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Thermocapillary-driven convection in a half-zone liquid bridge has been extensively examined
hitherto. The dynamic free-surface deformation was often observed in the experiments. Influence
of the deformation upon the flow in the bridge, however, have not been understood yet. The three-
dimensional thermocapillary convection has been simulated numerically with taking the dynamic
deformation of the free surface into account. The shape of the liquid bridge is determined by
the stress balance over the surface. The computational grid is reconstructed in accordance with
the dynamic surface shape deformation. The test fluid considered is Acetone (Pr=4.4). The free
surface deformation is found to be determined primarily by the pressure. A mutual relationship
between the surface deformation and the pressure and other quantities is shown in the pulsating or
rotating flow states. The maximum points of the deformation in the vicinity of the hot and cold
disks are azimuthally twisted.

1 INTRODUCTION

The floating zone method has been proposed to produce high quality single crystal. In this
method, melt is sustained between the seed and the produced single crystal rods. The crystal of
a high purity is expected because this method can be operated without any contact with a vessel.
This is named as the floating zone method. On the ground, a liquid bridge shape is deformed and
the natural convection takes place owing to the influence of gravity. In the space environment, on
the other hand, since the gravity effect becomes negligible, the single crystal with a higher quality
and a larger size can be expected.

The tangential surface stress due to the thermocapillary effect over the interface of two immisci-
ble fluids, however, can lead to a significant fluid motion called as the Marangoni convection (see
e.g., Kenning 1968).

Since the mid 70’s, many experiments or a number of numerical investigations on the floating
zone have been carried out for a simplified model. In these studies, the floating zone was sim-
plified to be a liquid bridge held between two coaxial circular disks, which are kept at different
temperatures. This configuration, termed as a half-zone method, is aimed to simulate the upper or
lower half of the floating-zone crystal growth progress with a well defined temperature difference.
Marangoni convection in the phase of a small temperature difference is a 2-dimensional symmetric
steady flow. The convection changes to a 3-dimensional oscillatory flow with the rotation to the
direction of a circumference as a temperature difference increases. The oscillatory flow has two
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patterns called as ’Pulsating flow” and ’Rotating one’. These flows appear depending upon the
temperature difference. The structure in the liquid bridge is characterized further by the modal
wave number m. The flow field is divided azimuthally into 2 xm sectors; the alternate sector, m in
total, consists of the same thermal-fluid structure.

The experiments for the thermocapillary convection have been widely conducted. Preisser et
al. (1983)1 investigated the oscillatory flow to study the effect of several parameters such as the
aspect ratio and Marangoni number. Velten et al. (1991) observed the periodic instability of
thermocapillary convection in the cylindrical liquid bridge.

As for the numerical simulation, Kuhlmann (1993)[4 calculated the critical Reynolds number
(Re,) for the various non-dimensional numbers (Bi, Gr, Pr, A) using the linear stability analysis.
Savino and Monti (1996)[°) simulated the oscillatory flow numerically and compared it with their
experiments. Shevtsova et al. (1998)! studied the transition from two dimensional thermoconvec-
tive steady flow to a time-dependent flow considered for an axisymmetric liquid bridge of a high
Prandt] number fluid (Pr = 105) with a static curved free surface.

It should be noted that most of the existing numerical simulations were conducted without con-
sidering the dynamic free surface movement. After the onset of oscillation, however, the pressure
field fluctuates violently because of the unsteady flow. Therefore the free surface is expected to
dynamically deform due to these fluctuation. In fact, the free surface vibration in the liquid bridge
has been observed in some terrestrial experiments. Kamotani et al. (2000)["! reported an exper-
iment of the thermocapillary convection performed aboard the Spacelab in an open cylindrical
container, and investigated the free surface movement. In addition, they analyzed the influence
of surface deformation upon the critical condition in the half-zone configuration. An influence of
surface vibration upon the flow field instability must be evaluated to understand the mechanism of
the oscillatory flow. To the authors’ knowledge, however, no numerical work has been done on
the thermocapillary convection in a liquid bridge with including the dynamic deformation of the
surface. The present study aims at the numerical analysis of the thermocapillary flow in the liquid
bridge with the dynamic free surface deformation.
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2 NOMENCLATURE
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aspect ratio Bi  Biot number
diameter Bo  Bond number
gravity Ca  Capillary number
heat transfer coefficient Gr  Grashof number
height of the liquid bridge Ma Marangoni number
unit matrix Pr  Prandtl number
Jacobian Re  Reynolds number

modal wave number

surface-normal vector

normalizing dominator

pressure

coordinates

position of the free surface

radius of the disk

main radii of curvature

stress tensor

S-parameter

time

temperature

reference temperature

maximum veloocity

velocities

compensated temporally velocity
temporally velocity

volume of the liquid bridge
contravariant velocities

temporally contravariant velocities
contact angle

thermal expansion coefficient
location of the maximum surface deformation
temperature difference between the disks
amount of surface displacement
thermal diffusivity

thermal conductivity

dynamic viscosity

kinematic viscosity

coordinates in the computational domain
density

surface tension

reference surface tension

thermal coefficient of surface tension
time in the computational domain
angle
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3 NUMERICAL SOLUTION TECHNIQUES
3.1 Basic flow

Z 4

Hot disk . - S

Free surface

Cold disk

Figure 1: The configuration

The purpose of this study is to analyze the influence of the free surface deformation upon the ther-
mocapillary flow. Therefore, a numerical method is developed to capture the temporally varying
surface motion. The deformed surface is expressed using the Boundary Fitted Coordinate (B.F.C.).

