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1. Introduction

Both accuracy and efficiency are the key issues of the simulation methods in
Computational Fluid Dynamics. Sometimes, simple ideas improve these key features. Two
topics are focused and discussed in this paper.

2. Accuracy Enhancement by the Grid Movement
First, accuracy improvement by the usage of the moving grid system is discussed. One

interesting feature of the moving grid S— :

flow simulations was found through

the simulation of the blast wave

propagation[1]. As shown in Fig. 1,

the local fine grid region was prepared

and overlaid onto the base grid that

covers the whole computational region.

The local find grid moves with the

blast wave. Figure 2 shows the

ground surface pressure distributions Fig. 1 Overset moving grid system for the blast

computed by the moving grid system. wave simulation

Only the blast wave region is closed

up in the figure. The single-zone

solutions with the very fine (4001 points along the ground) and fine grids (801 points) are plotted

for comparison. The moving-grid solution shows the highest pressure peak at the shock wave.

The interesting observation here is that the spatial grid resolution of the locally moving grid in

the zonal solution is the same as the grid

resolution of the 801 grid points. Even with 1.08

the spatial resolution of 801 grid points, the X
solution obtained captures the frontal shock 108k
wave crisply than the solution by the ® 1.“:
stationary 4001 grid points. The fact that 2 £
the grid moves at the blast wave speed @ 1.02
obviously improved the solution accuracy. g
The moving grid system has a nice .00k " 3
nature for the physical phenomenon I —a— with moving grid |
. ) F 0.98 4001x41 —
transporting in the flow field like the example i — o - =80lxd] 1
above. = The linear scalar equation for R Y| ST S W W
convection, when formulated in the frame of 1.80 1.85 1.80 1.95 2.00
moving grids, all the truncation error terms distance

have the coefficient of (¢ —u,) where ¢ is the
speed of convection and u, is the grid speed.  Fjg. 2 Computed surface pressure
Therefore, setting the grid speed to be close to distributions

the speed of convection, the truncation errors
will be reduced. When U, =c, all the truncation errors will disappear and the solution is

perfect. In thereal computation, the solution at each grid point does not change in time and no
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errors will appear. When considering, for

instaane, the flux difference splitting, the " : _’MG(%%:D, shmk;peed)
truncation errors may be reduced when the grid bl i P— SG(stationary grid)
speed is set to be close to one of the eigenvalues 1 F
of the flux Jacobian. The solution accuracy & ,,f \
improvement observed above can be explained & \
by this idea. “EF \

To confirm it, a one-dimensional 0.4 &
shock tube problem is formulated. Figure 3 0.2 \15
shows the density plots in one of the computed Y FOAPE IV SR SNPUNE
results. The computational grid moves at 0 0.2 04 06 08 1

90 % of the shock speed. The improvementis . :

clearly seen when compared to the stationary Fig. 3 Shock tube pr_oblem.

grid solution (dash line). On the other hand, - effect of moving grid

the solution accuracy is degraded in the expansion region since the rarefaction wave proceed to
the opposite direction to the grid motion. To enhance the accuracy in the whole region, we have
to set three overset grids, each of which moves at the speed of shock wave, contact discontinuity
and rarefaction wave, respectively.

Next, the  transport 0.60 3,00
phenomenon of the isolated vortex is e vorticityM3) |
simulated. An isolated vortex is placed in 0.50 [ ortey(5&) }-J2.50
the  freestream  and  transported r . ke
downstream. The grid moves at the > 040 C oo T e el 12 00 &
freestream speed. Since this is an Euler ] . i g e
computation, the vortex strength would not B 0.30 F 150 2.
essentially change. One of the results is E p
shown in Fig. 4. The time history of the o :1 -
minimum density and maximum vorticity 5 1
in the center of the vortex core is plotted. £ i
Both the moving grid and stationary grid 0'1%‘0 10.0 20.0 302,’500
solutions are plotted. Due to the time
discretization errors, both the resultsshow  Fig. 4 Decay of the vortex:
vortex decay but the density is lower for the - minimum density and vorticity of
moving grid and the vorticity is higher in the center of the vortex core -

the moving grid solution. The discretization errors are clearly reduced for the solution with the
moving grid. Although we need to investigate the dependency of the vortex decay to the grid
resolution, freestream speed and other factors, the result is promising.

