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ABSTRACT 

  This paper is related to a two-dimensional numerical study about aerodynamic properties of airfoils in low Reynolds number 
flows. Four types of airfoils including a corrugated wing were selected for the computation and their aerodynamic features 
against both stationary and dynamic flow cases were examined. Even in a steady flow, there can generally be small unsteady 
fluctuations in aerodynamic coefficients, and it was identified that the corrugated wing alone exhibits a remarkable stability 
against such fluctuations. In the dynamic cases, the airfoils were given either heaving motion alone or heaving in combination 
with feathering motion. Results from the heaving case show that the corrugated wing yields the smallest fluctuations in drag 
and moment coefficients, indicating its being most stable among four. Results from heaving in combination with feathering 
case do not underline any apparent superiority of the corrugated wing to others but its characteristic behaviour was 
highlighted.  
 
1.0 INTRODUCTION 
  Flying machines have continuously been becoming faster 
and larger throughout its history, and the remarkable 
development achieved in the twentieth century rapidly and 
intensively fostered the field of high Reynolds number 
aerodynamics. In the mean while, however, low Reynolds 
number flows have attracted only scant attention from 
aerodynamicists, in part because low Reynolds number 
flows had long been considered to have little to do with 
practical aircraft. Still, recent rapid development in 
electronics and nanotechnology opened up the possibility to 
fly tiny and considerably slow flying machines. In point of 
fact, the U.S. Defense Advanced Research Projects Agency 
(DARPA) started investigating the possibility of practically 
building micro air vehicles (MAVs) for many civilian 
purposes such as surveillance, bio-chemical sensing, 
atmospheric sampling and so on, as well as military 
applications, already in the 1990s. Other countries including 
the U.K., France, Israel, Italy, Russia, Turkey, China and 
Japan followed the States in rather a parallel manner, some 
of whose MAVs are about to be put in practical use. DARPA 
recently launched a new project of even smaller vehicles 
called 'nano air vehicles' (NAVs) that does not exceed 75 mm 
in any dimension. Also, recent projects of exploring Mars 
including EMM (European Mars Mission) ushered research 
interests in low Reynolds aerodynamics since Mars ascent 
vehicles (also often shortened as MAVs) are expected to 
operate in low Reynolds number flows under the thin 
Martian atmosphere and the weak gravity. Although MAVs 
hugely vary in the size and configuration, one of most 
promising methods for flying MAVs is arguably using 
insect-like flapping wings, especially for extremely small 
MAVs, from the aerodynamic point of view. Low Reynolds 

number aerodynamics with regard to flapping flying objects 
thus started to attract growing interests, not only from 
zoologists who are interested in insects from a bio-kinematic 
point of view, but also from aerodynamicists who are 
engaged in small MAV projects. Still, theoretical studies in 
this field have not yet formed a sound basis to back up 
experimental studies, partly because precedent studies 
about insects conducted by zoologists were focused more on 
biological aspects than on theoretical aerodynamics. The 
present study numerically simulates air flows around 
heaving wings with a particular aim to focus on a corrugated 
wing, which is typical of dragonflies, as that zigzag-shaped 
airfoil reportedly behaves quite differently from 
conventional airfoils. The specific wing section of the 
corrugated wing used in this study was reproduced from 
Obata's experimental work[1] with his permission and the 
test cases simulated were determined following Okamoto 
and Azuma's experimental study[2], with an aim to later 
correlate the numerical results with their experimental data. 
Together with the corrugated wing section, flat plate, 
circular arc blades with the camber of 4% and 9% were 
simulated under the same conditions in order to compare 
their aerodynamic properties. Note that the scope of this 
study shall not be limited only to insect-like flapping 
vehicles, because the insight into unsteady low-Reynolds 
number aerodynamics must be of great value for 
rotary-winged MAVs as well. It is also worth mentioning 
here that the autogyro is now seriously studied as a 
promising configuration to softly land on Mars as a EMM 
projects. Low-Reynolds number aerodynamics has thus 
recently been attracting increasing interests from rotorcraft 
engineers too. The details of the computational method will 
be enunciated in the next section.  
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2.0 NUMERICAL SIMULATION 
  The numerical code used in this study is named rFlow2D, 
which is a Navier-Stokes solver based on the overlapping 
grid method. This code was originally developed by Y. 
Tanabe of JAXA[3] for simulating air flows around a 
helicopter rotor. The governing equations of flow in this code 
are represented as follows;  
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where vector Q  represents the flow, E and F  are inviscid 

flux vectors for x- and y-directions respectively, 
vE  and 

vF  

are viscous flux vectors for x- and y-directions respectively, ρ 
is air density, P is pressure, e is specific total energy density 
and Re  is Reynolds number. Note that a perfect gas 
satisfies a relation known as the equation of state, 