The so-called half-zone model consists of a liquid bridge suspended between two rigid parallel
disks of equal radii R which are located at z =0 and H (see Fig.1). The homogeneous staggered grid
is formed on the cylindrical coordinates (r, 6, z). The upper and lower disks are kept at constant
temperatures Tt and Tolq, respectively. The characteristic temperature is defined as AT=(Tt-
Teood). The liquid is assumed to be an incompressible Newtonian fluid of kinematic viscosity v
and density p. The Boussinesq approximation is employed with a thermal expansion coefficient (3.
In a cylindrical coordinates system, the continuity, the Navier-Stokes and the energy equations are
given by

vV-U=0 H
ov; B Pr _, Gr
T +(U-V)v;=-VP+ Mav v + eZR€2T 2)
ar 1 o
a-&-(U-V)T—mVT 3)

where U the velocity, T'(r, 6, z) the temperature and P(r, 6, z) the pressure. The dimensionless
parameters are the Reynolds, Marangoni, Prandtl and Grashof numbers defined as

3
Re=H p_? Moz Loar-H cr=92T1
v K UK v
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The each variable is non-dimensionalized using scales as Table 1.

Table 1: Scales used for non-dimensionalization
Variable r,z t v = (v, vg, V) D

Scale H Hp/opAT orAT/u plor AT /u)?

T
AT

The constants o7, u, & are thermal coefficient of surface tension, dynamic viscosity and thermal
diffusivity, respectively.

The shape of the liquid bridge is deformed dynamically in this calculation. Therefore, the ade-
quate coordinate system must be employed for dynamic deformation to the calculation with use of
the finite difference method. The Boundary Fitted Coordinate method is applied to the governing
equations in all the directions (r, 6, z). In the previous study, the computational domain was as-
sumed to be cube. The substantial error arises in this method of the convertion from the clynder in
the pysical domain to the cube in the computational one. Thus, the present computational domain
is modifyed to cylinderical coordinate. Eqs. (1)-(3) can be transformed from the physical domain
to the computational domain by Jacobian matrix.

P 8
% L& G om ar
o 0& G m || a
8{; — r r T 25 ( 4)
% 0 & G ™o B¢
L 35 0 & G %
[ 8 ] Gl
85’ 1 rr 97' Zr %
o | _ |0 me O oz || g 5
2 1=10 r 6 d ©®)
2 r¢ ¢ & %
| 5 0 rm O, 2y B2
Equation (5) is inversely transformed as follows,
7 An A Aw Aul[ g
8% _ l Agr Az Az Ax 5% (6)
% 5,—80 J | Ann Asx Az Az %37
52 An A A Au 5‘95

.
An = 2(reozy + rebyz + raflezc = rabcze = el — Teboc)

-
Ap = —g(rTﬁczn + 1¢Onzr + Tnbrzc — Tz — TOr2y — Ty 2¢)

Avz = r(r:0ezy + 1ebnzr + 1ybr2e — Tibfezr — relr2y — To0p2¢)

Ay = —%(7“79524 + 1e0c2r + Tebrze — TOezr — Te0r2¢ — 1:0:2€)
An =0, An= %(94277 —bhz), A= —r(bgzg —Ohze), An= 2(95% — 0cz)
A1 =0, A= —l(rczn —ryze),  Ass = (rezy — T2e), Azq = _E(Tﬁzc = Tz)
Apn =0, Ap= g(rgﬁn —rpfc), Agz = —r(reby —rpble), Au= %(Tgec —1¢be)
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Each component can be related from Egs. (4) and (6) as:

r
J = <(rebezy + rebpze + rpfleze — ryfeze — 1¢Oczy — Tebn2e)

£
& = }]g(Tﬂczn + 7¢Onzr + Tyblrze — rybcze — rebrzy — robpz()
G = jljr(w&z" + 1¢Onzr + Tybrze — Tnbezr — Te0r 2y — To0p2¢)
ne = —%E(negz’( + 102 + 1c0r2¢ — T¢Oczr — Tebrze — Tr6:2E)
£ = ;g(gczn bnzc)y G = —:177'(0527, —Opze), M= '}g(emzc — bcze)
&g = ——lj-é—(mzn —rpzc), Co= . (Tézn —ThZe), Mo = "%%(QZC — r¢2)
£ = %%(T(en — 1), G = —%T(Q@n —rafe) N = %‘2(7’504 —1cbe)

The continuity, the Navier-Stokes and the energy equations ( Eqs. (1)-(3) ) are transformed by
these rules.
[Continuity equation]

9

10 )
e EVR) T g (JVe) + 5 (V) =0 0

Sy

Here, V¢, V¢, V;, are defined by
1 & 1
Ve =&vr + ;éeve +&v,, Ve=£&Gu+ ;Cevo +&Cv., Vy=nu+ ~Moo + v, .
These velocities are called as contravariant velocities.
[Navier-Stokes equation]

Equation (2) is expanded as

8 §t - +Ct C (91)1
4o Egg(m@) ggc(JVCv,) ;n(Jw,vi)+er(—‘]71’g>+e(,(‘]”;””)]
— (65 + 65 g )e
o i%u&rgf)?)%%( sem )
+§§C<J§Qaa?> €6+ 5 (J&mﬁ“)
(m&« 5) 8(Jnrcra?) a(Jnmrgl;)
ag(J 606 5 + (U560 30 + e (U5 Eom )
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where v; = (v, vg, U,).

[Energy equation]

Equation (3) is expanded as equation (9).

