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ABSTRACT

An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an
adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of supersonic
transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted for the surface ge-
ometry perturbation, and the elliptic equation method is employed for the interior grid modification during the de-
sign process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle
translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the
lift and airfoil thickness. Successful design results confirm validity and efficiency of the present design method.

Introduction

With the advances in computational fluid dynamics
(CFD) and computing power of modern computers,
aerodynamic design optimization methods utilizing CFD
codes are more important than ever. Among several de-
sign optimization methods applicable to aerodynamic
design problems, the gradient-based method has been
used most widely due to its well-developed numerical
algorithms and relatively small computational burden. In
the application of gradient-based methods to practical
aerodynamic design problems, one of the major concerns
is an accurate and efficient calculation of sensitivity de-
rivatives of an aerodynamic objective function. The finite
difference approximation is the simplest way to calculate
the sensitivity information since it does not require any
sensitivity code. However, the accuracy of such an ap-
proach depends critically on the perturbation size of de-
sign variables and the flow initialization.[1]

Sensitivity derivatives can be evaluated more
robustly and efficiently by using a sensitivity analysis
code based either on a direct method[2-4] or on an ad-
joint method[2,5-14]. An adjoint method is preferable in
aerodynamic designs because it is more economical
when the number of design variables are larger than the
total number of an objective function and constraints.
Reuther et al.[8,9], for example, designed aircraft con-
figurations using a continuous adjoint method with the
Euler equations in a structured multi-block grid system.
Kim et al.[10] developed direct and adjoint sensitivity
codes from 2-D Navier-Stokes code with an algebraic
turbulence model in a structured grid system.

For complex aerodynamic configurations, the un-
structured grid approach has several advantages over the
structured grid approach. This approach can treat com-
plex geometry with greater efficiency and less effort. It
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also has a greater flexibility in the adaptive grid refine-
ment/unrefinement; thus the total number of grid points
can be saved. Newman et al.[4] developed a direct sensi-
tivity code via a discrete approach for the 2-D and 3-D
Euler equations in the unstructured grid framework, and
demonstrated design examples of multi-element airfoil in
a subsonic flow and Boeing 747-200 in a transonic re-
gime. Elliot and Peraire[11] reported a discrete adjoint
method for the Euler equations with unstructured grids,
which was applied to design a 2-D multi-element airfoil,
a 3-D wing, and a wing-body configuration. Recently,
Nielson and Anderson [13] developed a discrete adjoint
code for the 3-D Navier-Stokes equations with a
one-equation turbulence model, and examined numerical
effects on the accuracy of sensitivity derivatives due to
the flux jacobian simplification and turbulence model
differentiation. Mohammadi[14] developed an unstruc-
tured adjoint code for the 2D/3-D Navier-Stokes equa-
tions with a two-equation turbulence model using an
automatic differentiation tool with the reverse mode.

In this study, direct and adjoint sensitivity codes
have been developed from a 3-D unstructured Euler
solver based on a cell-vertex finite volume method. With
the resulting adjoint code, aerodynamic design of a Su-
personic Transport (SST) wing with nacelle is conducted.
Wing geometry is perturbed in an algebraic manner at
five design sections. Interior grids are moved accordingly
by the elliptic equation method. Grid sensitivities of inte-
rior nodes are neglected except those for design variables
associated with nacelle translation in order to reduce re-
quired computational time for the mesh sensitivity cal-
culation.

The rest of this paper presents a brief review on the
flow solver and the direct and adjoint methods with a
discrete approach. Sensitivity code validation is then
given, followed by design methodologies including sur-
face mesh deformation and interior mesh movement
techniques. A design example utilizing the resulting de-
sign method is finally given for a supersonic transport
(SST) wing in the wing-body-nacelle configuration.
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Flow Analysis

The Euler equations for compressible inviscid flows
are written in an integral form as follows;

0 [Qar e (1)
= [Qar+ [ F(Q):-nds =0
where Q=[p, pu, pv, pw,e]' is the vector of conservative
variables; p the density; u,v,w the velocity compo-
nents in the x,y,z directions; and e the total energy.

The vector F(Q) represents the inviscid flux vector and
n is the outward normal of 8Q which is the boundary of
the control volume Q. This system of equations is closed
by the perfect gas equation of state with a constant ratio
of specific heats.

