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Optimal Problem for Delay-Differential Control Sytems
(On the Existence and Uniqueness of Optimal Solution)*
By
Shigeki HATAYAMA**

ABSTRACT

General delay-differential control systems dependent on both the previous history of the
state and of the control are modelled, The optimal control problem for such systems with the
cost functional, the state comstraint condition and the time-varying target set is formulated.
This formulation generalizes the optimal problem examined by M.N. Oguztoreli in {13]. An
existence theorem of an optimal policy in the class of absolutely continuous initial state
functions in the C space and measurable control functions in the Ly space is proved. Fur-
ther, the uniqueness of an optimal control in the case of linear delay-differential systems is

e,

considered.
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1. INTRODUCTION

It is very usual to describe the mathematical
model for a control process by a systemm of
ordinary differential equations, under such the
assumption that the future behavior of the
physical process depends only upon the present
state and control, the influence of which is
instantaneous. However, there are not a few
control systems of which evolution depends not
only upon the present state and control, but
also upon their past history. In general, the
delay phenomena may occur in the case that the
transmission of informations is related to the
transfer of a material or a field, This kind of
control processes should be formutated by a
system of delay-differential equations.

Retarded actions are present in modern control
problems for aerospace vehicles, and give rise to
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the following effect. In remote control of distant
spacecrafts, the communication delay can ad-
versely affect the stability of the overall control
system [1]. Time delays in the engine response
of large jet transports can seriously affect the
handling qualities of aircrafts [2). In manned
systems, lagging commands caused by slow human
response can bring a normally stable system to
become unstable [3]. Hypervelocity entry vehicles
can lose aerodynamic stability as a result of fiow-
field lags caused by the spacecraft motions and
ablation [4]. Combution delays in rocket engines
can lead to intermittant running, possibly
terminating with an explosion of the engines [5].
Also in various branches of technology, econom-
ics, biolegy and medical science, the importance
of studies for such the aftereffect has been
recognized recently.

An optimal problem for delay-differential control’
systems has been considered first of all by G. L.
Haratisvili [6], who obtained necessary conditions,
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the generalized maximum principle, in order to
minimize the cost

|\ Aoty (=), wondt
R

to the case of control processes involving time-
lag +

(1.1) (O =f (), x(t—1), w{)).
Thereafter, N.N. Krasovskii [7], M.N. Oguztoreli
[8), E. Shimemura, et al [8]-[11], D.H. Chyung
and E.B. Lee [12] have discussed in detail funda-
mental problems for linear differential-difference
control systems

(1.2)  #(OH=Ax+ Bzl — )+ C{Hu(r).
Also, M.N. Oguztoreli [13] have given an existence

theorem of an optimal policy such that it mini-
mizes the cost

-
L Vollf), ult), Hdt,
0

to the case of control processes generalized Eq.
(LD

(1.3) ()= Vi (+), ult), 1).
On the other hand, A.T. Fuller [{4] and R.E.
Foerster [15] have considered an optimal problem
for linear systems with a time delay In the control
function

(t.4) a()=Ax()+ Bult—7).

Moreover, D.H. Chyung and E,B. Lee [16] have
studied the properties of various sets of attaina-
bility and given the geometrical proof of the
maximum principle, to the case of linear processes
dependent on both the previous history of the
state and of the control

(1.5) z()= So_' At,5)a(t4-s¥ds+ Az(i‘)x(f— 7)

+SG__Bl(t,s)zl(t+s)ds+Bz(!)u(f—z-).

As clarified in the works quoted above, the -

following difficulties take rise in optimal problems
for delay-differential control systems, contrary to
the case of ordinary differential systems. Firstly,
in order to prescribe the state of such the systems
as Eqgs. (1.1)-{1.3) and (1.5), we have to know all
the values of w(s) on {—v<s<{, and hence the
state space becomes infinite dimensional. Secondly,
even in the stationary case, the characteristic
equation of Eq, (1.2) is a transcendental equation,
and hence there are in general infinitely many
characteristic roots. Thirdly, as M.N. Oguztoreli
pointed out in the optimal problem for Eq.
{1.3), the value of the cost depends upon the
choise not only of the control function, but also
of the initial state function, and hence we should

seek their optimal pair. TFourthly, such the
systems with controt delays as Eg. (1.4) are in-
herently uncontrollable in the initial time interval
[f0, fo+7], and also a kind of the optimal feedback
control law becomes a function of the predicted
state x(f+7). Due to such the difficulties, the
optimal problem for delay-differential control
systems generalized Eq. (1.5)

(1.6 a(ty= WVad-), wl-) 1)
has not ever been considered.

