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Abstract—The CRTBP (Circular Restricted Three-Body Prob-
lem) in its general form is a six dimension problem. In order
to design specific trajectories and orbits, intersections between
multiple sets of state vectors need to be studied. Although
possible, brute-forcing a search of the whole state space of orbits
is inefficient and can lead to long computation times. A set of
techniques based on parametrization principles as a function of
different parameters is presented with the objective of finding
intersections between sets of periodic orbit families and natural
trajectories derived from them. The results are used as a building
block to defining adequate orbits for a DS-OTV (Deep Space
Orbit Transfer Vehicle) to be used in future missions, enabling
recurring exploration of deep space celestial bodies.

I. INTRODUCTION

THE Deep Space Orbit Transfer Vehicle (DS-OTV) has
been introduced in the past[1] as part of recent efforts

in space exploration to diversify scientific objectives. These
novel objectives include missions such as Rosetta[2], OSIRIS-
Rex[3], Hayabusa[4] and Hayabusa 2[5], to small celestial
bodies. New efforts also take the shape of the creation
of novel techniques for space travel, such as solar sails
(IKAROS[6], OKEANOS[7]) or continuous low thrust engines
(DESTINY+[8]). The DS-OTV concept (Fig. 1) falls in the
category of systems that enable repeatable access to space[9],
[10], [11], [12], by placing an Orbit Transfer Vehicle (OTV)
in a parking orbit in the Earth’s vicinity that would be used by
successive missions as a refueling station and staging point.
The usage of an OTV would allow to bring the launch mass of
the mission spacecraft down, increase the availability of launch
windows and allow flexibility against delays and launcher
vehicles used[13], [14].
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Fig. 1: DS-OTV architecture. 1) The spacecraft transfers to
the DS-OTV parking orbit. 2) It docks with the DS-OTV to
re-fuel. 3) It undocks and leaves the parking orbit. 4) After
an Earth Swing-by, the spacecraft starts its journey to the
objective.

The feasibility of such an architecture depends, among many
factors, on the orbital placement of the OTV and its ease
of access from the Earth. Orbits in the vicinity of the L1,2

Lagrange Points (which have been studied in the past[16],
[17]) are interesting, as well as the transfers between them, as
the combinations of these orbits can be advantageously used
during the time of OTV and mission spacecraft combined use.
We previously studied these transfers, but restricted ourselves
to the simplest case, where both orbits intersect at the sym-
metry axis, once per orbital period.[15] While this case is the
most efficient one fuel-wise, it comes with strong constraints
in the operations department. Therefore, finding orbital pair
crossings that occur multiple times per orbital period seems
the next step in order to alleviate some of these constraints.

In this work, we introduce a novel algorithm that leverages
parametrization and fitting techniques and is designed to find
combinations of orbits with multiple crossings for each orbital
period. We study a subset of candidate periodic orbit families
for the OTV’s parking orbits by applying this algorithm with
the focus on the characterization of the transfers between them
with regards to availability, fuel usage and maneuver time. The
two-step algorithm designed separates the initial localization
of the crossings’ area and the refinement of the solution. In
this way, the more computationally intensive calculations are
done over a smaller set of possible solutions, and the overall
process is faster. The results are obtained and analyzed to find
the general structure concerning the full orbital families, and
for such an objective, appropriate nomenclature and concepts
are introduced and explained.
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II. DYNAMICAL MODEL AND ORBITS GENERATION

A. The Circular Restricted Three-Body Problem

Fig. 2: The Circular Restricted Three-Body Problem (CRTBP).

The dynamical model used in this research is the Circular
Restricted Three-Body Problem (CRTBP), where a massless
spacecraft moves in the gravity field of two massive bodies,
which revolve around their barycentre in a circular motion. In
this Sun-Earth system, the total mass of the Sun and Earth
is normalized to 1, the distance between the Sun and the
Earth is normalized to 1, and the period of the Earth’s orbit is
normalized to 2π. We define a rotating frame with the origin
at the barycenter of the system, the x-axis coincides with
the Sun-Earth line and is positive in the Sun-Earth direction,
the y is positive in the direction of the Earth’s velocity, and
the z-axis completes the right-handed coordinate system. By
defining the rotation period of the system equal to the period of
the Earth, both bodies remain on the x-axis. The mass ratio of
the system is defined as µ = mEarth

mSun+mEarth
, so the coordinates of

the Sun are (−µ, 0), and the coordinates of the Earth (1−µ, 0),
as shown in Fig. 2. With the spacecraft’s coordinates (x, y, z),
the equations of motion are written as