The equations are solved by a finite volume
cell-vertex scheme. The control volume is a
non-overlapping dual cell. For a control volume, Eq.(1)
can be written in an algebraic form as follows;
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where AS; is a segment area of the control volume
boundary associated with edge connecting points i and /.

This segment area AS), as well as its unit normal n, can
be computed by summing up the contribution from each

tetrahedron sharing the edge. The term h is an inviscid
numerical flux vector normal to the control volume

boundary, and Q; are flow variables on both sides of
the control volume boundary. The subscript of summa-
tion, j(i), means all node points connected to node .

The numerical flux h is computed using an
approximate  Riemann  solver of  Harten-Lax-
van Leer-Einfeldt-Wada(HLLEW)[15]. The second order
spatial accuracy is realized by a linear reconstruction of
the primitive gas dynamic variables q =[p,u,v,w, p]"
inside the control volume using the following equation;

qr)=q,+yVq,-(r-r). (0=<y<1) G)
where 1 is a vector pointing to point (x,y,z),and i
is the node index. The gradients associated with the con-

trol volume centroids are volume-averaged gradients
computed by the surrounding grid cells. Venkatakrish-

nan’s limiter [16] is used for the function , in Eq.(3)
because of its superior convergence properties.

In order to integrate Eq. (2) in time, the
Lower-Upper Symmetric Gauss-Seidel(LU-SGS) im-
plicit method [17] is adopted. With AQ=Q""' -Q"
and a linearization of numerical flux term as
h!" =h! +AAQ, +A AQ,» Eq.(2) becomes the follow-
ing equations.

[%HZAS"A;]AQ,J,Z&UA,QQ R, 4)
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where R is a residual vector;

- AS,h? )

i
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The LU-SGS method on unstructured grid can be
derived by splitting node points j(i) into two groups,
jeL(i) and jelU(i), for the second summation in

LHS of Eq.(4). The final form of the LU-SGS method for
the unstructured grid becomes,
Forward sweep:

a@:nﬁé,—ia&aaQ] (62)

pafin

Backward sweep:
AQ,=AQ; -D" Yas,4;aQ,  (69)

]
1l

where D is a diagonal matrix derived by Yoon and
Jameson[17] with Jameson-Turkel approximation of
Jacobian[18] as A* =0.5(A+p 1), where p, is a
spectral radius of Jacobean A.

—[—+{J SZAS pd] ™

The lower/upper splitting of Eq.(6) for the unstruc-
tured grid is realized by using a grid reordering technique
[19] to vectorize the LU-SGS method and to improve the
convergence,

Sensitivity Analysis
Direct Method
An aerodynamic sensitivity analysis begins with the
fact that the discrete residual vector, Eq.(5) of the
nonlinear flow equations is null for a converged flow
field solution of steady problems, which can be written
symbolically as
R[0.x.B] = 0, ®)
where X is the grid position vector, B the vector of design
variables. Equation (8) can be directly differentiated via
the chain rule with respect to B to yield the following

equation.
ﬂ{i&}{@}qc 0. ©
dQ [ 00 ||dp '
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This equation is the direct sensitivity equation for
the flow variable sensitivity [dQ/df}. The vector {C}
has no relation with the {dQ/df}, and thus, is constant
throuthout the solution process of the sensitivity equation
for a design variable 8. {dX/df} in the {C}} is a vector of
grid sensitivity, which can be calculated by a
finite-difference  approximation or  the  direct
differentiation of a routine for the grid generation or
modification.

In order to find the solution {dQO/dS} of Eq.(9) it-
eratively, a pseudo time term is added as follows to ob-
tain the incremental form;

g o o
ot o0 || dp

where Q" represents the solution vector /dQ/df3}. The
above system of equations is solved with the LU-SGS
scheme that is used for the flow solver. By comparing
Egs.(2) and (10), it is noted that one can obtain a direct

This document is provided by JAXA.



2nd SST-CFD Workshop

sensitivity code by directly differentiating the right-hand
side of the flow solver.

The Jacobian matrices [0R/6Q] and [0R/0X] in
Eq.(9) are very large banded matrices. Even for a
two-dimenisonal grid system, if its banded structure is
not considered, the memory requirement easily exceeds
sevearal Gbytes. In order to circumvent this problem
Newman et al.[4] adopted an efficeint matrix-vector
product method. In the present direct sensitivity analysis,
however, the terms [0R/GQ] {dQ/df} and [OR/6X]
{dx/dp} in Eq.9) was calculated without any ‘ma-
trix-vector product’.[10] This could be done by directly
differentiating those terms in the residual vector R that
are explicit functions of the flow variable Q with respect
to B for the [OR/GQ] {dQ/df3} calculation. The same
procedure is applied to [0R/8X] {dX/df3}; those terms in
the residual vector R explicitly related with the grid
position vector X are differntiated with respect to p.