The present study is concerned with the optimal
problem with the following data; (a) the control
system which can be described by Eq. (1.6); (b)
the cost

ty
S Vi), (), )t
iy

(c) the state constraint condition; (d} the time-
varying target set. For this problem, we shall
obtain an existence theorem of an optimal policy,
an optimal pair of the initial state {function and
the control function. Also, to the case that Vof
Eq. (1.6) is linear with respect to & and u, we
shall consider on the uniqueness of an optimal
control such that it transfers a given initial state
to the target point with minimum cost, satisfying
the state constraint condition. The construction
of an optimal policy shall be discussed in another
article.

2, NOTATION, DEFINITIONS AND
ASBUMPTIONS

Let «, 8, v and /o be fixed numbers such that
—ola<h<plr<oo,

where |a} is sufficiently large. For any vector
z2=(2y, z3, **+, 2p) € E¥, the norm is defined by

patl={ &t}

Also the norm of a functional space ¥ is denoted
by [|+|lv. Let G and R be seis as follows:

(a) G is a compact subset of E%;

{b) R is a compact convex subset of B which
containg the origin as an interior point.

We denote by @ the set of all absolutely
continuous functions ¢ ¢ C{la, #], &), with deriva-
tives (f) such that

O =<nlt), for a.e. fela,la,

where n(f) is a square Lebesgue integrable func-
tion for 7e{a, #o]. X denotes the set of all con-
tinuous functions ¥ € C(la, 7], E7), and U the set
of all measurable functions « € La{[«, 7], K). More-
over, for any féelfe, 7], let us represent the
restriction of # ¢ X and # ¢ U on the interval{a, f]
by a+) and (), and let sets of all such a(-)
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and m(-) denote by A; and Ui, respectively,

We denote by S the set of all ordered triples
(v, v, 0y for y e Xz, ve Uy and fefh, ] Let Vv, v, D)
and Vo(w,v,0) be two Volterra functionals of S into
E? and of S into E!, respectively, such that the
following assumptions are satisfied:

(¢} Wy, 1) is bounded on S, and V{(xz(-),
{(+), £} is measurable in ¢ for each fixed » € X and
we U [E3];

(4} W(y,v,¢) is strongly continuous in y for
each fixed » and ¢; i.e., for any sequence {y®¥}
of X: which converges strongly to y e X: the
relation ’

lim || Wy, v, 5~ Wy, 0, )| =0
ni—oo

is valid [17];

{e) Wy, v, 1) is weakly continucus in » for each
fixed  and f; i.e., for any sequence {#™} of [
which converges weakly to v ¢ U}, the relation

lim || Wy, v, H— Wy, v, H]|=0
—rc

is valid [17];

(f) There exists a square Lebesgue integrable

function m(f) for ¢ €[t y] such that
W Wy, v, )| <m(d),
uniformly with respeci to y and »;

(g) V(y,uf) satisfies the Osgood condition
with respect to y for each fixed ¢ and ¢ [13];

(hy Vuly,p, £} is nonnegative on S, and V(.
(-), (-}, 1) is measurable in f for each fixed w e X
and ue U;

(1) Vuly, p, 1) is strongly continucus in y for
each fixed v and #;

(i} Vuly, v, 1) is weakly lower semi-continuous
in ¢ for each fixed y and {; i.e., for any sequence
[v9) of U which converges weakly to v ¢ U, the
relation

lm inf Vi(y, v, )= Vo(y, 0, £)

i—e
is valid [17};
(k) There exists a Lebesgue integrable func-
tion siro(t) for 1 €[y, y] such that

Voly, v, D)< ma(t),
uniformly with respect to ¥ and ».

We note that weak continuity of a functional
implies strong continuity and weak lower semi-
continuity. The converse is not true in general.
We also remark that the Osgood condition for a
functional is satisfied only if it is locally Lipschitz-
ian, and hence only if it is Gateaux differentiable
[13]).

3. FORMULATION OF OPTIMAL
CONTROL PROBLEM

We consider the control system which can be
described by the delay-differential equation

G.1 (t)=Wzu-), w4, 1),

for a.e. telf, vl
where V is a Volterra functional defired in §2.

Let an interval [ be such that [«, HlSIC[a, 1),
and tet #(f) on I be a given control function. A
state function x(f) is called a selution of Eq. (3.1)
on [ corresponding to an initial function ¢e®@, if

(i) =(®)=¢(f), for all {ela, hl;

(ii) a(f) is absolutely continuous on JN[f, 71;

(iii) «{f) satisfies Eq. (3.1) on IN{f, r].

