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Nonlinearity of the unsteady aerodynamics of the viscous flow on
supercritical wing in transonic regime
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Abstract. Unsteady acrodynamics of two dimensional supercritical wing profile in transonic regime
was investigated by Navier-Stokes code. First harmonic components of the unsteady acrodynamics
obtained by simulation for forced oscillations of heaving and pitching mode were plotted to the
amplitude of oscillations and it shows nonlinearity of the unsteady acrodynamics in small amplitude
region. Stability analysis based on the first harmonic components of the unsteady aerodynamics also
shows nonlinear trend. Limit Cycle Oscillation (LCO) of small amplitude about 0.1 deg. could exist
from the stability analysis and simulation was carried out. Nonlinearity of unsteady acrodynamics in
small amplitude range is affected by transition point, which interferes with unsteady pressure
distribution in local supersonic region on upper surface. These computational results are described in

this paper.

1 INTRODUCTION

Schewe et al. found small amplitude LCO which has about 0.2 deg. of pitching oscillation in transonic
wind tunnel test with two dimensional elastic support system!'!. This implies it has nonlinearity in
small amplitude region, but the LCO is thought different from a typical one which is induced by the
shock wave motion on the wing surface and limited the amplitude by the flow separation. Castro
showed to simulate small amplitude LCO by considering perforated wind tunnel wall effect in his
CFD analysis'®’. Thomas showed a relation between amplitude of the pitching oscillation of the LCO

and flutter speed using Harmonic Balance method™, but no small amplitude LCO was shown.

Characteristics of the transonic unsteady acrodynamics especially in small amplitude oscillation are

investigated by the CFD analysis for NLR-7301 supercritical wing profile in this paper.

2 ANALYSIS METHOD
2.1 Equation of binary aeroeastic system

Schematic binary acroelastic system is shown in Figure 1, and equation of the system is as follows.
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The equation is nondimensionalized by half chord length / for length, total mass # for mass and b/U
for time, where U is uniform speed of flow. Asterisk means values based on non-dimensional time.
Structural parameters of reference [1] are converted for Eq. (1) and listed in table 1. Eq. (1) is also

expressed as Eq. (2) in this paper.
Mg+Cq+Kq=f 2)

2.2 Numerical analysis

Navier-Stokes code used for the analysis is based on the thin layer NS equation and Baldwin-Lomax
turbulence model is adopted™. Structural mode equation combined with the aerodynamics is
integrated by Wilson’s implicit € method. Structured C type grid of which size is 313x79 is generated
and 247 grid points are placed on the wing Z
surface. Thickness of the grid on the wing is
6<107b and far ficld boundary is 40h. Time
step size for unsteady analyses is about 0.002
in non-dimensional time. Courant number is
about 30. In LCO simulations, 0.001 is taken as

time step size to converge results.

Wing profile data of reference [5] is used. The
trailing edge of the data is at x/c=1.015, but in

this analysis the profile is cut at x/c =1.0 to

combine upper and lower surface at the center
in thickness. So the line between leading and Figure 1 : Two dimensional aeroelastic system

trailing edge has —0.16 deg.  inclination.

Table 1 : Structural parameters

reference length (half chord length ) b =0.15 [m]

center of rotation Xeon =0.50

static unbalance Xy =0.0968

radius of gyration Py =0.3%4

pitching frequency @ =0.1584 = K /I b/U,
heaving frequency oy =0.1204 = JK Jmb/U,

damping of pitching Sy =00043 = p j2JK,1,)
damping of heaving & =0.0071 = p j2/K,m)
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Figure 2 : Comparison of CFD with experiment; case CT-5""

The code is validated by comparing to the AGARD test case™!® of the same wing profile. The
experimental data of which Mach number is 0.70 and mean angle of attack is 2.0 deg. has well
developed shock. The numerical result shows reasonable results compared with the data (Figure 2).

2.3 Fourier series expansion of unsteady aerodynamics

To evaluate unsteady acrodynamics and analyze the stability of the acroelastic system, numerical
simulation was performed for 5 periods with heaving and/or pitching forced oscillation and Fourier

coefficients were obtained from time histories of the acrodynamics. When a forced oscillation mode is

q:(qu +l'q17l.)e"“’t , first harmonic component of generated unsteady aerodynamics is

fi=(fy, +ifi,)e™ . where f,, and f,, are in and out of phasc with the oscillation. Unsteady

acrodynamics including Oth and higher order is expressed as followings.
f:f0+2( m,r +l.fm,i)eiman (3)
m=1

Effect of harmonic components of unsteady acrodynamics on the system stability is considered here.

