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Abstract

This paper discusses design optimization of a
wing for supersonic transport (SST) using
Multiple Objective Genetic Algorithm (MOGA).
Three objective functions are used to minimize
the drag for supersonic cruise, the drag for
transonic cruise and the bending moment at the
wing root for supersonic cruise. The wing shape
is defined by in total of 66 design variables. An
Euler flow code is used to evaluate supersonic
performance, and a potential flow code is used to
evaluate transonic performance. To reduce the
total computational time, flow calculations are
parallelized on NEC SX-4 computer using 32
PE's. The detailed analysis of the resulting Pareto
front suggests a renewed interest in the arrow
wing planform for the supersonic wing.

1 INTRODUCTION

To respond future increase of air traffic demand,
development of next generation supersonic transport is
considered worldwide. Aerodynamic design of such
aircraft must account for drag reduction as well as sonic
boom minimization. However, drag reduction is in
conflict with sonic boom minimization. Since
acceptability of supersonic transport is very sensitive to
the sonic boom over populated areas, one of the design
choices is to limit supersonic flight over sea and to have
transonic flight over land. Although such decision
excludes the sonic boom from the design consideration,
the design is now faced with transonic performance of the
aircraft.

This  paper considers multipoint  aerodynamic
optimization of a wing shape for supersonic aircraft both
at a supersonic cruise condition and at a transonic cruise
condition. Aerodynamic drag will be minimized at both
cruise conditions under lift constraints. Aerodynamic
optimization of the wing planform, however, drives the
wing to have an impracticably large aspect ratio.
Therefore, minimization of the wing root bending
moment is added as a third design objective.

The present multipoint design problem can be regarded as
multiobjective (MO) optimization. Solutions to MO
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problems are often computed by combining multiple
criteria into a single criterion according to some utility
function. In many cases, however, the utility function is
not well known prior to the optimization process. The
whole problem should then be treated with non-
commensurable objectives. MO optimization seeks to
optimize the components of a vector-valued objective
function. Unlike single objective optimization, the
solution to this problem is not a single point, but a family
of points known as the Pareto-optimal set.

By maintaining a population of solutions, Genetic
Algorithms (GA) can search for many Pareto-optimal
solutions in parallel. This characteristic makes GAs very
attractive for solving MO problems. As a solver for MO
problems, the following two features are desired: 1) the
solutions obtained are Pareto-optimal and 2) they are
uniformly sampled from the Pareto-optimal set. To
achieve these, MOGAs have successfuily been introduced
by Fonseca and Fleming, 1993.

Furthermore, it was shown that the so-called best-NV
selection helps to find the extreme Pareto solutions
(Obayashi, Takahashi and Takeguchi, 1998). The best-N
selection picks up the best N individuals among N parents
and N children for the next generation similar to CHC
(Eshelman, 1991). The extreme Pareto solutions are the
optimal solutions of the single objectives. By examining
the extreme Pareto solutions, quality of Pareto solutions
can be measured. The present MO problem will be solved
by using MOGA coupled with the best-N selection.

2 APPROACH

In GAs, the natural parameter set of the optimization
problem is coded as a finite-length string. Traditionally,
GAs use binary numbers to represent such strings: a string
has a finite length and each bit of a string can be either 0
or 1. For real function optimization, however, it is more
natural to use real numbers. The length of the real-number
string corresponds to the number of design variables.

2.1 CROSSOVER AND MUTATION

A simple crossover operator for real number strings is the
average crossover (Davis, 1990) which computes the

Thic dociiment i nrovided hv JAXA

173



174

arithmetic average of two real numbers provided by the
mated pair. In this paper, a weighted average is used as

Childl = ranl-Parentl + (1-ranl)-Parent2
Child2 = (1-ran1)-Parent1l + ran1-Parent2 )

where Childl,2 and Parentl,2 denote encoded design
variables of the children (members of the new population)
and parents (a mated pair of the old generation),
respectively. The uniform random number ranl in [0,1] is
regenerated for every design variable.