When the flow variable sensitivity vector
{dQ/dp;} is obtained, the total derivative of the objective
function F can be calculated. The objective function F is
usually aerodynamic coefficients such as Cp, Cy, Cy, or
differences of surface pressures with specified target
pressures. F is a function of flow variables Q, grid
position X, and design variables B, i.e,

F=F(Q(B).X(B).p) - )

The sensitivity derivative of the cost function F with
respect to a design variable B is given by

EROE R

" Adjoint Method

Since the total derivative of the flow equations in
the steady state is null as can be seen in Eq.(9), we can
introduce adjoint variables and combine Egs. (9) and (11)
to obtain

SRR
g o

Coefficients of the flow variable sensitivity vector
{dQ/dp} form the following adjoint equation.

sl

If one finds the adjoint variable vector {A} which
satisfies the above adjoint equation, one can obtain the
sensitivity derivative of F with respect to B without any
information about the flow variable sensitivity vector
{dO/dp}. This makes the computational cost for the
sensitivity analysis independent of the number of design
variables. Eq.(13) eventually becomes to the following

form,
51 -5715Hgl e 2

As Eqs.(2) and (10), the adjoint equation (11) is

also converted to the following system of linear algebraic
equations with a pseudo time term added and is solved
with the LU-SGS scheme.

[iHZASUA;T]M - AS,A;'AL, =R _ad),’ (16)

/ot
frd FILT)

where R_adj; is the adjoint residual defined as

Flux Jacobian matrix A” in the second summation is cal-
culated at node i instead of node j and of negative sign.
This shows that wave propagation direction of the adjoint
equations is opposite to that of the flow equations. How-
ever, the information on grid reordering used in the
LU-SGS routine of the flow solver for the convergence
improvement and vectorization is still valid here for the
adjoint equations.

As mentioned earlier, the flux Jacobian [6R/6Q]"
in the RHS of Eq.(16) is a very large banded matrix. In
the adjoint method, unlike the direct method, all the ele-
ments of the Jacobian matrix should be calculated
explicitly. If all of the calculated elements are stored in
memory, computational time can be drastically reduced,
but the memory requirement would prohibitively large
for three dimensional problems. On the other hand, if the
elements are not stored but recalculated every iteration
repetitively, the memory requirement can be remarkably
reduced with increased computational costs. This
demands a compromise which should be made
considering avaliable computer resources.[11] In this
study, among the elements of [0R/3Q]", stored in mem-
ory are those calculated by the differentiation of y/Vq,,

the reconstruction and limiter terms (see Eq.(3)). Other
parts obtained by the differentiated HLLEW flux are re-
calculated every iterations of the adjoint analysis instead
of being stored in memory.

Figure 1 compares a two-dimensional example of
flux accumulation for the flow solver and the adjoint
method. In the flow solver, primitive flow variables are
reconstructed at the control volume surface using
surrounding node point values. Then the flux h through
the control volume surface is calculated and accumulated
at both nodes 1 and 2. This is repeated for all edges to
obtain flux residual for the control volume. On the other

hand, in the adjoint method, the adjoint flux [ﬂ } () 18
80
accumulated at all the node points that have effects on
the reconstructed flow variables at the control volume
surface. For example, if we set the flux for the edge
connecting node 1 and node 2 as Rj ( = -AS,h,, ),

accumulation of the adjoint residual R_adj is made at
nodes related with node 1 as follows.