ẍ− 2ẏ = Ωx ,

ÿ + 2ẋ = Ωy ,

z̈ = Ωz ,

(1)

where

Ω(x, y, z) =
1

2

(
x2 + y2

)
+

1 − µ

r1
+
µ

r2
+
µ(1 − µ)

2
(2)

The subscripts of Ω in Eq. (1) denote the partial derivatives
with respect to the coordinates of the spacecraft. In Eq. (2),
r1 and r2 denote the distances from the spacecraft to the Sun
and Earth respectively as

r1 =

√
(µ+ x)

2
+ y2 + z2 ,

r2 =

√
(1 − µ− x)

2
+ y2 + z2 .

(3)

A first integral of motion, the Jacobi Integral, and its
constant of integration, the Jacobi Constant, are defined as

C = x2+y2+
2 (1 − µ)

r1
+

2µ

r2
+µ(1−µ)− ẋ2− ẏ2− ż2 . (4)

The CRTBP has five equilibrium points (also known as
Lagrange or Libration points). Table I lists the parameters for
the Sun-Earth used in this research, as well as the positions
of these Lagrange points.

TABLE I: Parameters of the Sun-Earth System used in this
research. Retrieved from SPICE.[18], [19]

Parameter Value

Mass ratio 3.003480594 · 10−6

Characteristic Length 149597870.7 km
Characteristic Time 365.25635 days
Characteristic Velocity 29.7847 km/s
L1 admin. coordinates (0.990026594, 0)
L2 admin. coordinates (1.010034116, 0)
L3 admin. coordinates (1.000001251, 0)
L4 admin. coordinates (0.499996997, 0.866025404)
L5 admin. coordinates (0.499996997,−0.866025404)

B. Periodic Orbits Generation

In this research, a differential correction (single shooting
algorithm) is used to find periodic orbits. The search for a pe-
riodic orbit is simplified by applying the Periodicity Theorem
of Roy and Ovenden (1955).[20] The corrector algorithm is
based on a first-order Taylor series expansion of the periodicity
conditions. We use the State Transition Matrix (STM Φ), a
linearization method that maps changes to the initial conditions
to changes in the state vector at some short time t later. The
algorithm comes from [17] and [21], and will be omitted for
brevity’s sake. See [15] for a detailed explanation.

We generate periodic orbits in the Earth’s vicinity and
classify them in families. Our main focus is to group orbits
that share common interesting properties, so the search is not
exhaustive and the classification given in this paper overlaps
parts of families described in literature. Due to this, we label
the families descriptively and provide a short description. See
[15] for the full description, but in general terms, we restrict
further research to the Laypunov and Low Prograde Orbit
families (shown in Fig. 3) due to the following reasons:

• Both families overlap in the configuration space.
• Both families have a region with very similar levels of

the Jacobi Constant.
• A portion of the Low Prograde family has low Earth

altitudes, while on the other extreme they get very close
to the configuration space of the Lyapunov family.

These reasons lead us to believe that a combination of orbits
from these families can be successfully used in the DS-OTV
context, more specifically, due to the possibilities of transfers
between them. For brevity’s sake, only the results for the L1

Lagrange Point orbital families are shown in the manuscript,
but equivalent results are found in the L2 orbits of families.

III. SINGLE ORBIT DUAL INSERTION TRANSFERS
BETWEEN LOW PROGRADE AND LYAPUNOV ORBITS

The transferring/docking maneuver between orbits is critical
to the success of the mission. For Single Orbit Transfers, only
one maneuver is possible at each orbital period, which might
constrain the mission design too much, making the mission
timeline excessively long. Finding the correct procedure is
critical. A Single Orbit Dual Insertion scheme, where the orbits
intersect twice each orbital period might work, as the time
between crossings is shorter than the full orbital period, but
might be long enough for the routine proximity operations.
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(a) L1 Lyapunov Orbits (b) L1 Low Prograde Orbits

Fig. 3: Planar Periodic Orbit families in the Earth’s vicinity used in this research. Earth size not to scale.

TABLE II: Parameters of the SODI scheme in Fig. 4.