Under the assumptions (a)}-(d), (f) and (g), it is
known in [13] that Eq. (3.1) has a unique solu-
tion @)=, fo; ¢, #) on [«, 7] corresponding to
each fixed ¢e® and ue U,

Let us denote by DS FE® the state constraint
region, and by T{f) the time-.varying target set
which belongs to the interior of D for each f¢
[to, 7]. When there exists #y € 3, 7] corresponding
to any choise of ¢ €@ and #e U, we say that a
pair (¢, #) is an admissible policy, if

(i)} corresponding to ¢ € @ and u € Uy, the solu-
tion a(f)=2a(, fe; ¢, 1) of Eq. (3.1) is defined on
[ ik

(ii) @(t, fo; $, ) € D, for all £ele, t];

(iii) ®(ty, to; &, w) € Tir)

We denote by P the set of all such pairs.

Then the optimal control problem can be for-
mulated as follows, which will be refered to as
problem (@,); find an optimal policy {¢*, #¥) from
the set P so as to minimize the cost functional
defined on P by

Jigh 1= 5"‘ Vlwe(+), ), e,
Q

where V¥, is a Voelterra functional defined in §2.
That is, problem (&) is to seek a pair (¢%, w*) ¢ P
such that

J%, u¥Y< (o, u), for each (g, w)€ P

(3.2)

4, EXISTENCE THEOREM

Let us consider the question on the existence
of an optimal policy for problem (@i). Note that
if P is empty, problem (&) has no meaning. We
need the following lemmas to obtain the main
result,

Letama 4.1 Under the assumption (a), @ Is a
compact subset of Clia, t], G).

proof. Suppose that {¢(P} is any sequence of
@. By the assumption (a), it is obvious that
{¢} is uniformly bounded. Also since each ¢
{f) is absolutely continuous on [a, f] and the
derivative $¢(?) satisfies the relation

e <nlf),

for a square integrabte function s(f) on [a, ], we
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have by Hilder’s inequality
gé (g, !
g =gl =\ g
hike |
12
oy zar}

1z
|n(:)|edr] ,

o
= }!2“1151/2{ \
Ja
(o
< Lt |
Ja
for any &4 and f2, a<h, t2<fe. This means that
{¢9) is equi-continucus. Hence by Ascoli-Arzela’s
theorem [18], @ is relatively compact with respect
to the uniform norm,
Next, suppose that {¢®)} is any sequence of P
which converges strongly to é ¢ C{[a, fo], G). Since

t
IS 0 ||g5(">{t)i|2dt} is a bounded sequence of real
o

numbers, and since Lifw, ] is weakly complete,
we can choose a subsequence [$Ux)} of {gW)
such that it converges weakly to ¢ ¢ Li[a, ). Thus
we have for any #¢[a, fo]

ng(s)n‘s =lim R’ dU(s)ds
=tim ((40()— 0 ()
= §()—9(c).

Hence, ¢ is contained in @. This completes the
proof.

Lemma 4.2 Under the assumption (b), U, is a
weakly compact subsel of Loffe, ], ET) for any
le [fn, r}

proof. According to the definition mentioned
in §2, U, is a subset of Ly([a, &}, £7). Now, let
{ be any fixed number such that £¢ [4, r}. It follows
from the assumption (b) that R is a closed,
bounded and convex subset of E¥, Hence, it is
clear that U is convex. Also by boundedness of
R, there exists a positive number ¢ for any ve U
such that

flo(r) | <

Thus according to the definition of the [, norm,
it follows that

for a.e. ¢ ¢fa, 8.

ot =" Noteyisee] ™ <clr—ae

This implies that U}, is bounded. Further U} is
strongly closed. Indeed, choose any sequence
{02} of U, which converges strongly to vel,
{[e, t], E¥). Then there exists a subsequence {#t!x?}
of [} such that

Hm v ()=,
k—ioo

for almost all fefa, ] [19]. Since R is closed,
s(fye R for almost all felw, f]. Hence, v is a
measurable function defined on [a, 7] to R, so
that v € Li([a, 1], R).

It is well-known that a strongly closed, bounded
and convex subset of L[, /], E7) is weakly com-
pact [20]. UL has these properties as shown
above. This completes the proof.

Theorem 4,1 In addition fo the assumptions (z)
to (k) in §2, suppose that the following conditions
hold:

(1) D is a compact subset of E% which contains
G;

(m) T(N is a closed set which is upper semi-
continuous with respect to inclusion [211; i.e., for any
e>0 and telh, y), there exists o(s, )>>0 such that
Yy belongs to an ¢-neighborhood of the closed sef
), whenever |V —t| <.

If P is nonempty, then there exists at least an
optimal policy for problem (Qy),

proof. (i) Let M denote the infimum over P of
J($, u), M is finite. In fact, by the assumptions
(h) and (k), we have on P

0<J(g u)=S:" Vi), -, 1)t
i3

tr
gg me(f)df.

