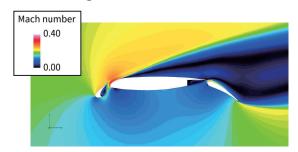
Toward the Precise Aerodynamics Prediction of 30P30N Airfoil Using 2D Building-Cube Method

BCMを用いた 30P30Nの2次元空力予測精度の向上に向けた取り組み

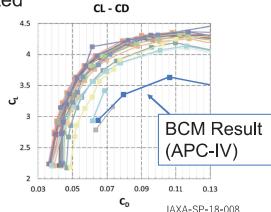
○鹿田 侑右,佐々木 大輔
小島 貴哉,焼野 藍子,下山 幸治,大林 茂
高橋 良尚,松島 紀佐

(金沢工業大学)

(東北大学流体科学研究所)


(富山大学)

1


Background

BCM tend to ...

- Separation occurred at low angle of attack
- · Drag coefficient is overestimated

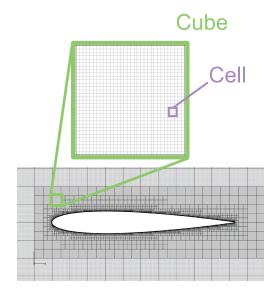
Separation occurred at 16 deg

Objective:

- Restart using converged flowfield for research the effect to separation
- C_d estimation using Wake integration
- · Mesh adaptive to Slat

About BCM

BCM: Building-Cube Method


- Cartesian mesh based solver

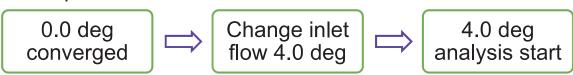
Advantage

- Easy to parallel computing
- Easy to grid generation
- High order spatial accuracy

Disadvantage

- Shape representation is stare case (IBM is used)
- Difficulty in resolving the boundary layer for High Reynolds number

3


Computational Method

How to set initial flowfield for different AoA

Using fully converged result

Example:

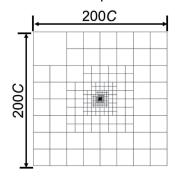
4

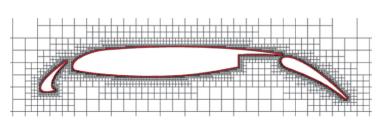
Computational Method

Governing Eq	Compressible NS Eq.	
Discretization	Cell-centred finite volume	
Inviscid Flux	SLAU 3rd-order MUSCL	
Viscous Flux	2nd-order central difference	
Time integration	LU-SGS	
Turbulence model	SA-noft2-R	

Wall boundary treatment

Immersed Boundary Method (IBM)

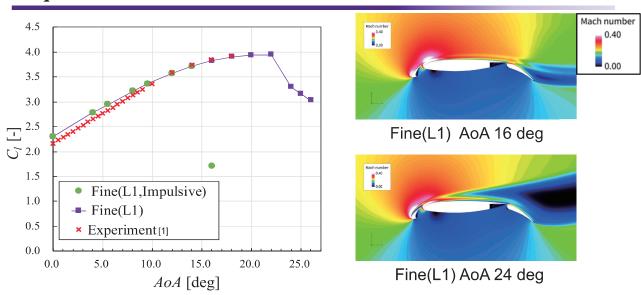

Density & Pressure → Zeroth-order interpolation


Velocity → Linear interpolation

5

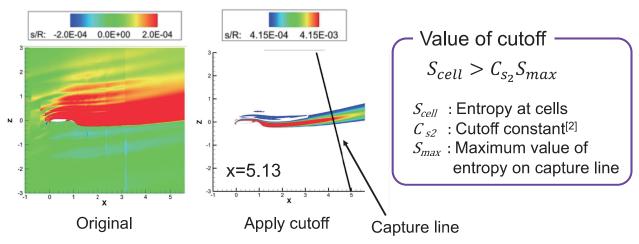
Grid information

	Minimum grid size	Total cube number	Total number of cells in a cube	Total number of cells
Fine (L1)	2.38E-5	15,645	32×32	16,002,048



Analysis of AoA Black : Impulsive Start Orange : Restart 0.0 / 4.0 / 5.5 / 8.0 / 9.5 / 12 / 14 / 16 / 18 / 20 / 22 / 24 / 26 [deg]