)))(2/1()(1( 22 vueP   , in which the ratio of specific heats, γ, 
is 1.40 for dry air, and hence the speed of sound, c, can be 
obtained from the equation of state as  /Pc  . This 
numerical code can conduct time-marching simulation by a 
dual-time stepping method, using either the LUSGS 
(Lower-Upper Symmetric Gauss-Seidel) method or DP-LUR 
(Data-Parallel Lower-Upper Relaxation) method. The FCMT 
(Fourth-order Compact MUSCL TVD) interpolation method, 
and the bi-linear interpolation is used for data exchange 
between overlapped grids. Consequently, rFlow2D ensures a 
fourth-order spatial resolution, with the favorable TVD 
(Total Variations Diminishing) property unimpaired.  
  It is worth noting here that the mSLAU scheme[4] 
(modified SLAU scheme) is implemented in rFlow2D to 
solve the non-linear term in Eq. (1) for handling low speed 
flows, whose Mach number can be as low as 0.01, on top of 
the ability of solving high speed flows where 1M . SLAU is 
an AUSM (Advection Upstream Splitting Method)–type 
scheme, in which the numerical flux in Eq. (1) is described 
as  
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where m  and P  are the mass flux and pressure defined 
on the surface of a cell. Note that the superscripts of L and R 
denote the left (upstream) and right (downstream) 
boundaries of a cell, respectively. Vectors Φ  and N  are 
defined as  

  thvu ),,,1(Φ ,   t
nnn vyx ),,,0(N ,   (4) 

 
where u and v are flow speed components in the  

x- and y-directions respectively, nx  and ny  are unit 

normal vectors and 
nv  is the normal component of the speed 

of a reference moving grid. Note that /)( Peh   and 

yyxxv nnn   . Other relevant variables are defined as 

follows;  
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where c  is the arithmetic mean value of the speed of sound 
defined at a cell as ))(2/1( RL ccc  .  
  It is characteristic with the SLAU scheme that pressure is 
described as such a function of the Mach number that it 
depends on the advection speed in a low Mach number 
region, while it is dominated by the speed of sound in a high 
Mach number region. M  and M̂  in mSLAU are modified 
from the original SLAU scheme so as to be fit in the moving 
overlapping grid method. The mass flux is defined as 
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  Four types of airfoils, i.e., flat plate, circular arc blades 
with the camber of 4% and 9% and a corrugated wing, which 
is modeled after a type of dragonfly (anax parthenope) in 
Obata's experimental study[1] (Fig. 1), are numerically 
examined for each of the following six cases (case numbers 
shall be cited later to refer to each test case);  
1. steady flow ( 2000Re  ) around a stationary wing,  
2. steady flow ( 7600Re  ) around a stationary wing,  
3. steady flow ( 2400Re  ) around a heaving wing,  
4. steady flow ( 7600Re  ) around a heaving wing,  
5. steady flow ( 2400Re  ) around a heaving and feathering 

wing,  
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6. steady flow ( 7600Re  ) around a heaving and feathering 
wing.  

   
 
 
 
 
 
 
 
 
 

         
Fig. 1 Tested Airfoils, corrugated wing (top left), 

flat plate (top right), 4% arc blade (left below) and 9% arc 
blade (right below) 

 
The wing chord length is non-dimensionalised as the unit in 
the computation, and the moving inner grid system (flow 
field in the vicinity of a wing) is discretised into circa 14,000 
grids on top of the outer back ground gird system which has 
circa 40,000 grids over the area of 3131 . The Mach number 
of the steady flow is retained as 0.1 throughout the present 
study.  
 
3.0 RESULTS  
3.1 Steady Flow around Stationary Wings  
  All of four airfoils are put in a steady flow when 1.0M  
with angles of attack,  , ranging from 20  to 20  for 
either 2000Re   or 7600Re  . Diagrams and tables below 
summarise the aerodynamic properties of the wings. Note 
that the corrugated wing is designated as DGF in the 
diagrams and tables.  