T

R_adj; <= R _adj; + [EBRIZ} Aad= E&dieal (17)

!
a 1

For nodes surrounding node 2,

1
R_adj; <=R_adj;- FRH} 1.i=1,2,3,7,89,10.
a !

!
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Fig.1 A 2-D example of flux accumulation for the flow
solver and the adjoint method

This causes small loops for the neighboring nodes to be
inserted into the big loop for all edges. The length of the
small loop was usually from 5 to 25 around a node point
for a three dimensional Euler grid depending on the grid
structure. If the adjoint code is run on a vector machine,
it would hamper the flux calculation routine of the
adjoint code to be vectorized with the big loop of edges.
In order to simplify the differentiation process of
[6R/2Q]", the residual vector R is differentiated by
primitive variables q=/p.u,v,w, p/' rather than by the

conservative variables Q.[6] Then, the flux Jacobian via
the conservative variable can be obtained introducing the
transformation matrix M =280/dq;

aR) _([rTaa]) _[aa][er] _,[2] . 18)
o] \[aa)oo)) “|eo] [aa] T g
The transformation matrices in a transposed form are
given as

_ .
1l u v w (“ ‘*’V‘)'i'h )
|0 00 o
00 0 p o
k sl =wlp o DA
Lo p 00 ——lu (19)
M =
0 0 /p 0 iy
g e 4 e —(r=Iw
0 0 0 0 1)

In this study, the required differentiation process
is conducted by human hand. Hand differentiation of a
modern CFD code is somewhat a tedious job to do.
However, if once done carefully, it provides an efficient
sensitivity analysis tool.[10]

Boundary Conditions for the Sensitivity Analysis
Boundary conditions for the direct method can be

simply imposed by differentiating the boundary

conditions for the flow equations. This section is thus
mainly devoted to the boundary conditions for the
discrete adjoint method. The adjoint equation (14) can be
written in a more detail form containing boundary condi-
tions as follows.

EE I o @0
EAlESIS + fer) o

ao" a0" | |

sl fg)w o

[aRr }f' () [aRh ] {r }+{£}: ol @1b)

or

a0’ log Glog
where the superscript i presents values of inner node, and
b values of boundary nodes. For example, R' is the re-
sidual at nodes in computational domain, and R® is the
residual of the boundary conditions at boundary nodes.
Equation (21a) is solved in an incremental form of
Eq.(16). The adjoint variable vector at boundary nodes,
{A"} is calculated from Eq.(21b) with the adjoint variable
vector at the interior nodes {A'} of the previous time
level and the flux Jacobian [ar' /80"] -

An alternative way to impose boundary
conditions of the discrete adjoint equations is to treat
boundary conditions of a flow solver as an implicit
manner. A discrete adjoint code developed from the flow
solver with implicit boundary conditions would then
automatically satisfy the boundary conditions for the
adjoint equations.[4,11]

Sensitivity Code Validation

In order to validate the direct and adjoint sensi-
tivity codes developed in this study, sensitivity analyses
are conducted for a typical Supersonic Transport (SST)
immersed in a supersonic flow. Flow conditions are M,, =
2.0 and o = 2.0 degree. All the computations for the code
validation were conducted with a single processor of a
NEC SX-4 vector computer.

We used the following design parameter {3 for the
purpose of test.

B : Ynew=Y'Al3*x~ (22)
where x and y are coordinates of longitudinal and normal
direction, respectively. The sensitivity derivatives are
compared with those computed by the forward fi-
nite-difference approximation with a step size Ap of 107,
The residual of the flow solver is reduced to nearly ma-
chine zero for the finite difference calculation. Table |
compares the sensitivity derivatives by the adjoint, direct,
and finite-difference method. They compare very well
with one another with errors less than 0.004 %.

Figure 2 shows a comparison of convergence
histories of the Euler solver, adjoint and direct sensitivity
codes. All of them show similar convergence properties
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Fig.2 Convergence histories of flow solver and sensitiv-
ity codes

since they all have the same flux Jacobian matrices, and
also they adopt the same implicit time marching algo-
rithm of LU-SGS scheme. The initial values of the sensi-
tivity derivative /dQ/df3} are obtained by differentiating
those of the flow solver, and the initial adjoint variables
{A} are set to zero. Table 2 compares required memory
and computational time for the Euler solver and its sensi-
tivity codes. The required memory for both direct and
adjoint codes seems to be reasonable. The adjoint code
costs somewhat large computational time per iteration
due to the poor vectorization performance of the adjoint
residual accumulation routine as mentioned in the previ-
ous section. We also tested the ratio of computational
time of the flow solver over the adjoint code at a Compaq
o workstation, a scalar machine, and found that the ad-
joint code costs only 1.5 times the CPU time of the flow
solver per iteration.

Figure 3 shows convergence history of the Cp
gradient as the adjoint code converges. It should be noted
that even only one-order reduction of the adjoint residual
gives accurate gradient value within 1 % error for the
present design parameter.