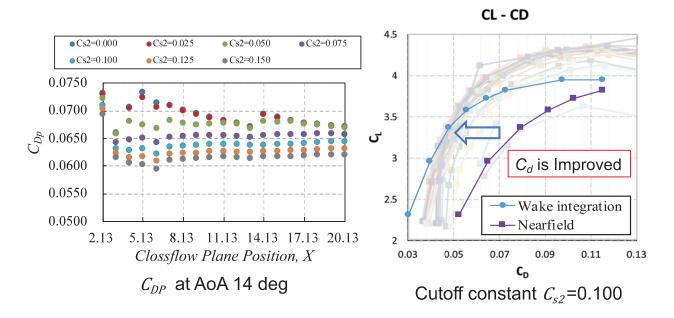
6


- No difference is observed from 4.0 to 14 deg.
- Restart computation causes separation at 24 deg.
 →Compared to impulsive start is delayed separation.

[1] A**I**AA 2014-2080

C_d Estimation : Wake integration

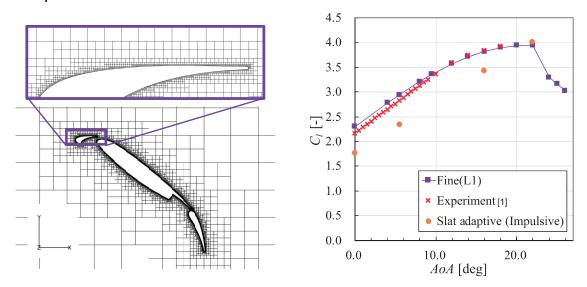
Calculation drag coefficient using delta of entropy


$$D_p = \int_{W_A} P_\infty \frac{\Delta s}{R} \, dz - \int_{W_A} \frac{P_\infty}{2} \left(\frac{\Delta s}{R}\right)^2 \, dz \qquad C_{D_p} = \frac{D_p}{1/2 \, \rho \, U_\infty^2 S_w} \qquad \text{Δs :Delta of entropy } R : \text{Gas constant}$$

Contours of $\Delta S/R$ at AoA 14 deg

[2] David L. Hunt, Russell M. Cummings, Michael B. Giles, "Wake Integration for Three-Dimensional Flowfield Computations: Applications", JOURNAL OF AIRCRAFT Vol. 36, No.2, March-April 1999, pp.366-373.

C_d Estimation : Wake integration

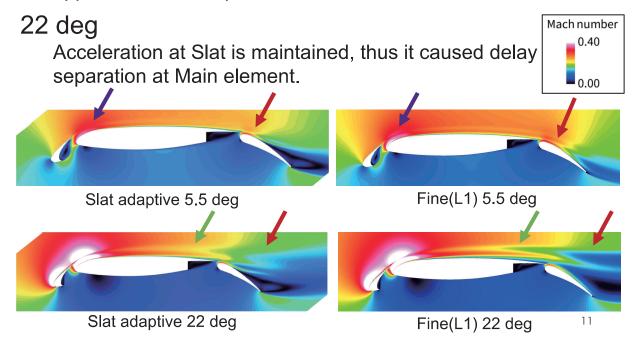

Drag coefficient is significantly different from other CFD results.

→ Better estimation compared to surface pressure computation.

9

Slat Adaptive (Mesh rotation)

- Rotation of airfoil
- Adapted mesh to upper slat surface
- · Equivalent mesh resolution to fine mesh


 C_I is estimated low, but not separation occurred at AoA 16 deg.

10

Slat Adaptive

5.5 deg

Flow speeds at leading edge of Main element and upper surface of flap are decreased.

Summary

Restart using converged flowfield

- Initial value setting does not affect flowfield from AoA 4.0 deg for 14 deg.
- Restart can improve high AoA case better than impulsive start.
 - →Restart is effective method for BCM.

C_d estimation using Wake integration

- Wake integration improves drag coefficient accuracy.
- Amount of change in entropy is large at the boundary of cubes where their sizes are changed.
 - →The interpolation method may need to be modify.

Slat adaptive

- C₁ is estimate small at low AoA.
 - →More investigation is need.