 
 
 
 
 
 
 
 

Fig. 2 (left) Lift coefficient ( 2000Re  ), Fig. 3 (right) Drag 
coefficient ( 2000Re  ) 

 
 
 
 
 
 
 
 

Fig. 4 (left) Moment coefficients ( 2000Re  ), Fig. 5 
(right) Lift against drag ( 2000Re  ) 

 
Fig. 6 (left) Lift-drag ratio ( 2000Re  ), Fig. 7 (right) Lift 

coefficient ( 7600Re  ) 
 

 
Table 1 Maximum coefficients ( 2000Re  ) 

Fig. 8 (left) Drag coefficient ( 7600Re  ), Fig. 9 (right) Lift 

against drag ( 7600Re  ) 
 

 
Table 2 Maximum coefficients ( 7600Re  ) 

Fig. 10 (left) Moment coefficient ( 7600Re  ), Fig. 11 (right) 

Lift-drag ratio ( 7600Re  ) 
  With regard to these time-averaged aerodynamic 
coefficients, the simulational results may indicate that the 
general qualitative tendencies of the four wings are 
apparently similar, and none of them appears crucially 
superior to other three. Still, with regard to unsteady small 
fluctuations, which are filtered out in the averaged values, it 

clmax cdmax (cl/cd)max

Flat plate 0.977 0.052 7.41
4% Arc 1.206 0.043 5.83
9% Arc 1.210 0.056 7.91
DGF 1.128 0.070 7.86

clmax cdmax (cl/cd)max

Flat plate 1.124 0.402 7.85
4% Arc 1.432 0.389 13.34
9% Arc 1.583 0.502 12.31
DGF 1.099 0.388 15.11

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

-20 -10 0 10 20

c d

angle of attack, α, deg

Drag coefficient, cd

DGF
Flat
4% camber
9% camber

-8.0 

-6.0 

-4.0 

-2.0 

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

-30 -20 -10 0 10 20 30

c l 
/ c

d

angle of attack, α, deg

Lift coefficient / Drag coefficient

DGF
Flat
4% camber
9% camber

-2.0 

-1.6 

-1.2 

-0.8 

-0.4 

0.0 

0.4 

0.8 

1.2 

1.6 

2.0 

-20 -10 0 10 20

c l

angle of attack, α

Lift coefficient, cl

DGF
Flat
4% camber
9% camber

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

-20 -10 0 10 20

c d

angle of attack, α, deg

Drag coefficient, cd

DGF
Flat
4% camber
9% camber

-1.5 

-1.0 

-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

0.000 0.100 0.200 0.300 0.400 0.500 0.600 

c l

cd

cl against cd

DGF
Flat
4% camber
9% camber

-0.30 

-0.25 

-0.20 

-0.15 

-0.10 

-0.05 

0.00 

0.05 

0.10 

0.15 

0.20 

-20 -10 0 10 20

c m

angle of attck, α, deg

Moment coefficient, cm

DGF
Flat
4% camber
9% camber

-10.0 

-5.0 

0.0 

5.0 

10.0 

15.0 

20.0 

-20 -10 0 10 20

c l 
/ c

d

angle of attack, α, deg

Lift coefficient / Drag coefficient

DGF
Flat
4% camber
9% camber

This document is provided by JAXA.



宇宙航空研究開発機構特別資料　JAXA-SP-10-012280

0

0.4

0.8

1.2

1.6

2

30 35 40

ｃ
ｌ

τ

0 deg

4 deg

6 deg

8 deg

12 deg

16 deg

cl fluctuation (DGF)

was identified in the time-histories of those coefficients that 
the corrugated wing behaves markedly differently from 
others. Some examples of the fluctuations seen in lift 
coefficient are to be shown in the following diagrams for

2000Re  .   
 
 
 
 
 
 

Fig. 12 Fluctuation in cl of 9% arc blade  
( 0 , 8 , 16 , 2000Re  ) 

 
 
 
 
 
 
 

Fig. 13 Fluctuation in cl of DGF ( 0  (left), 8  
(middle), 16  (right) , 2000Re  ) 

 Compared to the 9% arc blade that shows restless 
fluctuations in lift coefficient, the corrugated wing shows 
almost constant values for angles of attack of 0 , 4  and 6 , 
though tiny fluctuations are recognizable for 6  in the 
diagram. Even the corrugated wing starts showing 
fluctuations at about 8  or larger, arguably due to the 
stall.  
  The flat plate and the 4% arc blade behave much in the 
same manner as the 9% arc blade does, albeit with slightly 
smaller amplitudes. Also, even when 7600Re  , it was 
confirmed that the corrugated wing is much more stable 
than other wings against the unsteady fluctuation. 
Considering the fact that a major cause for the fluctuation is 
vortices which are almost rhythmically released from the 
wing one after another[5], the corrugated wing can be 
considered to have a distinctive feature to stably capture 
vortices on its surface. This theory can be strengthened by 
Figs. 14 and 15 that show that the corrugated wing is 
trapping vortices (coloured in black) well into rumples on 
the wing surface, resulting in forming neatly slicked 
streamlines thereabouts. It is worth noting here that 
streamlines in Figs. 14 and 15 closely resemble Obata's 
experimental results in Ref. [1].   