AT
Hence, since P is nonempty, we can choose a
sequence {gM, ) of P such that

A Fi0))
(4.1)  M=lm sf Vol @iD(+Y, ki), ) di,
i—sm Jt,

where each #( is defined on [a, #7¢9?] and each
x® is the solution 2O (N=ua({, te; &8, #D} of
Eq. (3.1) on [a, ],

(i) Each z®(#) equivalently satisfies the fol-
lowing equation

), for fela, kol

(4.2)  aOH=

¢
¢<i>(ro)+g Wiaws®(2),

iy
us(+), s)ds, for #e{to, t0),
We now extend the definition of each x'®(f) to
fer. 7] by ‘
W2 (2), (), = I/(j;;fg})(.)’

uf‘fj)(-), #59), for te[trtD, ¢l

(4.3)

Then, by the assumption (f) and Eq. (4.3), there
exists a square integrable function mf{f) for
t € [to, y] such that

(4.4) || Wet2(0 ), 1e(-), B <ml#),

uniformly with respect to # and wu. Since a
sequence (¢} of @ is uniformly bounded as
shown in the proof of Lemma 4.1, there is a
positive number ¢ independent of { such that
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(.5)  Y9Ple= sup [[$O0H| <0
agt<ty

It follows from Egs. (4.2)-(4.5) that for any /,

¢, for fela,to];
Jao) <

- .
c—i—\ m(syds<e+ \T m{s)ds,
Jeg AL
for {e{lo, 11,
and hénce that by Holder's inequality

¢, for fefa, hl;

e 1/2
c—l—ir—ioih’?“r |m(s)i2ds} R
Tty

for t€{t, ).

(EREOTES

This inequality means the uniform houndedness
of {28} on the extended interval [a, y}. Further,
we have for any / and for any h, &, «a<h, &<y,

a0ty =0y =|| * M), 10, s
4

18
g|!g—11|1/2{g?|m(s)|2ds] ,

oty
< | S ms)dt
i

which implies the equi-continuity of {#¢) on [a,7].
Hence by Ascoli-Arzela’s theorem, {x‘D} defined
on the extended interval [a,y] contains a sub-
sequence.such that it converges strongly to #* ¢ X.

(ili) Let us extend the definition of each wt9(f)
to fa, 7] by

(4.6) wO(NH=0, for {e(tyD, 7]

Then by Lemma 4.2, we can extract a sub-
sequence of {#‘9} on the extended interval {a, 7],
which we will call {4}, such that it converges
weakly to a measurable function w*¢ U Since
each f;7 is contains in the compact interval
[5, r}, there exists a subsequence of {#/P}, which
we will call {{,%9}, such that

lim inf £ =4,
k—ca .

where #} belongs to [8,y]. Further by Lemma
4.1, we can choose a subsequence of {¢™®}, which
will be called {¢®), such that it converges
strongly to &* e, Since (3D, i) is still admis-
sible, it follows from the step (ii) of this proof
that there exists a subsequence of {2®}, which
we will call [z}, such that

(4.7) Hm a™()=a*.), strongly in X,
—co

It is obvious that the following limiting processes
are still valid;

(4.8) lim wo™()=w*(-), weakly in U;
R—eg

(4.9) lim ¢ )=¢*.}, strongly in &;
H—reo

(4.10) liinil_‘ionf =3 e[8, 7l

it follows from the assumptions (d) and (e) that
Eqs. (4.7) and (4.8) imply
(4.11) Hm || Va2 ™(), w0}, )— V(aF(),
n—oe
wf(+) )| =0,
for almost all £ € [#, y], according to definitions of
strong and weak continuity mentioned in §2.

Hence, by Lebesgue’s dominated convergence
theorem [20], we obtain

(4.12) lim !: V(s (+), (), s)ds
merco j ity
=\ W), we), sas,
.-!0
for any f€[f, 7. By Egs. (4.2)-(4.3); (4.6)-{4.9)
and (4.12), we have
&1, for tela, b];
wH{t)= -t -
FHt)+| VHC), 1), s,
fO:‘ e (fo, T]

(4.13)

By Eqgs. (4.2) and (4.13), we also see that the
right-hand side of the inequality

() (e < 1|t} — %60 |
{7 1Vm), 0w, 9 Vet
), s

{m)
ty
+S | Vs(-), 26™2(-), s}l|ds
{t
g
tends to zero as mi—co, from which follows that

(4.14) lim 2Dty a¥(15),
s

Egs. (4,13} and (4.14) mean that x*{f)}=2z(, f;
&%, u*) is the solution of Eq. (3.1) defined on [«, 13}
corresponding to ¢*e® and w*e¢ Uy . Hence,
x*({) satisfies the condition (i} to the admissible
policy. .