Mutation takes place at a probability of 20% (when a
random number satisfies ran2 < 0.2) initiaily and the rate
is going to decline linearly during the evolution.
Equations (1) will then be replaced by

Childl = ranl-Parentl + (1-ranl)-Parent2 + m-(ran3-0.5)
Child2 = (1-ranl)-Parentl + ranl-Parent2 + m-(ran3-0.5)

@
where ran2 and ran3 are also uniform random numbers in
[0,1] and m determines the range of possible mutation.

2.2 MULTIOBJECTIVE PARETO RANKING

To search Pareto-optimal solutions by using MOGA, the
ranking selection method (Goldberg, 1989) can be
extended to identify the near-Pareto-optimal set within the
population of GA. To do this, the following definitions
are used: suppose X; and x ; are in the current

population and f =(f1, Sasrees fq) is the set of objective
functions to be maximized,

1. x, is said to be dominated by (or inferior to) x joif
f(x,) s than f(xj) , e,
A& Al I L)< fls )aa &)< 1, (x,) and
f(x,-)#f(xj).

2. x; is said to be non-dominated if there doesn't exist

partially  less

any X ; in the population that dominates x, .
y X, pop! i

Non-dominated solutions within the feasible region in the
objective function space give the Pareto-optimal set.
Let's consider the following optimization:

Maximize: fHi=x, fL=Y
x2 +y? <1 and 0<xy<l1
The Pareto front of the present test case becomes a quarter
arc of the circle x* +y% =1 at 0<x,y<l1.

Consider an individual x -at generation ¢ (Fig. 1) which is
dominated by p; individuals in the current population.
Following Fonseca and Fleming (1993), its current
position in the individuals' rank can be given by

rank(x,,t)=1+p,' 3)

All non-dominated individuals are assigned rank 1 as
shown in Fig. 1. The fitness values are reassigned

Subject to:
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according to rank as an inverse of their rank values. Then
the SUS method (Baker, 1987) takes over with the
reassigned values.

2.3 FITNESS SHARING

To sample Pareto-optimal solutions from the Pareto-
optimal set uniformly, it is important to maintain genetic
diversity. It is known that the genetic diversity of the
population can be lost due to the stochastic selection
process. This phenomenon is called the random genetic
drift. To avoid such phenomena, the niching method has
been introduced (Goldberg, 1989).

The model used here is called fitness sharing (FS). A
typical sharing function is given by Goldberg (1989). The
sharing function depends on the distance between
individuals. The distance can be measured with respect to
a metric in either genotypic or phenotypic space. A
genotypic sharing measures the interchromosomal
Hamming distance. A phenotypic sharing can further be
classified into two types. One measures the distance
between the decoded design variables. The other, on the
other hand, measures the distance between the designs'
objective function values. Here, the latter phenotypic
sharing is employed since we seek a global tradeoff
surface in the objective function space.

This scheme introduces new GA parameters, the niche
SiZ€ Oghare. The choice of Gy has a significant impact on
the performance of MOGAs. Fonseca and Fieming (1993)
gave a simple estimation of Gy, in the objective function
space as

O share

where N is a population size, ¢ is'a dimension of the
objective vector, and M; and m; are maximum and
minimum values of each objective, respectively. This
formula has been successfully adapted here. Since this
formula is applied at every generation, the resulting Gy
is adaptive to the population during the evolution process.
Niche counts can be consistently incorporated into the
fitness assignment according to rank by using them to
scale individual fitness within each rank.

3 RESULTS

Flow conditions are M = 2.0 and C, = 0.1 for
supersonic cruise and M, = 09 and C. = 0.15 for
transonic cruise. The supersonic inviscid drag to be
minimized is evaluated by using an Euler flow solver
(Obayashi et al. 1998). The transonic inviscid drag is
evaluated by using a full potential flow solver (Jameson
and Caughey, 1977). The bending moment is evaluated by
directly integrating the pressure load at the supersonic
cruise condition.
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Design variables are illustrated in Figs. 2-5. The wing
planform is determined by six design variables as shown
in Fig. 2. The variable ranges are summarized in Table 1.
A wing area is fixed at § = 60. A chord length at the wing

tip is automatically determined due to the given wing area.