Parameter Value

Parking Orbit Period 176 days
Insertion to Parking Orbit ∆v 158.4 m/s
Escape from Parking Orbit ∆v 158.1 m/s
Total manoeuver ∆v 316.5 m/s
Max docking time 40 days

Figure 4 shows a handpicked example of such a maneuver,
with Table II summarizing its properties. However, finding
these crossings between the full families of orbits carries
high computation costs due to them not being in easily
definable planes. This is compounded by the high number of
orbits that need to be studied if general results want to be
obtained. We created a new algorithm to aid in the search and
characterization of these crossings.
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Fig. 4: Single Orbit Dual Insertion (SODI) scheme.

IV. PARAMETRIZATION-FIT CROSSINGS ALGORITHM

To search for combinations of Low Prograde and Lya-
punov Orbits with multiple crossings, we developed the
Parametrization-Fit (Param-Fit) Crossings algorithm. This al-
gorithm circumvents the need to restrict first the phase space
location of the crossings (i.e. creating a Poincare Section in
the desired crossing search space), as in this case we don’t
know beforehand where the intersections are located. We use
a parametrization and curve fitting technique to simplify the
search. The Param-Fit Crossings algorithm consists of the
parametrization of the family of orbits, and then a two-step
search of the crossings. Fig. 5 summarizes the algorithm, while
the following subsections go into detail.

Fig. 5: Flow Chart summary of the Single Orbit Dual Insertion
(SODI) Finding Algorithm.

A. Orbit Parametrization and Analytical Expression Fit

We parametrize the Lyapunov Orbit family by using po-
lar coordinates. We use the Lagrange Point as center, and
parametrize in terms of the angle from the positive x-axis
in the counter-clockwise direction (Fig. 6, left).
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Fig. 6: Lyapunov (left)) and Low Prograde (right) Orbits,
parametrized with angle θ.
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Since the overlap in the families is happening in the
inner section of the Lyapunov Orbit (the region between the
Lagrange Point and the Earth), we can parametrize only that
part of the orbit. We obtain a 1-to-1 map from polar angle to
radius (Fig. 7a). We fit an analytical expression to the curve
created by the parametrized coordinates. The best results were
obtained by approximating the orbits with a trigonometric
Fourier Series, which takes the form

r = a0 +
n∑

i=1

ai cos(iwθ) + bi sin(iwθ) . (5)
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(a) Polar coordinates and
Fourier (1-8 orders) Fits for a
parametrized Lyapunov Orbit
with respect to the L point.
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Fig. 7: Parametrized Lyapunov Orbit Fourier 1-8 Fits (Fig. 7a)
and their respective statistics in Fig. 7b.

Fourier series orders 1-8 were tested, and the error obtained
is shown in Fig. 7b. Since the evaluation time between
different orders Fourier series is negligible, we decided a
Fourier 8 fit, as it gave the best goodness-of-fit statistics and
less accumulated error. The resulting expression for each orbit
consists of a constant term and 16 trigonometric terms.

B. Param-Fit Crossings Algorithm Fist Step

The first step uses the propagated Low Prograde Orbits and
searches crossings with the parametrized expressions of the
Lyapunov Orbits. For each propagated point, the state vector
is converted to polar coordinates (Fig. 6, right). At each time
step the crossing check is executed with each parametrized
Lyapunov Orbit. The crossing check is

rParam LO(θLPO,t) − rLPOi,t = 0 , (6)

where r and θ are the polar coordinates of a propagated
point of orbit i at time t for the Low Prograde Orbit, and
the evaluation of the analytical expression obtained from
parametrizing the Lyapunov Orbits.

C. Param-Fit Crossings Algorithm Second Step

The second step of the algorithm takes as input the results of
the first step and refines them. It searches for the intersections
between the CRTBP-propagated Lyapunov Orbits and the
stored crossings, and saves the data for the Lyapunov Orbit.
With this refining step, we obtain a very good approximation
of crossing events between the two propagated trajectories.

The second step check takes the form

rstored LPO crossingsi − rLOi,t = 0 , (7)

with r being the distance in polar coordinates of a propagated
point of orbit i at time t for the Lyapunov Orbit, and the stored
results of the first check for the Low Prograde Orbit. Due to
numerical particularities, however, the condition is impossible
to meet. By definition the distance (in absolute value) does
not exist as a negative (see Fig. 8, left). To solve this, we
search for a minimum of the distance during the propagation
by evaluating the derivative of the expression to zero (Fig. 8,
right), and we verify that we find a minima, while deleting
the false-positive maxima points.

YY

r

rr

-r

--rr

Event
EventEvent

r+
rr++

r

Trajectory

Fig. 8: Crossing event check (left) and event distance minimum
search graph (right).