 
 
 
 
 

Fig. 14 (left) Streamlines around DGF ( 2400Re  ),    
Fig. 15 (right) Streamlines around DGF ( 7600Re  ) 

 

3.2 Steady Flow around Heaving Wings  
  All of the four airfoils are put in a steady flow with 
heaving motion. Note that the instantaneous angle of attack 
of a wing should be defined as follows.  

     , )/arctan( Vh   (16) 

where   is feathering angle, h  is the heaving 
displacement and V  is the inflow velocity. In this case, the 
feathering angle is fixed at 6 , the amplitude of the heaving 
motion is 0.5 and the reduced frequency, defined as 

Vck 2/ , is 0.31 following Ref. [2].  

 
Fig. 16 (left) Lift coefficient ( 2400Re  ), Fig. 17 (right) Drag 

coefficient ( 2400Re  ) 
 

 
Table 3 Mean values of cl, cd and cm ( 2400Re  ) 

 
  While the four wings exhibit almost the same lift 
coefficients that alter together with the heaving motion, 
substantial differences can be seen in drag and moment 
coefficients; with regard to drag coefficients, 4% and 9% arc 
blades behave almost in the same way only with different 
amplitudes, while the flat plate lags in reaching peaks by 
almost 180 . With regard to moment coefficients, those of 
flat plate, 4% and 9% arc blades nearly coincide. The 
corrugated wing, on the other hand, shows considerably 
different behaviour in terms of both the amplitude and the 
phase. It is particularly interesting that whereas the 
corrugated wing exhibits the largest lift, it still shows the 
smallest deviations in both drag and moment coefficients, 
viz., it is arguably most efficient and stable during the 
heaving motion. The same simulation was carried out for 

7600Re   and it was confirmed that the wings behave much 
in the same way as for 2400Re  , qualitatively. The results 
thereof shall thus be herein left out for want of space of 
paper.  
 
3.3 Steady Flow around Heaving and Feathering Wings 
  In this case, heaving and feathering motions are both 
taken into consideration at a time. The heaving 

cl cd cm
DGF 1.726 0.110 -0.289
Flat plate 1.351 0.040 -0.274
4% Arc 1.302 0.018 -0.284
9% Arc 1.129 -0.016 -0.241
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displacement is described as )2/sin(5.0  ktch and the 

feathering motion is provided as )sin()/5.0(0 ktVck  so 

that the instantaneous angle of attach of the wing should be 
retained constant. The amplitude of the feathering motion, 
i.e. )/5.0( Vck , becomes circa 76.17 .  
 

  
 
 
 
 
 
 

Fig. 18 (left) Moment coefficient ( 2400Re  ), Fig. 19 (right) 
Lift coefficient ( 2400Re  ) 

 
 
 
 
 
 
 
 

Fig. 20 (left) Drag coefficients ( 2400Re  ), Fig. 21 (right) 
Moment coefficient ( 2400Re  ) 

 

 
Table 4 Mean values of cl, cd and cm ( 2400Re  ) 

 
  With regard to lift coefficients, there cannot be seen any 
significant difference between the four tested airfoils. In 
addition, unlike the previous case, the four wings behave 
much in the same manner with regard to drag coefficients 
too, qualitatively. Regarding moment coefficients, however, 
the corrugated wing exhibits the largest deviation in value, 
opposite to the previous case, through the mean value 
remains fairy small. What is found most interesting here is 
that  the corrugated wing yields the largest negative drag 
coefficient, that is to say, it likely transforms lift into thrust.  
  On top of the periodical fluctuation related to the flapping 
and feathering motions, there can be seen unsteady 
fluctuations in the diagrams of drag and moment 
coefficients. These are conceivably caused by vortices which 
are shed from the wing surface. This theory is underpinned 
by Figs. 24-27, which present the pressure distribution 
around the corrugated wing.  
It can be confirmed from the diagrams that the corrugated 
wing releases a series of vortices from around the leading 

edge (leading edge vortex, or LEV) on the upper surface     

 
Fig. 22 Isobaric contours around the corrugated wing at the 

beginning of downstroke. 