When the system is in harmonic oscillation, the energy of the system given by the flow is
dq
T
dt 4
b,/ 4)

where £ is unsteady aerodynamics and §,, is trajectory of the system. According to the Eq.(1) the

energy given by flow in one period is
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Substituting the complex Fourier series expansion
q=q,+ 2 (qe"" +qe"™), f=fo+ 2 (fe"" + fre"™) (6)
=1 m=1

into Eq. (4), it become 0 when m # [ because of orthogonality of Fourier series expansion. Where
q, j_‘ arc complex conjugate of ¢, f respectively. When the system oscillates on first harmonic
trajectory, the energy of the system given by flow can be specified by the first harmonic components
of the unsteady acrodynamics. Subtracting energy dissipation of structural damping from Eq. (4), we

can tell whether the system in sinusoidal oscillation is getting energy or not.

When the trajectory of LCO is S, , the system energy getting from the flow is

§ 1, (7)

where e, means energy dissipation by structural damping. The difference of energy flux between
sinusoidal oscillation and LCO is higher order components of the trajectory of the LCO. This means,
if the LCO trajectory is close to sinusoidal motion, the stability of the LCO can be specified by the

first harmonic component of the acrodynamics.

Furthermore, superposing of unsteady aecrodynamics is valid if its amplitude is infinitesimally small,

otherwise it always has an error to the nonlinear system.

2.4 Stability analysis

The unsteady aerodynamics will be evaluated according to the amplitude of oscillation and the
dependency of the system stability to the amplitude will be investigated. Unsteady acrodynamic
coefficients such as C; and C,, are calculated for various amplitude and reduced frequency of forced
heaving and pitching oscillation mode. Superposing those C; and C,, stability analysis can be
performed out by p-k method. The experiment'” indicated reduced frequency at LCO was nearly 0.12,
therefore unsteady acrodynamics are calculated for £=0.10, 0.12 and 0.15. For the p-k method, those
are interpolated like linear manner. Although the amplitude ratio between heaving and pitching mode
for the unsteady acrodynamics should be the same to that of the unstable mode vector, hila=132

was used for all cases, which was evaluated by experiment and some analysis previously done.
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To exclude the superposing effect of the unsteady acrodynamics, Newton-Raphson method”! solving

Eq.(1) is used. Sinusoidal oscillation representing LCO can be expressed as qlem’l , where
q, = [hr +ih, O(I]T, based on the pitching oscillation. If unsteady acrodynamics is expressed as

/e’ Eq. (2) become

{a)zM +ia)C+K}qlei“” = fe' )
Unknown parameters L = [a) u h h ]T can be solved based on

R:{a)zMJria)CJrK}ql—fl:O ©)

By Newton-Raphson method, L can be solved iteratively as

-1
Ln+l — Ln _ aR Rn (10)
oL’

OR" /| OL" can be solved analytically because it is explicit function of L. Iteration will be continued

until difference between L' and L' become small enough, in this case relative error become 107,
Results of p-k analysis was taken as initial value of L. Reference [3] indicate linear solution could

bring good convergence. Based on the converged value of 4 +ih, and @, unsteady aecrodynamics
should be calculated again. In this paper, this iteration was done twice and difference of flutter index

between before and after iteration 1% at maximum.

Although mean value of « should be taken into account because it has important role for unsteady
aerodynamics, in this paper it is fixed for the analysis to avoid complexity.

3. RESULTS

3.1 Influence of amplitude on unsteady aerodynamics

Unsteady C; and C,, for each heaving and pitching amplitude are shown in Figure 3. Magnitude of
unsteady acrodynamics is normalized by the amplitude of forced oscillation, therefore the magnitude

and also phase would be constant to any amplitude if it is linear.
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Figure 3 : Unsteady C; and C,, for heaving and pitching mode

Figure 3 shows variation of the unsteady aerodynamics with smaller than amplitude 0.5 deg., besides

the large amplitude. In the calculation of pitching oscillation with £=0.10, those were not converged

over amplitude 2 4deg.

3.2 Influence of unsteady aerodynamics variation on stability boundary caused by amplitude
Stability boundary obtained by the p-k analysis with superposed acrodynamics is shown in Figure 4.