D. Results Database and new SODI Concepts

After running a cleaning algorithm to verify the integrity
of the results, the Param-Fit Crossings Algorithm stores the
results in a database. The database structure allows for the
search of different combinations of crossings to form maneu-
vers, as well as the creation of new concepts to evaluate the
crossing possibilities.
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Fig. 9: A Single Orbit Dual Insertion maneuver, with the Time-
on-Docking (TOD) marked.

A continuation we will define the quantitative properties to
be used in the analysis and comparison. With Fig. 9 showing a
basic SIDO scheme maneuver, where a Lyapunov and a Low
Prograde Orbit have symmetric crossing points with respect
to the x-axis, we define the following:

• ∆v - Difference in instantaneous velocity needed to
change a spacecraft’s state vector.

• Maneuver - The ∆v between the state vectors at the
crossing points.
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• Time-on-Docking (TOD) - The time elapsed between two
crossings in the Parking Orbit (Lyapunov in this case).

• Full Maneuver - Each of the two crossings between the
Transfer Orbit and the Parking Orbit.

V. SINGLE ORBIT DUAL INSERTION TRANSFERS RESULTS

The results obtained by the application of the Param-
Fit Crossings Algorithm to the full L1 Lyapunov and Low
Prograde Orbit families are presented in Fig. 10. The TOD in
days is on the x-axis and the full maneuver ∆v absolute value
in km/s on the y-axis. We see that there are combinations with
TODs in the whole interval 0 ≤ TOD ≤ 53 days. Moreover,
the whole interval is available for low ∆v values, less than
0.2 km/s. The most interesting combinations are at the lower
part of the graph, showing that for similar amounts of ∆v, the
entire range of TOD solutions is available. Highlighted are
some example combinations to get a more visual intuition.
Figure 10a to Fig. 10d show combinations in the lower ∆v
region, with TODs of 2, 16, 31 and 48 days respectively, while
having a ∆v of less than 0.2 km/s. All the orbits in these
combinations have approximately the same sizes, which puts
the crossing points in regions where the velocity vectors have
the same overall direction (and thus lower ∆v differences).
The higher ∆v combinations happen when the Lyapunov
Orbits become considerably larger than the Low Prograde
Orbits. In these cases, the Lyapunov Orbits’ trajectories in
the regions where the crossings occur have higher velocity
values, which coupled with crossing points where the velocity
vectors are almost perpendicular, make the full maneuver ∆v
considerably higher. The overall shape of the figure shows that
the higher the ∆v of the maneuvers, the less availability of
TOD possibilities. An explanation for this phenomenon is that
starting at a certain size of the Lyapunov Orbit, most of the
crossings with the Low Prograde Orbits occur at roughly the
same physical space. Combining this with the increase of size
(and velocity) of the Lyapunov Orbits, it means that the TODs
availability is reduced (while the ∆v keeps increasing).

VI. CONCLUSION

In this paper we showcased a novel algorithm to find inter-
sections/connecting trajectories in the CRTBP. This algorithm
can be used to aid in the preliminary research for a new DS-
OTV Mission. From previous research, we selected candidate
periodic orbits in the vicinity of the Earth that show potential
to be used as parking/transfer orbits in the DS-OTV context.
A usage of such orbit combinations could include the transfer
from launch to the vicinity of the Lagrange Point, insertion to
the parking orbit, docking and refueling, and then immediately
exit again to the same transfer orbit, keeping the time spent in
stand-by low. The novel Param-Fit Crossings Algorithm was
then applied to the subset of Lyapunov and Low Prograde
Orbits to find direct transfer maneuvers between them by
identifying intersection points. The algorithm introduced uses
a combination of parametrization and curve fitting techniques,
as well as exploiting the symmetries of the CRTBP, to separate
the problem into an effective two-step algorithm to find the
orbital crossings. We described the algorithm in detail, and

introduced the new concepts used to evaluate the adequacy
and usefulness of the crossings found. We found that orbits
with combinations of low fuel usage and a wide array of TOD
possibilities exist for these families of orbits, which can be
useful for the future of the DS-OTV concept.

In addition, an algorithm that combines the usage of
parametrization and fitting techniques, such as the one in-
troduced here, can be used for future studies in the CRTBP
concerned with finding intersections or connecting trajectories.
Such future studies are already planned, and will complement
the results presented here by evaluating the phasing and
rendezvous possibilities of two spacecraft orbiting the same
orbit.
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(e) Combination 5.

(f) Results for the L1 orbit families. Highlighted example orbits shown.
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