8T+§t8§ Cta<+77taT
b F R UET) + VD) + S vT)
- il[ga—g(m@af) i%us@g f) +aEEEn )
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3.2 The coupling and time advancement

In this analysis, fractional step method is utilized to computate these governing equations. Euler
method is adapted for time advancement. Here, the time in the computational domain is defined to
be the same in the physical domain (7 = ?).

Equation (2) is described as

?;;_l +ft+fc=—(§i2—§+Ci%§+nig—1;)€i+fu, (10)
where f;, f. and f, are the coordinate movement, convection and viscosity terms, respectively.

In fractional step method, the velocity is solved by dividing into three steps as below.

G o= o+ At {—fe+ fo} (11)
n+)  gpmtl) g pntD)

() _ 5 A < op . . ) A 13

Uy Vi L& PY: + G B¢ + 7 an €; (13)

Where ¥ means temporally velocity, and superscript (n) indicates a time step. ¥; is a compensated
temporally velocity in order to the movement of the computational grid. Because the free surface
deforms, the computational grid must be restructured. Therefore, it is important that the influence
of the computational grid movement is considered. Equation (12) is utilized to take account of the
computational grid movement.

Equation (12) is considering in two dimensional coordinate for the simplicity. Jacobian matrix in
two dimension can be described as

- — 6 -
AL
o 0 & nr 2% (14)
9z 0 & m: ] | an
% Lz | [&]
e | = |0 e % % (15)
B 0 7r 2y ] [ 5 |
Equation (15) is inversely transformed as follows,
d
% 1 (rezn — zery) (=Trzg+ 2emy) (rr2e — 277¢) ar
2| == 0 P —z @ (16)
g1 J ! ‘ ¥
52 0 —Ty T¢ B
Then equation (12) can be expressed by equation (17).
0; 0v;
5, = ~1_At[ iy } 17
v v & J€ Nt B (17
From Egs. (14) and (16), the relation of each components are given by
(T = rezy — 21y
1 1
&= —(=rrag+ zm), M= 7(7"725 = 2:T¢)
6 _ 4 Tz (18)
T ; = - J
—_n =_¢
éz - J , /’72 J
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Equation (17) is further transformed with use of equation (18).

0 = U — At%(—nzn + 2,7y) (?)5 (rrze — zfrg)%:—;
0v U 0v
- vﬁ—At({r S )rT+At(§z "4, “) o (19)
23 23
As the result, owing to the relations of derivation in equation (15) shown as
2 ¢ 0 +n 0
ar  “Toe T "o
;8 2
g ~oe oy
Equation (17) is derived as equation (21).
. . 0v; 0v;
v, = vi+At{8rrt+8 } (21)

Where ¢; is the velocity in the previous computational grid.

That is, if the computational grid moves by the amount of %At, the velocity in the restructured
grid is indicated by equation (19) (see Figure. 2). Therefore, equation (17) indicates the correction
of velocity with the computaional grid deformation. This approach can be adapted in the three
dimension of the Navier-Stokes and the energy equations as well.

Figure 2: The relation between the velocity and the computational grid

The pressure in the equation (13) is solved by the pressure poisson equation. The pressure
poisson equation is derived from the continuity equation and equation (13).
[Pressure poisson equation]

V'Uz'
At

vip = (22)
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Equation (22) is expanded as follows.

iura@ £> aéurgrc,« é)C> ;( &)
b 266 S0+ UGG + GGG )
v §<er§raf>+%(hm<ﬁ§> %mmgﬁ )
- STt g) + oG5+ 8‘1( T
b RS+ TG+ GE )
+ ;n(Jinoﬁo%I;) ;ﬂ(r]ine@a?) ;H(J%W?oi—i
+ ;Ur@gza]g) e c) e S)
b Zre S+ a5 + grren )
b LU St + oI G + )
= [t + gt + ;’n(hvn) 23)

Where VgVC and \7,, are defined by
. 1. .
‘/5 = grvT + ;SBUO + gzvz s

which are called as contravariant temporally velocities.

N . 1. . .
‘/C = Crvr + ;C@’UG + szz y

. 1 X
Vo = nrtr + T + n.0; ,

To solve the pressure variation implicitly, equation (23) is calculated by successive over relaxation

method (SOR method) in this analysis.

3.3 Application of Crank-Nicholson Scheme

The Crank-Nicholson Scheme is applied only the circumferential constituent of the viscous
terms in the Navier-Stokes and the energy equations in order to ensure a larger stability margin.

Equation (11) is discretized as

aa?—k(U-V)vi:éVQvi
- G
- Rt [rw e g )]
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At ~ At - At -
st a0~ (e emm +1) 0+ 3 a0

n At 1 0%7
= -l — At [—(U'V)U@“F—}—Hz} o,

Re '] 2Rer? 962"
(24)
The Tri-Diagonal Matrix Algorithm (TDMA) is used for to solve equation (24). In the time ad-
vancement, second-order precision can be guaranteed by this method.

The energy equation is also transformed to be applied the Crank-Nicholson scheme. Equation
(3) is expressed as

or 1

— V)T = — V2T

T +(U-V) Mav

oT 1 1 62T
S RACRES - Uy

At 1 0° 1 nAL 19T
L9 T"“:—T”—At[— U-V)T+—H,| - =L~

- <2Ma 2 06 ) O-T 35"~ 500 062
N At Tn—H _ ( At + 1) r]ﬂjn-‘rl + At T'n+1

2Ma - r2AQ2 It Ma - 12A62 2Ma - r2A62 T

1 noOAt 1 9%T™

= T — —(U -V + —H,| — =
At[ ( Vv + Ma t} 2Mar? 067 .