Table 1 Comparison of sensitivity derivatives: errors are
with respect to the values of FD

Finite Direct code | Adjoint code
Difference (%oerror) (Yoerror)
dC,/dp | 1.308065 1.308050 1.308056
(0.00115) (0.00069)
dCp/dp | 0.0983594 | 0.0983587 0.0983557
(0.000712) (0.00376)

Table 2 Comparison of memory and CPU time: numbers
in the parentheses are relative ratios to the flow solver

Flow Direct Adjoint
Solver code code
Required 160 | 222 (1.39) | 360 (2.25)
Memory(MB)
Time per It- 375 5.7 (1.52) | 26.5(7.07)
eration (sec.)

——e—— Adjoint Result

Nomalized dCD/dbeta

-
T T

e

w

@
1

0.98 = e S
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Fig.3 Convergence trends of sensitivity derivative with
respect to residual of the adjoint code

107

Design Methodology

Design Objective

The present design method using the unstructured
Euler solver and the adjoint method is applied to an ex-
perimental SST wing with a flow-through type engine
nacelle attached on its lower surface, which is under de-
velopment by National Aerospace Laboratory of Japan as
a basic study for the next generation supersonic trans-
port.[20]

The objective of the present design study is de-
fined as follows.

Minimize C;,
Subjectto C;, =C,."

where Cj, and C; are drag and lift coefficients, respec-
tively, and C; " is specified. If the lift constraint is dealt as
an explicit constraint in an optimizer, it requires an addi-
tional adjoint code computation for the C, derivatives, In
this study, therefore, the lift constraint is satisfied running
the flow solver in a fixed-lift mode, in which the inci-
dence angle o is adjusted based on Cy,. The incidence
angle is modified every 20 iteration of the LU-SGS time
integration after the residual is reduced by 2 orders of
magnitude to obtain a lift coefficient satisfying the fol-
lowing inequality conditions.

¢’ <€ C. £ L003C,°
Since we would like to minimize drag when C;
= (, , i.e. at an adjusted incidence angle, the objective
function F = (), should be modified as follows to
consider the lift constraint consistently,

(23)

F=C,=C, + i x> 24)
ca

where C), is a drag coefficient without any incidence
angle modification, and A« is a required incidence angle
variation to match the lift with a target one. Similar
relation can be written for the lift.

(25)

C;=C; * o Aas
: ca

where C; is a lift coefficient without any incidence angle
variation, and C_" is the target lift coefficeint, which is
0.100 for this case. If we arrange the above equation for
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Ac and input to Eq.(24), we obtain a modified objective

function
aC,, )
da

6(",_)
( da

where the second term of lift acts as a penalty term,
which prevents the design from reducing the drag by
simply reducing the lift. The same expression for the

modified objective function was suggested in a varia-
tional form by Reuther et al.[8].

(26)

F=C, - {,=e3)

Design Parameters and Grid Modification Method

The wing section geometry is modified adding a
linear combination of Hicks and Henne shape func-
tions[21], f; as follows.

Yrew ™ Yinitial + Zﬁ.ﬁ : _f:t ? (27)
k=1

11(0.5)
in(x;) ’

where (3, are design variables, », the number of
design variables, and x, represents the peak location of f;.
Although this Hicks-Henne shape functions are not or-
thogonal, they have been widely used for aerodynamic
design optimization problems with successful re-
sults.[3,8]

We used five design sections along the SST wing
span and defined 20 Hicks-Henne design variables and
one twist angle per a design section. Figure 4 shows ten
Hicks-Henne functions used for upper and lower surface
perturbation. In addition to the 105 design variables, the
height of diverter is also considered as a design parame-
ter. With the new geometry of the design sections, node
points on the wing surface are linearly interpolated.

When the surface grid is modified, the interior
grid points should be moved accordingly. In the struc-
tured grid approach, the interior grid positions can be
moved with a relative ease using an algebraic mesh
movement strategy which modifies the grid point coor-
dinates along a grid line of the same index. In the un-
structured grid method, however, such a simple grid
modification method cannot be applied, and a more so-
phisticated grid movement method is needed.

fi=sin’[zx“®], e(k)=

% 0.25 0.5 0.75 1

xic
Fig.4 Adopted ten Hicks-Henne Shape Functions

For the movement of the grid points with the
perturbed surface grid, we used the elliptic partial differ-
ential equation method proposed by Crumpton and
Giles[22]. In the method, the displacement x from initial
grid point x; is prescribed by the following equation with
Dirichlet boundary conditions