Flutter index F; is F, =1/ a)a*\/; =U/bw,)/ \/; . Variation of stability boundary can be seen

7

like the unsteady acrodynamics. High stability region where flutter index is large appears over 2.5 deg.

and also around 0.2 deg. in pitching amplitude.
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Figure 4 : Stability boundary

3.3 Evaluation of superposing unsteady aerodynamics

In transonic regime, linear stability analysis such as U-g method, p-k method, etc. can be more
accurate using unsteady acrodynamics computed by transonic code. If unsteady aerodynamics is

computed for each mode and those are superposed for the stability analysis, only infinitesimal small
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amplitude is exact solution. Superposing effect is investigated and it is shown in Figure 5. Unsteady
acrodynamics for the heaving and pitching mode which is #/0=1.32, phase lag £(h-a)=10deg. and
k=0.12. are calculated. Triangle marks are unsteady acrodynamics directly obtained by the mode and
circles are obtained by superposing two unsteady acrodynamics separately computed for heaving and
pitching mode. Though the difference is small in smaller amplitude than 0.5deg., there is a certain

difference in larger amplitude than that.
Stability boundary obtained by Newton-Raphson method is shown in Figure 4. It shows higher
stability than p-k method between 0.5 and 2.5deg. of pitching amplitude. Although the difference of

flutter index is 5% at maximum, the shape of the boundary looks similar.
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single mode
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Figure 5 : Superposing effect (Unsteady C; and C,, for pitching mode)

3.4 LCO amplitude related to the stability boundary

In Figure 4, stability boundary is shown and above the boundary the system is unstable and blow the
line it is stable. Oscillation diverges with the condition above the boundary and converges below the
boundary. On a part of the line where it has plus inclination, oscillations come to the point on the line
at a constant F;, which is stable equilibrium. Exchanging x and vy axis, it looks familiar bifurcation

diagram.

At I'=0.175, two stable equilibria exist at pitching amplitude 0.13 and 2.6 deg. Simulation starting
with large initial value which is velocity corresponding to the one deg. pitching amplitude results in
the LCO with pitching amplitude 2.6 deg.(Figure 6 right). With smaller initial value, resulting LCO
amplitude is about 09 deg. (Figure 6 left). The bifurcation diagram is confirmed by LCO

simulations. Phase graph in LCO oscillation is shown in Figure 7. Higher harmonic component is
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Figure 6 : LCO simulation Figure 7 : Phase graph on LCO
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small and taking first harmonic component of unsteady aerodynamics seems to be valid.

3.5 Considering nonlinearity in small amplitude oscillation

Variation of unsteady acrodynamics and stability boundary in small amplitude of oscillation has been

observed by numerical analysis. In this section, we see what is happening in that region.

More than 2 deg. of pitching amplitude breaks the sinusoidal motion of the shock wave.  Though
shock wave propagates upstream as pitch goes up, the shock does not come back downstream and
new shock appears after pitch goes down. Massive flow separation is generated and BL turbulence

model may not calculate correctly.

On the other hand in less than amplitude 0.5 deg., peak of the unsteady pressure distribution can be
observed around 0.2¢ besides around 0.65¢. This wing profile shows that as the incidence decreases
the pressure sinks at the center of the supersonic region on the upper surface, at which the peak

appears in unsteady pressure distribution.

To see what is happening to the unsteady acrodynamics with small amplitude oscillation, effect of the
transition point was investigated. In all of the calculations described above, transition points are
automatically obtained, where turbulence viscosity coefficients f¢,, become 14. In this case the
transition point is about 18%c. In Figure 9, unsteady pressure distributions and unsteady C; are shown
with the transition points automatically calculated, fixed at leading edge and 18%c. The peak of the
unsteady pressure distribution moves upstream with the leading edge transition. Variation of the
unsteady C; becomes small with leading edge transition in small amplitude (Figure 8). So it can be

said that the small amplitude LCO is affected by transition point or Reynolds number.
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4. CONCLUSION

NS analysis with free transition shows variation of unsteady acrodynamics in small amplitude range
that is smaller than 0.5 deg. in pitching oscillation. This also affects stability boundary. Nonlinear
phenomena such as LCO can be estimated by stability analysis with linear approximation. The p-k
method with superposed unsteady acrodynamic coefficients can also specify the stability boundary,
although it has a little error, in this case it is 5% of flutter index. Small amplitude LCO had been
observed in the experiment might be the effect of transition point near the center of the supersonic
region on the upper surface of the supercritical wing. If it can be confirmed by the experiment,

supercritical wing with natural laminar flow might be exposed to small amplitude oscillation.
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