(25)

3.4 Solution around the center axis

In the case of the numerical simulation with the 3-dimensional cylindrical coordinate system, the
central axis (r = 0) becomes the singular point. This central axis problem is important for the cal-
culations with the cylindrical coordinate system. Therefore, in the present calculation, the velocity,
pressure and temperature in the central region are solved as method below. The computaitonal grid
is fixed at the center.

Each radial velocities v(0, j, k) on a central mesh and each circumferential velocity on outer one
more mesh are summed from O to 27.

( né

ve(k) =% { {vn(1, j, k) = v (L, j + B, k) } cos{0(j) — A8/2}

— (w02, ,k) — ve(2,j + b, k)} sm{e(j)}] 06
ng@
) = 3 [ (r(1,,0) = (1,5 + 06,0} sin{6(5) - 26/2)

 {o(2,5,k) = (2, + 6. K)} cos{803)}

where the angle in the case of v, differs from one of vy owing to the difference of definition points
of each velocities. The radial velocity v,(0, j, k) and the circumferential velocity v4(0, j, k) on the
central axis are defined as the averaged velocity in each angle.

0(0,5,K) = 5[ {un(k) cos{OG) — 20/2} + {v,(k)sin{8(5) — A0/2),
n(0,5,K) = | (0] sin{0(0)} + oy () cos{8(5)}|
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Figure 3: Calculation of velocity at center axis

The Navier-Stokes equation in the axial direction and the energy equation at the center are derived
by azimuthal integration.

[Navier-Stokes equation of the liquid center (axial direction)]

ov, 0 0 0, ,
PE )+ o (vavs) + 5 (r0?)
oP Pr |0, Ov, d 10v, J , ov, Gr
= —T'a";*m[W%ﬂ*é@ﬁae”&“aﬁ] T e (28)
Equation (28) is integrated in all directions.
ov, Af & 1 1 9142
at + wAr ezo(vrvz) * Az [UZ]O
OP Pr | A8 2~ v, 1 |0v, Az Gr
= — 4+ — |— — —T 2
9z * Ma | 7Ar & or N+Az[azL T Re? %
The energy equation at the center is also derived with this treatment.
[Energy equation of the liquid center]
ar o a 0 1 |0, or 0 ,10T o, orT
4 2 (ro,T) + —(0eT) + —(rv,T) = — | —(r—) + —(==—) + — (r—
"ot gD+ g ) + 5o ) = 3 [8T(T o) Y aelae) T 52 e )} G0
Equation (30) is integrated in all directions.
a_T+____A0 QW( T)—i—i[ T]Az_i _AQ%@_T _|_L 8_TAZ 1)
ot wAr = o Az o T ara Y 7AY izo Orlar Az {0z |,

Also the pressure Poisson equation has to be solved at the liquid center axis.
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Py From the figure 4 the continuity equation is de-
fined as

TAT? (v — Vzg) + —jArAzZvr =0, (32)
0

p Time advancement is described as follows.

o) = G,y — AtPN_”&
e Y P AzP
n ~ C - S
(n+1) . _ At s — Pe
- Py o vr] Ar + %AT]
h i Ar = Ar.
Figure 4: Center mesh where, Ar; is defined as Ar; = Ar
The pressure Poisson equation is derived from Egs. (32) and (33).
2 4 1
L P P Po)
[Az2+3m2] e | antv ) 3A7~22 }
1
= A (UZN - S n]A’)" Z ’Ur] (34)

3.5 The free surface deformation

The stress balance over the free surface must be considered to compute the free surface shape.
Along the interface between two immiscible fluids (1) and (2), the forces over the surface must
be balanced. If the surface is plane and the surface tension is constant, the stress balance over the
surface leads

SM . p=8® ‘m, (35)
where S is the stress tensor. The each component in the stress tensor is described as
Sij = —Poi; + peg; | 36)
where e; ; can be expressed in the cylindrical coordinate as

. ov, . _18Ug+1)r . _ Oy,
rr 87" 06 — 80 T’ zz T 827

_1 0 <v9>+l8vr __1 18Uz+8_vq _l 8vr+8vz 37)
=351 ar ra0( T2\ r00 "z T2\ 0z " or

In addition, if the free surface has curvature and the surface tension varies along the interface, the
equation of the stress balance becomes!®!

SO .n+g(V-njn—(I—nn)-Vo=8? .n_ (38)
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where I is the identity matrix, and n is the unit normal vector directed out of liquid (1) into the
ambient fluid (2). The element o(V - n) in the second term is the so-called Laplace pressure. The
mean curvatures of the interface,

1 1
V-n= —4+ — 39
n R1+R2’ (39)

can be expressed as the sum of the inverse principle radii of curvatures R, and R». On the other
hand, the mean curvatures of the interface can be described with Cartesian coordinate system.

-1 R | _, (0R\
V'n———R3N3|: RE;Z—?—{R +<59‘>}
OROR (OROR _ 0°R
0z 00 \ 0z 06 0200

OR\*| | ., OR\® R
- {1+<§> }{R +2<%> _R_a—ﬁ}] (40)

The second additional term in equation (38) indicates the surface force acting tangentially orig-
inated from the surface tension o. The operator I — nn represents the orthogonal projection of
a vector onto the tangent plane defined by n. Besides the influence of the surface shape and the
surface tension, the action of the gravity is taken account into the equation of the stress balance,

SY.n+o(V-n)n—(I—mn)-Vo+ pWYgH —2n=8% .n4 pPg(HH —2)n  (41)
This equation can be non-dimensionalized using the scales as Table 1.