Since {gm, p} iz admissible, each corre-
sponding solution a)(f) of Eq. (3.1) belongs to D
for any {¢€[a, ™). Also, Eq. (4,10) implies that

[e, $7)S e, £5],

for all m sufficiently large. Hence it follows from
the assumption (1) that x*(#) lies in D, or on the
boundary of D for £ ¢ [a, £3], that is, £¥(!) satisfies
the condition {ii) to the admissible policy.

Further, the assumption (m) implies that the
set A

This document is provided by JAXA.




6 TECHNICAL REPORT OF NATIONAL AERUSPACE LABORATORY TR-357T

A={{t,2) : te i}, 1), z¢ T(H)

is closed in E™1 [21]. By the facts that zomw
{#™y e T} and that #9% e {i¥, ¢] for all m
sufficiently large, we can choose {#;0%), atm)(fm))
as a sequence of J, which converges to (¢%, a*(%)
by Eags. (4.10) and (4.14). This limiting point
belongs to / by closedness of A, That is,

FHEE) € T(),

so that x*(!) satisfies the condition (ii) to the
admissible policy.

Thus we have shown that (g%, #*) is an adinis-
sible policy.

(iv) We must finally verify that (&% u9)e P
actually attains the infimum of J{(g, u). It follows
from the assumptions (i) and (j) that Eqs. (4,7)
and (4.8) imply

(4.15) lim inf V(s m(s), utmi(.), 1)
o
2 Volwf(+), w¥(-), s

for almost all { ¢ [#, £}], according to definitions of
strong continuity and weak lower semi-continuity
mentioned in §2. Since [to, 1S, 15™)] for
all » sufficiently targe, by the assumption (h)
and Fatou’s lemma [20], we obtain from Lq.
(4.15) the relation

-!}
\ Velas3(+), 13 (e), Dt
J fo

-;}
g\ lim inf Ve@m(+), a0(.), Odt
.!0 i—a

‘tr‘
(4.16)  <lim inf | VaQem(), wom(.), far
m—oe
c(ﬂ) 0
< limg Va(em(.), 1), )dt= M.
T-ran fl] .

On the other hand, it is obvieus from Eq. {4.1)
that

&
(4.17) Msg " Vi), uE (), .
fo

Hence by Egs. (4.18) and {4.17), we conclude
that :
fe)

ﬂ’I:limg ’

JE

m—eo Ji,

Vol 30 ), 2™3(0), )t

ey

:St Vi), tH)s )t
0

= J(g*, u¥).

Since (&%, 1r*) is an admissible policy as shown in
the step (iii) of this proof, (¢*, #¥) actually attains
the infimum of J(4$, #) on P. That is, (g%, #*) is
an optimal policy for problem (). This com-
pletes the proof,

5. OPTIMAL PROBLEM FOR LINEAR
DELAY-DIFFERENTIAL CONTROL
SYSTEMS

We now consider an optimal problem for linear
delay-differential control systems as an application
of Theorem 4.1. Such-the systems appear in not
a few control problems for aerospace vehicles,
We need the following preliminaries before taking
up the main subject,

A functional f(y) defined on a linear normed
space Y is said to be linear, if for any pair of
arbitrary real constants 2 and g,

FRu+py) =21 (@) +pf(2),

whenever y, ¥’/ € ¥, and bounded if there exists
a real constant 34>0 such that for ali ye ¥

1 <Mivlr.

Also, a functional f(y} defined on a convex
subset C of Y is said to be convex, if for any 2,
021,

G.1) fRy+1-Dy )<+ -1 ("),

whenever y, ¢’ € C, and strictly convex if Eq. (5.1)
satisfies the equality when and only when y=v".
Further, let a functional f{z) be defined on C'cC
Y. If for any y € C' there exists a y® € ¢’ such that

FiCRESIEN)

¥® is said to attain a global minimum of f(¥)on
cr.

Strong continuity of linear functionals is equiv-
alent to boundedness. ¥ f(y) is a bounded
linear functional, there exists an Af>0 such that
for any y, y'e ¥V

LA~ = Ay =y <My —o |y,

which means that f(y) satisfies the Lipchitz con-
dition. Hence, we have the following lemma.

Lemma 5.1 Bounded linear functionals defined
on q linear normed space satisfy the Osgood con-
dition,

We also prove the following lemmas for weak
continuity and weak lower semi-continuity of
functionals.

