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Most current turbulence models involve explicit wall distance in their formu-
lation. However, wall distance is ambiguous in all but the simplest topologies.
Besides, it is not at all evident that it bears a relationship to the structure of
turbulence. Thus it is desirable to base modelling practice on wall proximity
indicators which are local (pointwise) in nature and convey the influence of walls
indirectly, based on parameters that “measure” this proximity. Examples are
the turbulence Reynolds number, k?/(ve¢), and various dot products of gradients
such as (9r/0z;)(0k/0z;) where T = k/¢, the turbulence time scale. Adhering
to this modelling practice retains full generality of the model, since the entire
formulation is local. Thus wall-distance-free models are tensorially invariant
and frame-indifferent, applicable to arbitrary topologies and moving boundaries.
They are also usable in conjunction with solvers based on either unstructured
or structured book-keeping, executed on any computer architecture, including
massively parallel processors. This paper illustrates the pointwise approach to
turbulence modelling by introducing several such models of both linear and non-
linear types, and by demonstrating their performance in 2D and 3D flow cases.

1 Introduction

Current and future supersonic transport vehicles incur a significant viscous drag compon-
ent - as much as 20% of the total drag - and this renders Euler solvers inadequate for the
design cycle. Modern designs increasingly require Navier-Stokes solvers capable of handling
transitional and turbulent flows. Thus Turbulence modelling became the pacing item in
CFD because it simultaneously constitutes the weakest and most influential aspect of en-
gineering CFD. Until recently, most aerodynamic applications resorted to simple algebraic
closure models of turbulence, but their inherent weaknesses under complex flow/complex to-
pology situations - prevalent in engineering CFD - persuaded users to seek more sophisticated
models, namely those involving at least one transport equation. Models such as Baldwin-
Barth[1] and Spalart-Allmaras[2] are prime examples of this genre. However, both models
involve explicit wall distance in their formulation, which is ambiguous in all but the simplest
topologies. Equally important is the question whether wall distance has any direct influence
on the structure of turbulence[3]. To avoid these issues the common strategy is to develop
wall-distance-free/wall-directionality-free models which are completely topology independ-
ent, frame indifferent and tensorially invariant. The first model introduced in this paper is a
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1-equation model of this type[4] which, like the Baldwin-Barth and Spalart-Allmaras models,
solves directly for the undamped eddy viscosity field.

It is widely recognised, however, that better overall predictive capability for turbulent
flows is possible by solving transport equations for both the length and velocity scales, giving
rise to the popular k-¢ and k-w [5] type models or models which combine them, such as
Menter’s SST model [6]. Again, the majority of such models involve wall distance explicitly
and the aim is to avoid this. The present paper introduces two types of wall-distance-free k-¢
models: one aimed at predicting flows involving adverse pressure gradient[7] (both linear and
nonlinear variants are presented), the other a novel k-e-f, (3-equation) model[8] in which
the low-Re damping function, f,, is solved from its own transport equation.

An important attribute of both the 2- and 3-equation models is time scale realisability
enforcement. This means that the turbulence time scale is not permitted to become less
than the corresponding Kolmogorov micro-scale. This has been proposed by Durbin[9] and
by Goldberg[10, 11]. One significant outcome of enforcing time scale realisability is the
automatic asymptotic consistency of the e transport equation at walls, without the need to
involve ad hoc near-wall damping functions, prevalent in many low-Re k-¢ models[12]. This
also enables a simple boundary condition for € at walls. In contrast, the k-w model uses
w = €/k as the length-scale-determining variable, which is singular at walls since €/k is
not the correct inverse time scale there. This requires a special treatment which leads to a
cumbersome and grid-dependent wall boundary condition for w.

The models mentioned above are presented in the Appendix.

2 Highlights of the numerical approach

A Navier-Stokes solver for either compressive or incompressive flows was used in the present
work. The solver features a second order Total Variation Diminishing (TVD) discretization
based on a multi-dimensional interpolation framework. This framework is utilised also for the
viscous terms. A Roe Riemann solver is used to provide proper signal propagation physics.
Further details regarding the numerical methodology can be found in [13, 14, 15].

3 Results

In the following flow test cases the proposed models’ performance is compared with exper-
imental data and in some cases also with the GA k-¢ model [11] which represents a more
traditional k-¢ approach. All computations were performed on a 200 MHz Pentium Pro PO
The three k-¢ models appearing in the plots are labeled as follows: the GA model is denoted
as “k-¢ GA”, the linear one as “k-¢ 7”, and the nonlinear as “k-¢ 7 quad”.