1 Bo
M, — —T*) (V- —mn) - VT =S® - (g —
SY.n+ <Ca T > (V-nn+ (I—nn)-VI™* =8 C’a(H z)n (42)

where the dimensionless parameters are called the Capillary and the Bond numbers, defined as

AT D — pNgH?
Ca= AT g, P =079 43)
Ty 0o

The two tri-diagonal matrices must be considered for axial and circumferential directions, since
the two directions of curvature exist in the three dimension. In addition, a constraint has to be
considered to maintain the volume of the liquid bridge constant.

H p27 1
/ / ZR2d6dz = V. (44)
oJo 2

The position of the free surface R can be obtained by using Tri-Diagonal Matrix Algorithm(TDMA)
in the axial and the circumferential directions derived from eqs.(40), (42) and (44) (o1,

3.6 Boundary condition

To derive the boundary condition of the velocity at the free surface, the balance between the
shearing stress and the surface tension must be considered. The interface both disks and fluid are
assumed flat, and non-slip condition is applied for the velocity. The condition of heat transfer over
the free surface is assumed to be adiabatic. Therefore, the boundary condition of velocity and
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temperature can be expressed as follows.

[Velocity in the axial and horizontal directions]

Ovs _ Q_T:
on  Os
1 avr J vg 10T

r 00 8r(r) r 00

[Velocity in the circumferential directions]

lavr_l_ 8(1)9) _EB_T
r 00 or r’  rof

[Temperature]

or
8—n_0

(45)

(46)

(47)

As for the pressure, the boundary condition is derived considering the stress balance from equations
(40) and (42). The pressure gradient owing to the dynamic surface deformation is applied as the
condition of the pressure poisson equation (Eq. (48) ) over the free surface.

P 1 O*R B 1 8R 8R(8R 8R O*R )
T Re 922 R{R2+ (OR/90)?2| "9z 90 0z 98 0200
8 9 OR,, PR, || R{R? + (OR/36)*}(1/Ca —T)
Bo
2%y -
+Ca( z)
+8UT
or
+1 8(09 lavr}_ 1 8UT+8UZ n.
2 8 r 00 2" 0z or " n,

L-wor  vor | or
n, Or n6r89 "zaz
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4 CODE VALIDATION AND RESULTS

4.1 The initial shape of the liquid bridge without temperature difference

Figure 5 indicates the result of the sur-

' T face shape in a case of null temperature dif-

27 Experimeni(Nishino etal) | ference. The shape is determined only by

the influence of the gravity. The blue line

represents an experimental result measured by

Nishino*3!. The experimental conditions are:

the test fluid is 5¢St of silicone oil, aspect ra-

tio (A = Height/Diameter) of 0.5, volume ra-

tio of 1.048. The diameter of the lower disk

s : 2{ 7z : 217 is slightly larger than the upper one (Dypper =

Radius [mm] 5mm, Djower = 5.0357mm). The figure shows

that the difference between experiment and nu-

Figure 5: The shape of isothermal lig- merical simulation is enough small with a max-

uid bridge; comparison with experiment (3- imum difference of less than 5 %. Especially,

dimension) the maximum and minimum deflection points
agree well with each other.

Height [mm]

4.2 Moderate Pr number fluid

4.2.1 Static free surface deformation

Marangoni convection changes from a 2-dimensional symmetric steady flow to a 3-dimensional
asymmetric oscillatory one with increasing Ma, with the circumference rotation as described in in-
troduction. The modal wave number m is determined depending on the aspect ratio. The relation
between the modal wave number and the aspect ratio is known as mxA = 1 from many experi-
ments and numerical simulations!'®!. Figure 6 shows the horizontal and the vertical temperature
distribution for A = 0.5 (D = 5Smm), Pr = 4.4 and Re = 2000. The steady flow (a) transits to the
pulsating flow (b) on the so-called critical condition. The pulsating flow changes to the rotating
flow (c) as the temperature difference increases. In the case of A = 0.5, these mode structures and
the mode number of oscillation (m = 2) agree with the structures obtained by the linear stability
analysis (LSA). In addition, the order of appearance of the pulsating and rotating flows also agrees
welll11012],

The simulations of liquid bridges with statically deformed free surface are performed. The
results are first compared with LSA. Table 2 shows the conditions for the comparisons with LSA.
Two cases are calculated. In Case 1, the liquid bridge is a straight cylinder with Bo = 0, while in
Case 2, the surface is deformed with o = 80 where « is the contact angle between the free surface
and the upper disk (Bo = 1.94, Volume ratio = 1.0). That is, in the case 1, the comparison of a
liquid bridge with the statically straight surface under microgravity is performed. In the case 2,
the result of simulation in a liquid bridge with the statically deformed free surface with taking the
effect of gravity is validated into account. Acetone (Pr = 4.4) with A = 0.5 is assumed for both
cases. Biot number Bi is defined as
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(a)Steady flow (b)Pulsating flow (c)Rotating flow

Figure 6: The flow structure of the steady and the oscillatory flows

_hH
R
where i and A are the heat transfer coefficient and the thermal conductivity, respectively. The

height of liquid bridge H is 2R x A with R = 2.5[mm]. The grid points of 40 x 30 x 40 (r x # x
z) are employed in these simulations.

Bi (49)

Table 2: The parameters for comparison with linear stability analysis.

Casel Case2
sur face shape | cylinder | de formed(a = 80)
Pr 4.4 4.4
Bo 0 1.94

Fig. 7 indicates the time history of the absolute azimuthal velocity variation in case 1 at two Re
numbers with the static free surface deformation under the zero gravity at the mid-height over the
free surface. We calculated in various Re numbers as given in Table 3.