An airfoil shape is defined by its thickness distribution
and camber line. The thickness distribution is given by a
Bezier curve shown in Fig. 3. The maximum thickness is
constrained from 3 % to 4 % chord lengths. The location
of the maximum thickness is also constrained from 15 %
to 70 % chordwise locations. The thickness distributions
are defined at the wing root. kink and tip. They are
linearly interpolated in the spanwise direction. The
camber surfaces are defined at the inboard and outboard
of the wing separately. Each surface is given by the
Bezier surface using four polygons in the chordwise
direction and three polygons in the spanwise direction.

The resulting camber line at the wing root is shown in Fig.

4. It is concave only at the root and it becomes convex at
the other spanwise locations similar to the linearized
theory. Finally, the wing twist is defined by a B-spline
curve as shown in Fig. 5. A monotonic variation is
enforced by rearranging the polygons in numerical order
in the spanwise direction. In total, 66 design variables are
used.

MOGA is used as a design optimizer. Flow calculations
were parallelized on'32 PE's of NEC SX-4 computer at
Computer Center of Tohoku University, using the simple
Master-Slave concept. The population size was set to 64
and 70 generations were run. To constrain the lift
coefficient, three flow calculations were used per drag
evaluation. The total computational time was roughly 100
hours.

Figure 6 shows the resulting Pareto solutions in the three
dimensional objective function space. They form an
approximate tradeoff surface. Typical planform shapes
are also plotted in the figure. The extreme Pareto
solutions (denoted as bending moment minimum,
Cp(supersonic) minimum, Cp(transonic) minimum) have
physically reasonable shapes: a very short span length
(corresponding to a large taper ratio as well as a low
aspect ratio) for minimizing bending moment, high aspect
ratios for minimizing induced drag and larger sweep
angles for minimizing wave drag. These results indicate
the validity of the present optimization.

Tradeoffs between the objectives can be observed more
easily in the two-dimensional projections as shown in
Figs. 7 and 8. Figure 7 presents the tradeoffs between
supersonic and transonic drag coefficients. The Pareto
solutions are plotted in different symbols according to the
aspect ratio. Lower drag coefficients are obtained from
larger aspect ratios in general as suggested by the
standard aerodynamic theory.

In Fig. 7, the edge of the projected Pareto surface I
indicates purely aerodynamic tradeoffs between
supersonic and transonic flights. This curve would be the
Pareto front if only these two objectives are used.
However, as shown in Fig. 6, the extreme Pareto solutions

for supersonic and transonic drag have too large aspect
ratios, and thus they are impossible to be built within a
reasonable structural weight. This is true for all solutions
on the edge I. The other edge of the projected Pareto
surface II indicates the tradeoffs between the supersonic
drag and the bending moment. (Note that the bending
moment is evaluated at the supersonic flight condition.) A
practical wing shape is expected to appear in this region.

Figure 8 illustrates the tradeoffs between the bending
moment and the supersonic drag. The edge of the
projected Pareto surface forms a simple convex curve
toward the lower left corner of the figure, representing the
pure tradeoffs between these two objectives. The edge IV
may be less interesting to aircraft designers because it
indicates severe penalties in the drag with little
improvements in the bending moment. On the other hand,
the edge III represents more reasonable tradeoffs. The
Pareto solutions are plotted in different symbols
according to the taper ratio. To be on the edge III, the
taper ratio of the wing should roughly be less than 0.4.