3.1 Transonic flow over an azisymmetric bump

Mach 0.875 flow over an axisymmetric bump at Res, = 13.6 X 10°/m is computed and evalu-
ated against experimental data of Bachalo and Johnson[16]. Here a normal shock, impinging
on the bump, causes flow detachment from the surface with subsequent reattachment further
downstream on the cylindrical portion of the model. A sketch of the geometry, including
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main flow features, is included in Figure 1(a). In Figures 1 the origin of the axial coordinate,
z, is at the bump leading edge; the radial coordinate, y, originates at the axis. All lengths
are scaled by the bump cord, ¢. Figures 1(a,b) present surface pressure coefficient (Cp)
and skin friction (Cy) profiles, respectively. Figures 1(c-e) show velocity, kinetic energy,
and shear stress profiles at two streamwise locations; one within the reversed flow region,
the other downstream of reattachment. The computations were performed on a 151 x 81
grid with y* < 1 at the first internal node. Some streamwise clustering was also imposed,
centered at z/c = 0.7 where the experimental shock impinges on the wall. Computation on a
181 x 101 grid was also performed to ascertain grid independence of the reported calculation.
Figure 1(f) shows solution convergence histories, based on skin friction. Here nt is the time
step counter. This approach constitutes a more stringent test than monitoring the drop in
numerical residuals.

The k-¢- f, model delivers the best overall performance in this flow case. The effect of the
variable C);, imposed by the f, transport equation, is seen to produce k and v profiles which
surpass even the nonlinear model in predictive quality. The latter, however, also performs
quite well and predicts the mean velocity profiles best. The one-equation model overpredicts
the separation bubble size and suffers from a sluggish post-reattachment recovery.

3.2 Supersonic flow over a compression ramp

This is the supersonic two-dimensional flow over a 24° ramp measured by Settles et al.[17],
with additional data by Dolling and Murphy[18], and by Selig et al.[19]. An oblique shock,

impinging on the boundary layer ahead of the ramp corner (due to upstream influence),

induces flow detachment, with subsequent reattachment onto the ramp surface. A sketch,

showing the geometry and some flow features, is included in Fig. 2(a). The origin of the
(z,vy) cartesian coordinate system is located at the ramp corner, with directions along and
normal to the upstream flat plate, respectively. These coordinates are scaled by the boundary
layer thickness upstream of the shock, dp. The computation was done on a 99x99 grid, with
at least 8 cells inside the viscous sublayer, first internal node being at y* < 1. The grid
was clustered in the z direction too, with (Az)min = 0.1do, located at the ramp corner.
This grid was recommended for the ETMA workshop on evaluation of turbulence models for
compressive flows[20]. It has been established[18] that the shock in this flow case is unsteady,
however, in the present work it was assumed to be steady in order to facilitate comparison
of the models’ performance.

Numerical predictions of this case are known to be strongly dependent on inflow conditions[20].
The inflow Mach number was 2.84; Reo = 7.3 x 107/m; total temperature 262 K; and
static pressure 24 kPa. Wall temperature was 276K but adiabatic conditions were assumed,
according to the experimental report [17]. The measured upstream boundary layer thick-
ness, do = 0.023m, was located at z/dp = —3.0. The computational inflow was placed at
/8y = —21.7 and a compressive equilibrium turbulent boundary layer (wake strength para-
meter I1 = 0.55) of thickness din/do = 0.6 was imposed to enable matching the measured
boundary layer upstream of the strong interaction region. ko was set corresponding to a
freestream turbulence level T' = 0.8%, and €., was set to a level that imposed freestream
eddy viscosity on the order of the molecular viscosity. The inflow profiles of k£ and € are
given in [7].

Figs. 2(a-c) show predictions and data comparisons of surface pressure, skin friction,
and corner velocity profile. Fig. 2(d) is a convergence history plot based on skin friction.
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It is noted in Fig. 2(b) that the new k-e models avoid the spurious post-reattachment peak
typically predicted by the GA and other traditional k-¢ models. The linear k-¢ 7 model
predicts the wall pressure (Fig. 2a) only slightly better than the GA model does, but the
skin friction is much better predicted by the former, and the post-reattachment branch is the
best of the three models. The nonlinear k-e¢ 7 model predicts the shock location much better,
and also predicts the extent of flow separation considerably better than the other two models
do. This is also demonstrated in predicting the corner velocity profile (Fig. 2c), indicating
that the boundary layer thickness is better captured by the anisotropic model. Consequently,
the oblique shock location (y/dy & 1.1) is also better predicted by this model.

3.3 Two-hole injector

This case corresponds to the UVA two-hole transverse injector topology. Table 2, taken from
McDaniel et al.[21], shows the geometry characteristics.