Table 3: Re number
Re: 1000 1500 2000

We can see that the azimuthal velocity decreases with time at Re = 1000 while it increases at
Re = 2000 with a typical exponential decay or growth rate. From the growth rate of the azimuthal
velocity obtained in this figure, the critical Re number can be estimated by interpolation as the
point of the zero growth rate (see Fig. 8). Figure 9 indicates the azimuthal velocity variation of the
case 2 for Re = 1000, 1500 and 2000.

The critical Re are compared with the result performed by LSA in Table 4. The present results of
the critical Re number are obtained from figures 7 and 9. The result of case 1 is in good agreement
with that of LSA. In the cases 2, the value of critical Re is a little higher than that of LSA. It is
known that the critical value tends to decrease as the number of grid points increases. Therefore,
it is considered that the critical Re is higher than that of LSA because the grid points are coarse.
The relevant experiment with use of the Acetone is quite few because of experimental difficulty
due to the high evaporation rate. Recently Kawaji['®l made a series of experiment using Acetone
and obtained the critical Re of 1818 as shown in Table 4, which is much higher than the present
and LSA values. The reason of the difference can be attributed to the additional cooling by the
evaporation. The validity of the present program is confirmed through these examinations.
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Table 4: The results of comparison with the linear stability analysis.

Casel Case2
Present | LSAM | Present | LSAM | Eaperiment!'!
Re, 1050 1030 1150 1010 1818

4.2.2 Dynamic free surface deformation

Calculation are performed with the dynamic free surface deformation for Re = 1000, 1500
and 2000 under the zero gravity. The azimuthal velocity variations with dynamic free surface
deformation are shown with blue lines in Figs. 10 and 11. The relation in the present calculation
is Ca = 0.41x 1072 at Re = 2000. This volume of Ca = 0.41x 10~2 corresponds to that of Acetone.
Figure 10 indicates that the growth rate of the azimuthal velocity with static surface agrees with
the one with dynamically free surface. No significant effect of free surface deformation can be
found upon the critical condition.

The critical condition in the case of normal gravity with dynamic free surface deformation is also
calculated. The critical Re number is slightly larger than the one with the static free surface. The
effect of dynamic free surface deformation upon the critical Re is found to be quite small in the
present condition.

The Ca number is one of important parameters for surface deformation. Ca number is defined as
the ratio of thermal coefficient of surface tension times delta T divided by surface tension. That
is, Ca = 0 means the case of dynamic non-deformable liquid bridge. In addition, the increase of
AT results in the increase of both Re and Ca numbers. In order to further investigate the influence
of surface deformation, Marangoni convection is calculated with a larger Capillary number. The
orange line in the figure 12 indicates the azimuthal velocity variation with larger Ca number under
the normal gravity. After all, the influence of dynamic free surface deformation upon the onset of
oscillation is practically negligible in all cases calculated.
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(Re = 1000, 1500 and 2000, Ca = 0 and Ca = (Re = 1000, 1500 and 2000, Ca = 0.41x 10",
0.41x107%, g=1g) 0.41x1072and 0.41x107°, g=1g

The free surface deformation with Ca=0.41x10"", 0.41x 1072 and 4.1 x 107 is obtained at the
position of 1/4H, 1/2H and 3/4H. The time history of the free surface deformation at the mid-height
is shown in Fig. 13 for Ca=0.041, 0.0041 and 4.1 x 107 and Re = 2,000 under the normal gravity.
The free surface starts oscillating at about 8000 of the nondimentional time {. The amplitude once
tends to be approximately constant and then becomes larger again at ¢ = 13000 (see Fig. 13(a),(b)).
The flow structure changes from the pulsating flow to the rotating one at that time. The amplitude
at 3/4H, however, is unchanged. In the rotating flow state, the amplitude of surface deformation at
the mid-height is about 0.1 for D = Smm. Kawajil*®! found in his experiment that the maximum
dynamic deformation was an order of 0.1um or less. So, the present results agree well with his
finding.

Figure 14 shows the Ca number versus the amplitude of the surface oscillation. The amplitude
increases in proportion to Ca number in the present range, which is in accordance with the tendency
indicated by Kuhlmann!' in the work.
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Figure 13: The time history of the surface deformation observed at 1/4H, 1/2H and 3/4H
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Figure 15 indicates the temperature over the free surface at each Ca number. The temperature
oscillation starts behind time with the larger Ca number. Unlike the case of the free surface, the
amount of the amplitude of the temperature vibration is not different between the pulsating and

the rotating flow states. The temperature at the upper part is oscillating somewhat larger than the
lower one.
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Figure 15: The time history of the temperature observed at 1/4H, 1/2H and 3/4H
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The amplitude of the axial velocity is different in accordance with the flow structure. The ampli-
tude in the rotating flow state at the mid-height is smaller than the one in the pulsating flow state
(see Figure 16(b) ) The other positions show the opposite phenomena (see Figure 16(a) and (c) ).
The axial velocity increases or decreases at the onset of the rotating flow depend on the direction
of the radial velocity over the free surface. The axial velocity with larger Ca number is larger at
the upper region. The effect of Ca number upon the amplitude is quite small.