Lemma 5.2 Bounded linear functionals f(y) de-
fined on a lincar normed space Y are weakly con-
tinuous.

proof. Suppose that {y™} is any sequence of
Y which converges weakly to y¢ Y. Then, we
can find a subsequence (g} of {y®0) such that
the arithmetric mean
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HE ;(-u)

M or=

converges strongly to wy [22].
from linearity of f(y) that

Also, it follows

=1

= 5 (y)= f( Z} y‘”)

Hence by strong continuity of f(y), we obtain
: 1
Hm f{y®)=1im P Z Fly)
k—eo Hleron

=tim £ (- & )=

Hesen
from which {ollows that even for all the #

(5.2) Hm f{yo)= f{y)

fi—co

is valid. In fact, suppose for contradiction that
Eq. (5.2) is not true, Then, we can extract a
subsequence {¥0) of [y} such that for all the
7 and for any s>0

{5.3) (FACARR )] =t

However, since {y‘?’) also converges weakly to
¥, there exists a subsequence {y) of [y}
such that

Ay ) —Fw)ll <s,

according to the above discussion. This contra-
dicts Eq. {5.3), so that Eq. (5.2) is valid. This
comipletes the proof,

Lema 5.3 [22] Functionals f(y) defined on a
convex subset C of a lineay novmed space are weakly
lower semi-confinuous, if f{y) is strongly continu-
ous and convex.

proof, Suppose that {y™] is any sequence of
C which converges weakly to y € C. It confains a
subsequence {y™*} such that

— €3]
/] RZ"] ¥

Also, it follows from

JU\))

Hence, by strong continuity of f(¥), we have

converges strongly to y.
convexity of f(yp) that

~ B sz A

Hm inf f(y(k))zlim im?i f} fly®)
oo

>]1m mf f( 2 J‘“) S

from which follows that even for all the n, the
refation

Hm inf Ay f(y)
A=—icd

is valid. This completes the proof.

Now, let us consider as a particular case of Eq.
(3.1) linear delay-differential control systems
which can be described by

(5.4) &(O)=Vi(x(-), D4 Valae(-), 1), for £€{fy,7),

where V5 and V¥, are continuous with respect to
¢, bounded for any £ € (fo, 7] and linear with respect
to & and #, respectively. TFurther, let us consider
the following equation

(5.5)  @&lf)=Vilau(-), 1), for fe(h, 7]

We denote by a(t, b; ¢, ) the solution of Eq.
(5.4) with the initial function ¢ ¢ @ and the control
function # e U, and by &(, fo; ¢) the solution of
Eq. (5.5) with the initial function ¢e . Let us
define the function z(¢} by

d{)=a(t, to; §, 1)—&(t, o; 9.

Since Vi is linear with respect to x, we have by
Egs. (5.4) and (5.5)

HBy=Vilalo, to; &, ), D+ Valia(+), #)
— Vil@e-, to; @), 1)
= Vilz( -3, )+ Valeel -), ).

Therefore, 2(f) is a solution of Eq. (5.4) which
corresponds to the identically zero initial function
#(f)=0 for all { ¢ [a, fo] and the control function #,
so that we can denote as z(N=wa(l, #&; 0, 1).
Hence, we obtain the relation

(5.6) a(f, f; ¢, u)=2a(t, fo; 0, w)+F{, fo; S),

Also, by convexity of {7, we have for any 2,
0<i<l,

- y=200}( )+ (L= Duri( ) € Uy

whenever #}, 1} ¢ Uh. Since Vi and V: are linear
with respect to & and ¥, respectively, the solution
w(f, fo; 0, &'} of Eq. (5.4) satisfies

Ax(t fe; 0, ut)=2Vi{w(-,
+AVa(ui(-), 2)
=Vi(la+, fo; O, w'), O+ Veldui ), 8),

f0; 0,23, 0

from which follows that
(5.7 Aa(t, fo; 0)=a(f, f; 0, 2ut).

As the same way, the solution a(t, #; 0, #2) of
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Eq. (5.4) satisfies
(5.8) (1—2a(t, o3 0, u2)=a(f, to; 0, (1—2)ue2).
Let us define the function w(#) by
w(fy=3(t, fo; 0, )+ 2(t, fo; 0, (1—2Ane2).

Since ¥; and 1; are linear with respect to & and
u#, respectively, we have by Eq. (5.4)

()= Vil -, fo; 0, Aut), O+ Valledd(:),
+ Vala(-, fo; 0, (1—2ue2), £)
+ V(12w ) )
= Vilwe(+), )4 Valoue(+), 8).