To evaluate the present Pareto solutions further, they are
compared with the aerodynamic design of the supersonic
wing for National Aerospace Laboratory's Scaled
Supersonic Experimental Airplane (Iwamiya, 1998). NAL
SST Design Team has performed the following four
aerodynamic designs. The first design was a selection of a
planform shape among 99 different shapes by direct
comparisons. The second design was performed by the
warp optimization based on the linearized theory. The
third design was obtained from an inverse design to yield
a natural laminar flow based on the Navier-Stokes code.
The fourth design was then performed for a wing-fuselage
configuration. Since the present optimization is based on
the inviscid flow codes, NAL's second design is chosen
for the comparison here. Its performance was evaluated
by using the same codes in this study.

Figure 9 and Table 2 summarize the comparisons of six
Pareto solutions with NAL's second design. It should be
noted that NAL's design appears close to the edge II in
Fig. 7. This indicates that the edge II represents practical
solution area as well as that the warp optimization of
NAL's design has a good accuracy. Six solutions were
picked up so as to represent the sensitivity of the Pareto
surface. The solutions A, B and C have transonic drag
similar to NAL's design but their supersonic drag is in
order of A < B < C. (The solution C and NAL's design
perform alike.) To improve the supersonic performance
over NAL's design, the taper ratio of the wing becomes
larger and the root chord length becomes smaller.
However, there is an upper limit for the taper ratio from
the observation in Fig. 8.

The solutions C, D and E have supersonic drag similar to
NAL's design and transonic drag in order of E < D < C.
To improve the transonic performance over NAL's design,
the aspect ratio of the wing becomes larger and the root
chord length becomes smaller. However, the increase of
the aspect ratio also results in the increase of the bending
moment as indicated in Table 2.
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Finally, the solution F is found to outperform NAL's
design in all three objectives. A common geometric
feature among the three solutions A, E and F is their root
chord lengths shorter than the root of NAL's design. This
means that they have larger taper ratios. Aerodynamic
theory generally suggests an increase of the aspect ratio to
improve the aerodynamic performance as mentioned
before. However, the present solution A, E and F all have
smaller aspect ratios than NAL's design does. The
resulting shape is somehow similar to the "arrow wing"
planform rather than the conventional "delta wing"
planform.

The arrow wing shape was originally derived from
research in the late 1950's indicating that the optimum
wing planform would be a highly swept, highly tapered,
arrowhead shape (Nelson, 1992). Attempts to incorporate
such arrow wing shapes eventually failed due to design
integration difficulties, aeroelastic problems and high
structural weight. Studies from 1970 to 80's then resulted
in the "cranked arrow" wing. The cranked arrow retains
the original arrow on inboard wing only. The "cranked"
forward outboard wing provides more span and higher
effective aspect ratio (Fig. 10). The main interest in the
supersonic wing development has been an increase of the
aspect ratio in compromise with the highly swept
planform.

The present results suggest a new type of the arrow wing
planform having a larger taper ratio instead of a larger
aspect ratio. This means a less tapered arrow wing in
contrast to the original, highly tapered arrow wing as
compared in Fig. 10. In the present MOGA result, either
the cranked arrow or the modified delta did not survive as
a Pareto solution. The original arrow wing was abandoned
due to the structural problems. After 40 years of the
development in the structural dynamics and materials, the
present arrow wing may be interesting for further studies.

4 CONCLUSIONS

The multipoint design optimization of a wing for SST has
been performed by using MOGA. The three objective
functions are used to minimize the drag for supersonic
cruise, the drag for transonic cruise and the bending
moment at the wing root for supersonic cruise. The wing
shape is defined by in total of 66 design variables.

Physically reasonable extreme Pareto solutions were
obtained from the present formulation. This indicates the
validity of the present optimization. One of the Pareto
solutions was found to outperform the existing design in
all design objectives. The detailed analysis of the Pareto
solutions suggests a new type of the arrow wing with a
larger taper ratio and a smaller aspect ratio compared with
the existing planform shapes.
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Figure 1: Pareto Ranking Method
Figure 4: Wing Camber Definition

Figure 2: Wing Planform Definition

Table 1: Variable Domain for Planform Definition

Variable Range Figure 5: Wing Twist Definition
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Figure 3: Wing Thickness Definition
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