[x107] ]
1§ | WI’I‘I“U“ﬂ"ﬂ”ﬂ’ﬂ'@'ﬂwﬁ{ﬁ
5 '5(; | 10000 | 20000
Time/-]
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(c) observation point : 1/4H

Figure 16: The time history of the axial velocity observed at 1/4H, 1/2H and 3/4H
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The mutual relationship among the free surface deformation, the temperature and pressure vari-
ations is investigated. Figure 17 shows the fluctuations of these quantities in the liquid bridge in
the pulsating (a) and rotating(b) flow states. The fluctuation of the free surface displacement from
the initial position is magnified with 5000. The purple, blue, red and yellow express the high tem-
perature, the low temperature, the high pressure and the low pressure, respectively. The low or
high temperature regions correspond the low or high pressure regions, respectively at the vicinity
of hot disk. The axial symmetric surface deformation is observed in the pulsating flow state (see
Fig.17(a)), while the free surface is deformed asymmetry due to azimuthal rotation in the rotating
flow state (see Fig.17(b)). That is, the liquid bridge is twisted, and rotates holding this shape.

(b)

Figure 17: Fluctuations of the temperature, pressure and surface deformation in the pulsating(a)
and rotating(b) flow states

(a)

Figure 18: The pressure, temperature fluctuations and the free surface deformation near the upper
disk

Figure 18(a) indicates the instance at which the low temperature fluid arrives at the free surface
of the hot corner. The fluid over the free surface is then accelerated downward by the Marangoni
force. As the result, the low pressure region appears near the upper disk owing to the Bernoulli’s
theorem (see Figure 18(a)). As the liquid near the upper disk flows downward, the low pressure
region moves down. Consequently the surface becomes concave due to the low pressure in ac-
cordance with the stress balance (see Figure 18(c)). Phase lags among the surface deformation,
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the temperature and velocity can be expected, since the dynamic free surface deformation

directly caused by the low temperature region.
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Figure 19: Relationship between the surface deformation,
the pulsating(a) and the rotating flow state(b)
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Figure 20: Relationship between the surface deformation, pressure, temperature difference and
absolute velocity in the pulsating(a) and the rotating flow state(b)

Figure 19 shows the phase correlation between the dynamic free surface deformation and the
other quantities in the oscillatory flow state. These oscillations are observed at the points at
1/10H from either the upper or lower disks. These figures show the one cycle of oscillation in
the (a)pulsating and (b)rotating flow states. The figure indicates that the phase lag of about 7 /2
between the temperature and the surface deformation near the upper disk in the both cases. The
surface velocity oscillates in phase with the temperature. The relationship among these phases can
be explained by considering that the surface deformation is not affected directly by change of the
surface temperature and velocity. As for the region near the lower disk, on the other hand, the
phase difference of 7 appears between the temperature and the velocity variation. The velocity,
however, becomes maximum, when a loocal temperature difference from the temperature of lower
disk is the largest. Thus, the same phase lag as the case of the upper region is brought by consid-
ering relation between a temperature difference and absolute velocity (see Figure 20). In addition,
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the phase of displacement of the free surface is shifted 7 or slightly larger than 7 compared with
that of the surface velocity and temperature.

“30997-004  3.645BE-004

-2.1085€-005 2.9279E-003

-A2346E-002 5.5919E-002
(c)

Figure 21: The fluctuations of the (a)pressure, (b)surface deformation and (c)temperature and the
azimuthal velocity in the pulsating flow state on the # — z plane

Figure 21(a) indicates the fluctuation of the pressure distribution and the azimuthal velocity on
the free surface shown in the # — z plane in the pulsating flow state. High pressure region emarges
where the fluid is gathered over the surface. That is, since the pressure mainly determines the sur-
face deformation, the high-pressure part is in accordance with the convex surface (see Fig.21(b)).

Figures 21(c) shows the temperature distribution and the azimuthal velocity on the whole free
surface. Figure 21(c) indicates that the azimutha velocity vectors are directed towards the coldest
temperature zone. The resultant impingement causes the high pressure region (see Fig.21(a)) and
thus results in a concaved surface (Fig.21(b)). In the case of the upper region, the free surface
is concaved at # = 0 point where the temperature becomes low, since the temperature difference
becomes large (see Figs.21(b) and 21(c)). Therefore, the axial temperature difference govern the
surface deformation near the upper disk, while the azimuthal one influences to the surface defor-
mation near the lower disk.
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As for the case of the rotating flow state, the bulging or denting regions incline notably as against
an axis (see Fig.22(b)). The temperature, however, is distributed as approximately same as the case
of the pulsating flow state (see Fig.22(c)). The present relation between the surface deformation
and temperature agrees well with that of linear stability analysis which is obtained by Kuhlmann et
al.'%l. On almost all the domains on the free surface, the free surface bulges at the low temperature
area by the influence of azimuthal Marangoni force. At the vicinity of the hot disk, the phase lag
between the dynamic surface deformation and temperature is shifted by the influence of the axial
one in the both states.

-3040E-004 2.7061E-004

-2.4305E-005 3.5624E-005

-5.2865E-002 4.7769E-002

(©)

Figure 22: The fluctuations of the (a)pressure, (b)surface deformation and (c)temperature and the
azimuthal velocity in the rotating flow state on the § — z plane

Figure 23(a) indicates the shape of the liquid bridge section corresponding with figure 21. The
phase of surface deformation is shifted only near the upper disk. Figure 23(b) shows the shape of
liquid bridge in the rotating flow state. Although the relation of deformation of each height does
not change, the center axis of each shape is incongruents each other.
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(a) (b)

Figure 23: Top view of the shape of the liquid bridge section at 1/10H, 17/40H and 9/10H in the
pulsating(a) and rotating(b) flow states
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Figure 25: The vertical variations of the temperature (a) and axial velocity (b) (blue line: static
surface deformation, black line: dynamic surface deformation)
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Fig 24 compares the flow field with dynamic and fixed surface deformations. Fig 25 indicates
the temperature and the axial velocity distribution along the free surface. Figure 24 shows that in
the case of dynamic surface deformation, a smaller vortex is formed, and its vortical center locates
at a higher position. The velocity is more decelerated due to the enhanced viscosity effect of the
smaller vortex. In addition, the surface temperature is higher, because a return flow temperature
remains higher according to the smaller vortex.