Therefore, wft} is a solution of Eq. (5.4) which
corresponds to the identically zero initial function
w{l}=0 for all {€[x, o] and the control function
u=2u'+({1-ut, so that we can denote as w{f)=
x(¢, fo; 0, #). Hence, we obtain the relation

(6.9)  wlt, fo; 0, )=2(L, bo; 0, 2Y)
+&(t, to; 0, (1—a?).

Rasily from Egs. (5.6)-(5.9), we have the follow-
ing lemma.

Lemma 5.4 Lef us assume that Vi and Vi of
Eq. (5.4) are continuous with respect to !, bounded
for any t e (o, v] and linear with vespect to a and
w, respectively, Then, for any ', wte U and for
any 2, 0L2<]1, the following relation is valid,
among the solutions of FEq. (5.4) with the initial
Junction ¢ e @ which correspond io the control func-
tions wt, u® and u=hu'4-(1—Du?;

x(f, to; ¢, wy=2(¢, fs; &, u?)
F{1—-2x(l, fo; o, u?).

Under the preliminaries mentioned above, we
consider the optimal control problem {@z) with
the following data:

(D) a given initial function ¢e@;

{D:) the terminal condition z(¢f)=zxy, where fr

and @y are given;

(Ds) the state constraint region Doy

(D) the state equation described by Eq. (5.4);

{Ds) the cost functional

(5.10) ](u):\i"’ Va(we(-), (), D).

St

We say that # ¢ U is an admissible control for
problem (&), if the solution &(f)=x{f, fo; ¢, #) of
Eq. {5.4) belongs to D for all # ¢ [fo, £7] and satisfies
&(fr)=mxy. Let us denote by P all the admissible
controls. If there exists a #* £ Psuch that for afl
uep

J*) < Ja),

then #* attains the global minimum cost for
problem (@:). When the set of all such w*
consists of only one element, the optimal control
is decided uniquely. We now prove the following
theorem on the existence and uniqueness of an
optimal control for problem (@Q).

Theorem 5.1 In addition to the assumptions (a)-
(b), (h)-(i) and (k) in §2, suppose that the following
conditions hold:

(AY Vi and Vi of Eq.{5.4) are continuous with
respect to t, bounded for any te(fo, 7] and linear
with respect fo » and u, respectively;

(B) Vi of Eq. (5.10) is strongly continuous and
convex with respect fo u;

(C) D is a compact convex subset of Em;

(D) J(x) of Egq. (5.10) is stricily convex on U.

If P is nonempty, then there exists a unigue
optimal control for problem ().

proof. By Lemmas 5.1 and 5.2, the assump-
tions {c)-{g) in §2 follow from the condition (A},
and by Lemma 5.3, the assumption (j) follows
from the condition (B). Hence, all the assump-
tions of Theorem 4.1 are satisfied under the con-
ditions of this theorem. Thus there exists at
least an optimal control #*<¢ P for problem (Q)
such that for all we P

J@F) < ).

Let us denote by 2 the set of all such w*. For
the proof of the uniqueness, it will suffice only
to show that 2 actually consists of only one
element,

Firstly for this, we see that J{z) of Eq. (5.10)
can be defined on the convex hull of 2. Let us
define the function s=2'+(Q1—2s?, for any o,
vi¢Q and for any 2, 0<2<1. Then it is clear
that ve U. Hence by Lemma 5.4, the following
refation is valid, among the solutions of Eq. (5.4)
with the initial function ¢ which correspond to
the control functions ¢!, ¢® and v;

(5.11) 2t fy; &, D)=2x{l, to; &, ¥)
+(1=2)xlt, te; B, 7).

Since o' and #? are admissible, both the corre-
sponding solutions (¢, fe; ¢, v) and x4, &; &, V%)
belong to 17 for all {€[fy, #]. Hence by the con-
dition (C) and Eq. {5.11), the solution x(t, f; ¢,
v) of Eq. (6.4) corresponding to v also belongs to
D for all fefty, t7]. Further, from Eq. (5.11) fol-
lows that at #=#,,

"E(tf’ to; &, v)::l:c(!f, b &, Ul)
+H{1-2tr, to; 9, =y

This document is provided by JAXA.
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is valid, so that the solution a({/, f; &, ») of Eq.
(5.4) satisfies the terminal condition (D;). Thus
the function represented by v==Aiv!--{1—ut is an
admissible control for any 1, 0<A<1. This means
that f(x) is defined on the convex hull of £.