Table 2
dimension size
Diameter D 1.93
Test section height 11.03D
Test section width 15.79D
Length of measurement domain X/D= 26.6
End of nozzle contour X/D=-10.65
Step location X/D=-4.94
Step height H/D= 1.65
1st injector location X/D= 0.0
2nd injector location X /D= 6.58

Figure 3(a) shows a sketch of the topology, which consists of an inflow region followed by
a backward-facing step after which two transverse injectors are located. The computational
grid used to simulate the flowfield was derived from a fine grid (400,000 cells, Sekar[22]).
This mesh was coarsened everywhere except near the hole regions and a grid with only
70,000 cells was obtained. The Mach number of the primary flow was 2.089 and that of the
jets was 1.183. The flow conditions were similar to those found in McDaniel et al.[21]. The
turbulence model invoked for this calculation was the 1-equation pointwise eddy viscosity
model[4]. Figures 3(b-d) show pressure, streamwise velocity and vertical velocity profiles
along the the 1st injector, and figures 3(e-g) are the corresponding profiles along the 2nd
injector. The model enables good prediction of all profiles as compared to the experimental
data[21]. Convergence for this case, using a relaxation scheme with 2 LHS forward-backward
sweeps at CFL 3.0, was obtained in 1800 steps, based on five orders of magnitude drop in
residuals.

4 Concluding remarks

Wall distance is ambiguous in all but the simplest topologies. On a more fundamental level,
it is not at all evident that it bears a relationship to the structure of turbulence. Thus it is
desirable to base modelling practice on wall proximity indicators which are local (pointwise)
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in nature and convey the influence of walls indirectly, based on parameters that “measure”
this proximity, such as the turbulence Reynolds number, k?/(v¢), and various dot products
of gradients like (07/8z;)(0k/0z;) where T = k/e, the turbulence time scale. Adhering to
this modelling practice retains full generality, since the entire formulation is local.

This paper introduced four such models: a l-equation R; model, linear and quadratic
variants of a k-¢ model designed for adverse pressure gradient flow, and a 3-equation k-¢-f,
model in which the damping function, f,, is solved from its own transport equation. Both
2-D and 3-D test cases were shown, from which it is concluded that these models can be
powerful and reliable CFD tools for engineering practice.

5 Appendix: Formulation of Wall-Distance-Free Turbu-
lence Models

5.1 1l-equation model

The 1-Equation model consists of solving the following transport equation for the undamped
eddy viscosity (R):

D(pR)

5 = V(e +pe/or)VE] + c1p(RP)? + (c3 — eafs)pVR - VR (1)
where the production is expressed in terms of the Boussinesq model
oU;  8U;\ aU; 8UL\*
- _o3 (& 2
Pk [(az_.,- * 63:,-) T, U (axk) (2)

p and p; are the dynamic molecular and eddy viscosities, respectively; p is density; U; =
(U,V,W) are the cartesian velocity components; z; = (z,y, z) are the corresponding co-
ordinates; and v, is the kinematic eddy viscosity, u:/p.

The eddy viscosity field is given by

e = fupR (3)
where
fu = tanh (ax?) /tanh (8x?), x = pR/p (4)
The remaining near-wall function is
o 20 5
fa_mm{l+3ﬁcax,10 } (5)

The model constants are: kK =0.41, og = 0.62, = 0.059, 8 =0.2,
c1 = k?/(20r) = 0.1356, ¢y = —ba/(3Bor) = —0.7930,c3 = c2 + 3/(20r) = 1.6263 .

Equation (1) is subject to the following boundary conditions:
(i) Solid Walls

R=0 (6)
(ii) freestream and initial conditions
Rfveer < 1. (7)
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5.2 2-equation models

Reynolds stresses are related to the mean strain gradients through the quadratic model of
Shih, Lumley and Zhu[23]:

e 2 2 k3
— PG = py (Ui,j + Uji — EUk,kJij) = gpkaij ~PF [Cr1 (Ui kUj k)] (8)
k3
Pz [Cr2(UikUk,j + Uj Uk 5)* + Cra3(Uk,iUs,5)*]

where asterisks indicate the deviatoric part; for example: (U; xU ik)* = Ui eUjp
— Um,nUmndij /3. The coefficients in the quadratic term are

13 -4 -2
Cn=——=0n=—"—%,C=—— 9
1000+ 35° 1000+5° 0 1000+3° ®)
and
— k — k
S= E\/QS,‘J‘S,'_.;, Q= = 29525 (10)
Sij = (Us; +Uji)/2, Qi = (Ui j — Uji) /2 (11)

In the linear model only the first two terms on the RHS of the above stress-strain relation-
ship are used. When using the nonlinear k-¢ model these stresses appear directly in the
viscous term of the momentum transport equation, rather than resorting to an eddy viscos-
ity approach. However, the latter is still used in the diffusion terms of the k and ¢ transport
equations. It is given by

Hi = Cpfupk2/f (12)

where

B 2/3
A 125+ 5+0.90

(13)

and f, is given by
1 — e~ 4unfh Cr
5= g2 v Bl )

where R; = k?/(ve) is the turbulence Reynolds number. Full details on the derivation of f,
are given in [11].