V- (kVdx)=0. (28)
Diffusion coefficient k is constant in each cell and is
given by
_ 1
max(Vot',a)’
where Vol is a control volume of each grid point and ¢ is
a small positive number to prevent k& from becoming
negative. In the original form of the method in Ref.22,
Vol is obtained from deformed grid system x, + &x. In
this study, however, the cell volume is calculated from
initial grid x, with an assumption that the cell volumes
(or at least their relative ratios) do not change much
through one iteration of the optimization process, which
is often the case for aircraft wing section design prob-
lems. With this assumption, the nonlinear elliptic
equation becomes a linear one, which is much simpler
and thus can be solved with a less computational time
since the control volumes of the grid points do not need
to be calculated during the iteration step. Although this
caused no problem in the present design study, it might
need to consider the original nonlinear equation for a
robust grid modification if the geometry changes much
throughout the design process. The elliptic equation (28)
is discretized by a finite volume method, and subsequent
linear algebraic equations are solved by the conjugate
gradient method[23]. Required computational time to
obtain converged solution 8x was same with that of a few
iterations of the Euler solver.

(29)

Grid Sensitivity

The elliptic equation method for the interior grid
movement is differentiated to be applied to the grid sen-
sitivity calculation for the vector {C} in Eq.(9) with re-
spect to each geometric design variable. Since this re-
quires almost the same computational cost with the grid
movement procedure, the total computational burden
would be a substantial amount if the number of design
variables becomes large; say, more than one hundred.

One possible way to reduce the computational
burden of the grid sensitivity calculation is to neglect the
grid sensitivity of interior node points. Eyi and Lee[3]
defined grid sensitivities on the body surface only by
ignoring the movement of interior grid points in their
study on direct sensitivity analysis with 2-D Euler equa-
tions. Although they did not present an explicit accuracy
comparison, they reported that the simplification ap-
proach does not affect the accuracy of the resulting sensi-
tivity.

In this study, we made a comparison between the
derivatives with and without the interior grid sensitivities
in order to evaluate the accuracy of the simplification
approach ignoring the interior grid movement. Figure 5
compares the derivatives of the objective function ob-
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tained with and without the interior grid sensitivity in-
formation. Derivatives with respect to the design vari-
ables have little difference between the two values except
those of 21 ~ 30 in the design variables. The design
variables with indices from 21 to 30 are defined on the
lower surface of the second design section, which is lo-
cated at the centerline of the diverter. Thus, they cause
the nacelle to be translated vertically because of the con-
straint on the leading edge height which will be men-
tioned in a following section. It has been shown in Ref.7
that for geometries with singularity such as sharp trailing
edges, interior mesh sensitivities must be included for the
calculation of the derivatives associated with translation.
In this case, the nacelle inlet and outlet have sharp edges,
which causes the derivatives calculated without interior
mesh sensitivities to be deviated from those values ob-
tained with the mesh sensitivities. It can be noted here
that the interior grid sensitivities are required for design
variables associated with translation of the nacelle, and,
on the other hand, the grid sensitivities can be ignored for
other ordinary design variables, i.e. coefficients of shape
function or twist angles, without major accuracy degra-
dation.

Recently, on the other hand, Anderson and Bon-
haus[12] compared the accuracy of sensitivity derivatives
with and without interior grid sensitivities with an adjoint
code for Navier-Stokes equations with a one equation
turbulence model. In their work, it was reported that de-
rivatives with and without the grid sensitivities differ
significantly, and therefore, the design could fail if the
grid sensitivity terms were not included. Reminding that
the present study deals with the Euler equations, this
disagreement seems to be caused by the effects of the
viscosity and/or turbulence model considered in the ref-
erence. However, further research is required to reveal
the exact reason of the disagreement.

In this study, interior grid sensitivities for the ten
design variables (21~30) are calculated by the elliptic
equation method, while for other design variables, only
the surface grid sensitivities are defined. This simplifica-
tion approach required only a quarter of the computa-
tional time for the approach computing all the interior
grid sensitivities.