We next show that £ consists of only one
element, Suppose for contradiction that there
exist distinct elements p! and »? in 2. Then by
the condition (D), the relation

SO (1= u?) < J(o)=J(2%)

is satisfied for any 1, 0<<2< 1. On the other hand,
it is obvious according to the definition of £ that
for any 2, 0< <1,

S = Joy < J(aot (1= 20%),

which is contradiction, This completes the proof,

Now, let us give a concrete example of the
cost functional j{#) which satisfies the conditions
of Theorem 5.1. For any elements ¥ and y’ of
a linear normed space ¥ and for any 1, 0<21<1,
the following relation is valid;

Py+C=Dy <2y l3-+2 20 - yliv v’ )+
H(L--22 |13

=iy lE+ =Dy 320 -2
*{yly—Ityllr)?

<Al -Bly e

(5.12)

Hence, }{-||3 is convex. Thus the functional

Vol )y ate ), D=2 )l%, + Dol W3,

satisfies the conditions on ¥, of Theorem 5.1.
Let us consider the cost functional corresponding
to the above

619 70={" Q)i+ s, e,
Mg

From Lemma 5.4 and Eq, (5.12) follows that for
any u!, #te U and for any 2, 0<i<l

Jow =)= (20, o, )
0

—i—(l‘—-l).'?[a‘g.(- ? tﬂ; 561 "2)”?1',,
() (=2 ) |1, et
SAN )+ (L—2)J (%),

the last equality of which is satisfied if and only
if for all fe{t, #7] the relations

122, o5 6, w12+, fo; 6, 3 x,
=2l2(, to; 6, 1) x,
=B, to; 6, 1)1y
HA6H)+ (=AY, =2 k(o
(1=,

are identically valid, that is, when and only when
u'=w?, Hence, J(x) of Eq. (5.13) is strictly con-
vex on U/, Thus we have the following;

Theorem 5.2 Suppose thai the asswmptions (a)-
(b) in §2 and the conditions {A), (C) hold. If P
is nonemply, then there exists a unigue optinal
control for problem (@) with the cost functional
of Eq. (5.13).

Finally, we give somewhat concrete representa-
tions for linear delay-differential control systems
described by Eq. (5.4). The control system with
time delays ¢, and ¢

#(0) = A1)+ B{u(t — 72)

is a particular case of Hq. (5.4). Further by
Riesz's representation theorem, Eq. (5.4) has
under the condition {A) of Theorem 5.1 the form

)= gid,A(f, (o) + S’ Blr, Aulc)ds,

where A(r,#) is an #x#sn matrix, all of whose
elements are of bounded variation uniquely deter-
mined by the functional Vi, and B{r,f) is an
nx# matrix, all of whose elements are the
functions of L: uniquely determined by the
functional ¥, The integration is performed in
the sense of Stieltjes with respect to + for fixed

f. The equation of the form

()= A)alt— o)+ Ss At e)o(c)de
+\" B{t—)u(c)dr

is a special case of the above.

6. CONCLUDING REMARKS

In this paper, we formulated the optimal
problem for control processes which can be
described by a system of general delay-differential
equations, and gave a theorem on the existence of
an optimal policy. This problem is a generaliza-
tion of one formulated by M.N. Oguztoreli [13],
since we take into consideration the past history
not only of the state, but alsc of the control.
For Oguztoreli’s optimal control problem with the
state equation

#{0=Va(-), (),
and the cost functional

K, 0= 7 Vilatty, w40,
[i]

there exists an optimal policy, under the condition
that the set
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Viwln R0
={Vola(®), st ), Vix(+), ), ): we U}

is convex for any {¢[fy, 7] and »(f) € D, which is
the straightforward extension of the existence
condition of a time optimal control for ordinary
differential processes due to A.F. Filippov {23].
On the other hand, for the problem formulated
in §3, an optimal policy exists, as shown in §4,
under the conditions that V of Eq. (3,1) is weakly
continuous with respect to #, and that V, of Eq.
(3.2} is weakly lower semi-continuous with respect
to .

In §5, we gave the sufficient conditions on
weak continuity and weak lower semi-continuity
of functionals, and the general property on the
solution of linear delay-differential equations,
Further, we considered an optimal problem for
linear delay-differential control systems, for which
the uniqueness of an optimal control is guar-
anteed under the condition that J(r) of Eq. (5.10)
is strictly convex on U.

Finally, we remark distinctly that the present
study is concerned not with the state control
problem, but with the output centirol problem.
An optimal policy (¢* #*) for our problem is
such that the control #* transfers the initial state
¢* to the target set 7 with minimum cost, satis-
fying the state constraint condition, and the
terminal condition x*(t¥) ¢ ¥(#5) is finite dimen-
sional. On the other hand, in the case of the
state control problem, we have to prescribe the
state after transfer, for instance, by such the
condition as a¥%(f) ¢ T() for all ¢, i>1% which is
infinite dimensional, That is where difficulty
takes rise in the :*ate control problem, which
will become the important subject of studies for
delay-differential control systems,
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