Moving grid systems introduce the “Lagrangean” effect into the Eulerian computations.
The truncation error analysis briefly presented here shows that it can be explained as the change
of the coefficients of the truncation errors. The examples above clearly showed the improvement
of the solution accuracy by the moving grid systems. There are many applications where the
solution can be improved by using the moving grid system. The computational overhead is
simply the computation of the time metrics term (which is constant in the examples above) and
existing computer codes can be easily modified. The computation of the low speed flow over a
cylinder is currently underway, where the grid moves at the speed of Karman vortex shedding to
improve the accuracy of vortex streets although the result is not available yet.

3. Efficiency Improvement by the Approximation of Flux Jacobians

Second, efficiency improvement is discussed. Implicit time integration methods have
not made remarkable progress since ADI-like AF was introduced by Beam & Warming[2].
However, the number of operations was reduce by introducing Diagonal scheme[3], LU-ADI
scheme[4] and else. On the other hand, LU factorization was introduced as another implicit
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scheme, and LU-SGS scheme[5] developed by Yoon and Jameson successfully reduced the
number of operations of the implicit time integration schemes and was extended to be used for
the unstructured grid computations[6]. Although the LU-SGS scheme is very efficient, its
vectorization for the supercomputer requires the use of the hyperplane and the computer
program becomes very different from the code for the existing ADI type factorization. The
author has proposed FF-SGS scheme[7] which uses LU-SGS scheme in the streamwise direction
and LU-ADI scheme in the other two directions. Similarly to the FF-SGS scheme, implicit
operations in any ADI-type schemes can easily be replaced by the one-dimensional LU-SGS
scheme. Using the approximate LDU decomposition, the ADI operator in the & direction
becomes,

A A, At 2 Ay A ~_ At A
I+ At5,A)=(I+AtS; A" —— AT+ AH(A* = AN T+ AtSIA~+—A) @
The forward and backward sweeps for the operators in Eq. (1) become,
. At ~,  ~_ ~e At~y 2.
forward sweep: I+ A_.’j(A —A)AQ] =—(s.5)+ A_§A"'AQ"'
. At A A At . Al re A Al 2
backward sweep: (+22(A" = ANAQ) = U+ (A"~ ANAG) - 15 AL.A0,
s The backward sweep includes the second matrix
F operation. Suppose we introduce the approximation
. —Anisas] of the positive and negative flux Jacobians, A* = 410, ,
b LU-ADI }‘ 2
b 3 ”
210 \\ - 10° g
E F \ 3 W
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Fig. 5 Residual history for the 2-D blunt \\_
body problem - -
(Moa =2-0s o=0 deg'! Euler) ! 0.0 - 5.{N:Il ‘ .1:00;. .1:50; ] .2‘,000
the operation becomes simple divisions instead of ITERATION
block matrix inversions. It allows us to keep the _ _ )
original code structure and it is very easy toobtainit  Fig- 6 Residual history for the 3-D
by modifying the existing ADI-type coputer code. blunt body problem
The vector length can be kept long and constant. Me =2.0, o =5 deg., Euler)

Simple modification like this will reduce the number of implicit operations without the loss of
convergence. We call this scheme as ADI-SGS as SGS is introduced after ADI factorization.
The convergence history for the two dimensional supersonic blunt body problem is shown in Fig.
5. The convergence history for the LU-ADI scheme is also shown for comparison. Both the
schemes show almost the same convergence trend although the LU-ADI scheme shows
oscillatory behavior. The approximation introduced does not degrade the convergence.
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The convergence history for the three-
dimensional blunt body problem is shown in Fig. 6. The
convergence history for the ADI-SGS scheme shows almost
the same trend as that of the LU-ADI scheme shown inthe
same figure. Remember that the approximation of the flux
Jacobians reduces the matrix operation for the
diagonarization and the number of the operations becomes
much smaller. The computer time reduction for the left-
hand side implicit operations is roughly 50 %. The
computed density contour plots are shown in Fig. 7.

Final example is the computation of the leading-
edge vortex flow field over the delta wing. The Mach
number is set 0.3 and Navier-Stokes simulation at the

Reynolds number 1.0X 10 is conducted. The convergence

history for the computation is shownin Fig. 8. The trend
is the same as the two Euler examples above.

Conclusions
Two simple ideas are presented, each of

which improves the accuracy and efficiency of the 1 O e

compressible flow simulations, respectively. Both
the idea are simple and easily implemented into

The computed results indicate that these two
approaches are useful to try and they help the
accuracy and efficiency of the simulations.

the existing computer code without much effort. 109 ¥
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