 

Fig. 23 Isobaric contours around the corrugated wing in the 
middle of downstroke. 

 
Fig. 24 Isobaric contours around the corrugated wing at the 

beginning of upstroke. 

 
Fig. 25 Isobaric contours around the corrugated wing in the 

middle of upstroke. 
during downstroke (Figs. 23 and 24). Also during upstroke, 
there can be seen LEV formed on the lower surface (Figs. 22 
and 25), though they are much weaker than those seen on 
the upper surface during downstroke. Note that the same 
simulation was carried out for 7600Re   as well but the 
wings behave much in the same way and thus the results 
shall be herein left out for want of space of paper.  
 
4.0 DISCUSSION   
  This study shed light upon the aerodynamic properties 
and behaviours of a corrugated wing in low-Reynolds 
number flows by a CFD method. The stability against 
unsteady fluctuation of the corrugated wing spotted in 
Cases 1 and 2 may be the key to elucidate the mechanism of 
how insects can so stably fly. Such fluctuations are chiefly 
caused by vortices released from the wing surface, and 
corrugated wings can arguably seize vortices tight inside the 
concave rumples of its upper and lower surfaces, resulting in 
stabilising and smoothing the flow to exhibit small 
fluctuations in aerodynamic coefficients. This is quite likely, 
both theoretically and intuitively, and the visualised 
streamlines in this study actually reinforce this conjecture. 
During the unsteady test case of heaving and feathering 
motions in combination, the visualised streamlines from the 
present numerical simulation (Figs. 24-28) indicate that 
vortices shed from around the leading edge should be 
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playing a vital role in producing lift, moment, drag and 
unsteady fluctuations in their values. In fact, leading edge 
vortices are believed to be the key to understand 
low-Reynolds number aerodynamics[6,7,8], and this study 
arguably captured the behaviours of leading edge vortices 
well.  
  The corrugated wing shows significant phase lags in drag 
and moment coefficients behind other three wings in Cases 3 
to 6. This phase lag can also likely be attributed to the 
ability of the wing to retard vortices to come off, owing to its 
rumpled surface. However, the relationship (ideally both 
qualitatively and quantitatively) between the corrugated 
surface and vortices in terms of the strength of vortices, 
frequency of shedding vortices, angle of attack, wing profile, 
Reynolds number, stall angle, the stability of the wing in a 
low-Reynolds number flow and so on, remained unrevealed 
within the scope of this study. It can thus be a challenging 
future research topic to further clarify aerodynamic 
properties of corrugated wings in details.  
  Regarding Cases 5 and 6, the phase difference given 
between the heaving and feathering motions in this study is 

90 , but this is only an example of possible combinations. As 
a matter of fact, it is pointed out that the optimal phase 
difference depends on flight condition[9,10] and hence the 
most favourable combination of the two motions must be 
further studied[11,12,13]. The numerical results obtained from 
this study fairly agree with experimental data of Ref. [1] in 
general, though nominal values of aerodynamic coefficients 
appear different due to the difference in 
non-dimensionalisation. The difference in the computational 
results from experimental data may partly be attributed to 
the fact that this study is based on the two-dimensional 
assumption. Three-dimensional modelling of a corrugated 
wing and its simulation can  thus be a good future research 
topic to follow.   
 
5.0 CONCLUSION  
  Conclusive remarks obtained from the present study can 
be summerised as follows;  
 A remarkable stability of the corrugated wing against 

unsteady fluctuations in steady flows (in Cases 1 an 2) 
was spotted whilst the angle of attack is less than 
about 8 ; 

 Numerical results simulated in this study fairly agree 
with Obata's experimental data in general[1];  

 In Cases 3 and 4, the corrugated wing exhibits the 
smallest deviations both in drag and moment 
coefficients. This may indicate that the corrugated 
wing is most stable in heaving motion;  

 In Cases 3 - 6, the phase of fluctuation in moment 
coefficient of the corrugated wing is obviously different 
from other three wings. The phase lag can arguably be 
attributed to the corrugatedness of the wing surface 

and its influence upon vortex behaviours;  
 In Cases 5 and 6, significantly advantageous aspects 

were not identified in any wings. Still, the phase lag in 
moment coefficient of the corrugated wing is 
conspicuous.  
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