l “hria _rt-l,m"";—u—x)
» and, (B-17)
"27' (ruu +ru—x)
C=J*. : (B-18)

Equation (B-15) shows that (B2 -44 C) may be less than 0. And 7, , may have 2 solutions, however, one
pairof r and z must correspond to one pairof & and 7. Hence, eq. (B-12) must be expressed by
using another relationship so that only one 7, can be obtained.  These problems indicate that the
transformation of the cylindrical coordinates to the rectangular coordinates is difficult near the axis. Since
the cell volume near the axis is small as compared with one far from the axis, the mapped cell volume near
the boundary corresponding to the axis must be small.  This causes that the node density near the axis
becomes high.  This should be the reason of the transformation difficulty.

Now, instead of the Laplace equation firstly used, the Poisson equation is considered, that is,

£ +%§,+§, =P, and S ®19)

1
Mo 4210, +10 =0 . (B-20)

These equations are transformed by the same way of the dase of egs. (B-1) and (B-2);

2

| J
@y =2, +yn, ~ = ~J*(Pr, +0r,) , and, (B-21)

ez, —2pz, +yz,, = —J’(sz +Qz,,) . (B-22)

Although the method how the functions P and Q determine is well studied, that is so complicated. In
this case, the fundamental problem is the effect of }4 . Therefore, it is enough to determine P and Q so
that the term of }{. canbe eliminated. ~ After here, the two cases are considered.

(1) Case of Pr, +Qr, =~ and Pz, +07, =0

In this case, egs. (B-19) — (B-22) arell rewritten as

S t62=0, (B-23)
77" +nz = O b4 (B'24)
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ary, ~2fr, +yr, =0, and, (B-25)

az, -2Bz, +yz,, =0 . (B-26)
These equations are usually used in the case of the rectangular real space. This means that the coordinates
system in the real space is simply mapped to the same system in the virtual space. While egs. (B-25) and

(B-26) can be simultanecously solved, the obtained grid are not so good for the analyses of the ampoule and
the carlridge. Thus the second case is considered.

(2) Caseof Pr, +0Qr, =% and Pz, +Qz =0

In this case, egs. (B-19) — (B-22) are rewritten as

1
gﬁ +§n = —;fr ? (B-27)
1
Mo +702 = =210, 5 (B-28)
s .
ar, —28r, +yr,, +—r—= 0 ,and, (B-29)
az, -2pz,, frz,m =0 . (B-30)

These equations can be also solved. The solutions are better than those in the previous case. Therefore,
these relationships between the real and virtual space are used in this paper.
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