Optimization Method

For the minimization of the objective function
with specified constraints, the ADS(Automated Design
Synthesis) program[24] was used as an optimizer. The
Sequential Quadratic Programming (SQP) method[25] is
adopted in which the objective is approximated by a
quadratic Taylor series expansion to create a direc-
tion-finding problem. This subproblem is solved using
the Modified Method of Feasible Directions. Lagrangian
multipliers are calculated at the optimum of the subprob-
lem. Then one-dimensional search is conducted using
quadratic polynomial interpolation. When the one design
iteration is complete, the approximated Hessian matrix is
updated by the Broydon-Fletcher-Goldfarb-Shanno for-
mula. Detailed algorithms and methodologies of the SQP
method is described in Ref.25.

Design Results

Design conditions are a freestream Mach number
of 2.0 and C of 0.100. Figure 6 shows the wing-nacelle
configuration and surface grids of initial geometry. The
number of nodes and cell for the adopted volume grid are
about 270,000 and 1,500,000, respectively. The initial
geometry has a drag coefficient of 0.02051 and L'D of
4.883, which is much smaller than general SST configu-
rations. This is because the size of NAL experimental
aircraft is roughly 10% scale of the assumed actual size
SST, and thus the relative size of an engine nacelle is
comparatively larger than that of the actual SST.

In the present optimization the diverter leading
edge height is also constrained to be larger than the initial
value. This lower side constraint is to prevent the bound-
ary layer flow from being entrained into the engine.
which might occur if the height of the diverter leading
edge becomes smaller than the initial value. Additional
constraints are imposed so that wing section thickness
values at front (5%chord), rear (80%chord) spar position
and maximum thickness position (50 % chord) should be
larger than those of initial geometry.

Fig.6 Surface grids of NAL experimental supersonic air-
craft with nacelles
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Fig.7 Comparison of lower surface pressure contours

Table 3 Design results: SST wing-nacelle configuration

Initial Design A (%)
Co 0.10017 0.10020 +0.03
Co 0.020513 0.018918 +7.78
L/D 4.883 5.297 +8.48

The density residual of the Euler solver was re-
duced by four orders from the initial value, and that of
the adjoint code by two orders. The SQP optimization
iterations converged with three iterations to obtain a drag
coefficient reduced by 16 counts from 0.0205 to 0.0189 oz
retaining the lift coefficient as the specified value and
satisfying imposed thickness constraints. Table 3 sum-
marizes the design results. During the design process, the
Euler solver was run three times and the adjoint code
also three times, which is equivalent to about less than
six analyses of the Euler solver in computational time.

Figure 7 shows the surface pressure contours on

the wing lower surface. It can be noted that the strength o3k sl
of the impinging shock wave on the wing lower surface . L . \ .
generated by the diverter leading edge is greatly reduced e !
through the design procedure. Also the strength of the T T
expansion wave at the trailing edge of the diverter has T

been remarkably reduced. Figure 8 compares wing sec- (c)n=0.561

tion shapes and pressure distributions at design sections.
The wing section shapes are elongated by a factor of
three in the normal direction. Section pressure distribu-
tions also show that the shock strength on the lower sur-
face has been remarkably reduced.

The leading-edge height of the diverter remained
the same as the initial value, since the gradient of the
objective function with respect to the height is positive

throughout the design iteration. This is quite natural in a sl initiel
sense that the volume of the aircraft will be increased and Rein
therefore the pressure drag will be increased if the di- o e 53 ars 1

verter height increases.

e e,
Since the present design study is based on the s
Euler equations, the estimated drag might be deviated
from the realistic value, especially for this kind of cases (d)yn=0.762

with a strong interaction between shock wave and
boundary layer. In order to consider the viscous effects in ~ Fig.7 Design results: section shapes and pressure distri-
the design process, employment of the Navier-Stokes butions at design sections; ---- initial, — design.
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equations would be necessary, and also, development of a
discrete adjoint code for a 3-D unstructured Na-
vier-Stokes solver with a turbulence model would be
required.

Concluding Remarks

An aerodynamic design optimization system is de-
veloped using the unstructured Euler solver and the dis-
crete adjoint method. Surface geometry is perturbed by
simple algebraic shape functions and a twist angle varia-
tion. The interior grid position movement is made by the
elliptic equation method. For an efficient calculation of
terms related with the grid sensitivities, grid sensitivities
of interior node points are ignored except those for the
design variables associated with nacelle translation. The
present method is successfully applied to design a SST
wing with nacelles. The impinging shock wave from the
diverter on the wing lower surface has been greatly re-
duced, and as a consequence, drag is remarkably reduced
by three iterations of the SQP optimizer.
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