The S-parameter is reported as an important nondimensional parameter to express the critical
condition by Kamotani et al.l'”l, The S-parameter is defined as

_orAT 1,k (50)
o Pr

S

The convection becomes oscillatory when the S-parameter is larger than about 0.01 in a limited
range of A (0.5< A < 1.5) and Pr (7< Pr < 81). It is noted that the S-parameter with the critical
Ma number is constant in this range. Figure 26 shows representative exisiting data for the onset
of oscillations are correlated in terms of the S-parameter and Ma. The present and the compared
data above are plotted on figure 26. All of the numerical and the analytical results seem not to
be significant for the Kamotani’s theory. Also the experimental result is smaller than 0.01. In

10! =

Ar=05-15, Pr=7-81
v ® A
Siel ¥ ’.? e 3=
&' l: ]
P’; 1-g data u -g data
10? b e
104 Ma 108

Masud et al. (1996), Ar=0.5 - 1, Pr=27 - 59

Velten et al (198981), Ar=0.5 - 0.76, Pr=7

Ostrach et al. (1985), Ar=0.62- 1, Pr=23 - 60
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Figure 26: S-parameter
order to investigate the effect of free surface deformation upon the onset of the oscillation further,
the location of the maximum surface deformation, the maximum surface velocity and the amount

of the free surface displacement are compared with values obtained by Kamotani’s theory. Each
values are derived from equations (51), (52) and (53) (see Kamotani et al., 199817).
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[The location of the maximum surface deformation]

A= Ma 3L (51)
[The maximum surface velocity]
AT L
U, = “T’u Ma~* (52)

[The amount of the free surface displacement]

g =

("TAT i) Ma %L (53)
e Pr

where L is the characteristic length used by Kamotani et al. According to their theory, the position
of the maximum surface deformation agrees that of the maximum surface velocity. In the present
result, however, these positioons differ each other. Thus, Thus, the values in the present result
are observed at the points of the maximum velocity and the maximum surface deformation (see
Table 5). In the present calculation, table 5 shows the maximum velocity and surface deformation
is smaller, and A is further from the upper disk than Kamotani’s results. These data are obtained
with Pr = 4.4. Although the condition is slightly deviated from the defined range, it is proved that
this theory is inapplicable to the moderate Pr number fluid.

Table 5: The comparison of each values derived from S-parameter

Kamotani et al.'”l | Present (at U,,...) | Present (at ds)
Almm)] 3.758x 1072 2.813x107! 4.063x107"
UJm/s] | 4.914x10~* 623110 6.096x 10~°
§s[mm] 2.015x1073 6.553x107° 6.943x107°

4.3 High Pr number fluid

In a experiment under the micro gravity, the
high Pr number fluid is used as the test fluid to
generate a single crystal. Hence the simulation
of thermocapillary flow with high Pr number
fluid is absolutely essential for crystal growth.

Figure 27 indicates the temperature distri-
bution in the pulsating flow state at z = 1/2H.
We can see that the modal structure with wave
number 2 is clearly observed. Marangoni num-
ber of 50000 is employed in this calculation,
and it is appreciably higher than the critical

1.929H7mm Ma number in the experiment. Therefore the

convection is expected to evolve to the rotat-

Figure 27: Temperature distribution with 2cSt  ing flow. Calculation with high Pr number

in the pulsating flow state (Ma = 50000, Pr = fluid, however, is difficult since it requires a
28,g=1g) fine mesh and a shorter time step.
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Figures 28 and 29 indicate the absolute azimuthal velocity and free surface deformation, respec-
tively. The azumuthal velocity increases with typical exponential growth rate as in the case of
the moderate Pr fluid (see Fig.28). The amplitude of surface vibration is 4x 104, this value is
equivalent to 1um (see Fig.29).
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Figure 28: Absolute azimuthal velocity varia-  Figure 29: Dynamic free surface deformation

tion at z = 1/2H (Ma = 50000, Pr = 28, g = 1g)  in the pulsating flow state at z = 1/2H (Ma =
50000, Pr=28,g=1g)

S CONCLUSIONS

The following conclusions were obtained from the present numerical studies.

(1) The thermocapillary convection with dynamic free surface deformation was calculated ro-
bustly and successfully.

(2) The result of the static shape of the liquid bridge gave good agreement with experiment.

(3) The results of the present was in good agreement with the results of linear stability analysis
with respect to the critical Reynolds number.

(4) Effect of surface deformation upon the critical condition was found to be not significant in
this case.

(5) The relation between the free surface deformation and the other quantities was explained.

(6) The phase lag between the temperature and the free surface deformation was observed in the
oscillatory flow state.

(7) The free surface deformation was governed by the temperature difference in the axial di-
rection at the upper part. As for the lower part, the temperature difference in the azimuthal
direction dominates it.

(8) In the case of dynamic surface deformation the surface velocity is decreased and the surface
temperature remained higher owing to the reduced vortex size.
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(9) S-parameter was inapplicable to the moderate Pr number fluid. The position where the free
surface is deformed most differed from that of the maximum surface velocity.

(10) Thermocapillary flow with high Pr number fluid was calculated successfully, and the pulsat-
ing flow was observed.
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