(14)

k and €, the turbulence kinetic energy and its dissipation rate, respectively, are determined
by the following transport equations.

d(pk) 0 _ 0 ( pg) ok ]

~5 4 _zj (UJ pk) = -—-6%_ n+ _k —azj + P, — pe (15)
9(pe) i . —i[( ‘_‘) ._E£ = EYT !
— 4 o (Ujpe) = - i+ .) 32; + (Ce1 P — Ceape + E)T; (16)

Py is the turbulence production, —p%;u;U; j, used in exact form in the nonlinear model, but
modelled in terms of the Boussinesq concept in the linear one:
Py = [ps (Usj + Uji — 3Uk,k8ij) — §pkdi5] Ui j.
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The realisable time scale is

k

T = - max{l (17)

~=}
\/_
This time scale is k/e at large R; but becomes proportional to the Kolmogorov scale, 1/v /e,
for Ry <« 1. Reference [11] includes full details about this time scale, whose inclusion

guarantees near-wall asymptotic consistency of the € equation without resorting to ad hoc
damping functions (see [12] for example).

The extra source term, E, is designed to increase the level of € in non-equilibrium flow re-
gions, thereby reducing the length scale and enabling improved prediction of adverse pressure
gradient flows, including those involving backflow regions:

0k Ot
V = ma {klf?’, (ue)lf‘*} (19)
E = AppV\/eT, ¥ (20)

where 7 = k/e, the turbulence time scale. The extra source term is invoked only in near-
wall regions, where ¥ > (. Note the realisable velocity scale, V, whose presence limits the
influence of E to a relatively small fraction of the boundary layer near walls, with a sharp
cut-off further away. Finally, the model constants are Cy,, ... = 0.09, C¢; = 1.44,
Ce2=1.92,04, =10, 0. =13, A, =0.01, Ap,,... = 0.35, Ap_ e = 0.15, Cr =/2.

The two transport equations, Egs. (15) and (16), are subject to the following bound-
ary conditions at solid walls. The kinetic energy of turbulence and its first normal-to-wall
derivative vanish at walls. The former condition is implemented directly:

kw =0 (21)
The boundary condition for € is based on its near-wall asymptotic behaviour (y — 0):

k
€w = 21— ; (22)
1

where “1” denotes the first internal node. This boundary condition implies that
(0k/0y)w = 0, satisfying the second boundary condition for k implicitly.

5.3 3-equation model

Reynolds stresses are related to the mean strain through the Boussinesq model:
R 2 2
—puiu; = py | U 5 +Uji — gUk,kJij — gpké.-_,,- (23)
where the eddy-viscosity field is given by

pe = fupk®/e (24)
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Here k, €, and f,, the turbulence kinetic energy, its dissipation rate, and the damping function,
respectively, are determined by the following transport equations.

k) 0 . . 0 ) ok
T + 3583‘ (ngk) = "8"5 [(#‘l‘ a) E:I + Py — pe (25)
d(pe) d 0 pe\ Oe ¥
5 T G—%(Ujpf) = B2; [(# + 0,—:) E] + (Ce1 P — Ceape)T; 1 (26)
Opfy) L 0 . . _ O [( pe\ 0fu 0fyu Ofu
ot * 8::3- (Ujpf”) - 323' H + ;;) Ba:j] t #31‘5 3:65 -
k
[Aup(Cu — fu)]2 ; (27)

Py is the turbulence production, —p%@;U; j, modelled in terms of the

Boussinesq concept (23). The realisable time scale, T}, is the same as in the 2-equation
models. Details about Eq. (27) are found in [8]. The model constants are: C, = 0.09,

Ce1 =144, Cey =1.92, 0, = 1.3, oy = 1.0, oy = 50.0, A, = 0.001 .

The three transport equations, Eqgs. (25-27), are subject to the following boundary con-
ditions at solid walls. The ones for k and € are the same as in the 2-equation models, and
the boundary condition for the damping function is f,, = 0. Freestream/initial condition is
Ju = Cy.
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Fig. 3(a) UVA two-hole injector geometry (Courtesy D.R. Eklund, NASA LaRC)
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Figure 3(f) Streamwise velocity along the centerline of
second injector.
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