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Abstract

wire in an E&i}ﬂ{}%’g}h@ﬁﬁ plasma. The one dimensional m s assumes an infinite “m inan
unmagnetized plasma with finite and equal ion and electron temperatures. %ﬁﬁama
particle energy and angular momentum are conserved in such a formulation, the results
have the potential to provide a standard against which to compare more complicated
electrodynamic tether simulations. Results indicate that higher plasma shielding limits the
range of impact parameters that experience significant scattering, and that attracted
particles entering tangent to the sheath experience increased scattering. The results also
show that there are significant changes in orbital trajectories between different space
charges within the OML limit.

Results are presented from a study of charged particle scattering about a charged

1. Introduction

Current plasma models employ complicated codes for analyzing plasma
characteristics as realistically as possible, taking into account many factors such as
particle collisions, multiple sheaths, trapped particles, interacting magnetic fields, etc. As
a result of so many variables, a new model needs to be ie%mé against a standard or

“classical” theory to verify the results. Of course comparison with experiment is the
ultimate validation, but in mﬁh}f cases and end to enc mmg&&mm does not prov
e

fgﬁ % K
LY SN e 15 3
much mmw%}% i ﬁ?rwm@ non and v

at

i
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 10 YOS 88 coae o g{}gj; - verification, Oenerall
suitable ﬁamzmi m@dﬁi e that involves minimal assumptions, many conserved
guantities, a high degree i:}f‘ m&iy%ﬁzm% and of course mmmgmé}f acceptance.

This paper seeks to provide a classical plasma sheath model for particle scatiering
for the case of an infinitely long charged wire immersed in an unmagnetized plasma with
finite plasma temperature. Under these conditions, charged particles will orbit the wire
conserving both energy and angular momentum. This allows us to compute the self-
consistent space charge sheath using the Turning Point Method [1], and then numerically
compute the scattering of particles in the electric field of the wire. Although the
scattering must be computed numerically for the general case, the conserved elements of
the orbit allow this to be done in semi-analytic one dimensional integral. In the case of a
r potential we can compare our resulis to the fully analytic answer.

The Turning Point Method, or TPM, was developed by Parker [1] and provides a
self-consistent solution when calculating the characteristics of a collilsionless, isotropic
and stationary plasma in the presence of a probe with a large radius compared to the
plasma debye length. Using the TPM to analyze a plasma provides an advantage over
other plasma theories in several ways. By being able to identify the point where a particle
turns in its orbit, the entire trajectory of the particle can be traced to and from infinity
without having to know any other information about the particle’s orbit. This provides a
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much simpler alternative to the computationally intensive particle-in-cell (PIC) weighting
method, which must perform individual calculations along the entire trajectory of the
particle. The TPM is also easier to develop into a computer program than Laframboise’s
earlier Effective Potential Method [2], which is equivalent to the TPM. The TPM also
provides a straightforward method for determining the turning angle of a particle along
its orbit.

This paper will specifically look at the case of a charged particle either attracted
or repelied to a charged cylindrical probe by using a Fortran code originally developed by
Cooke [3]. The original program, called TurningPoint, used Fortran 77 to model the
characteristics of a particle that could either be attracted to or repelled by a spherical
probe using the TPM. In this effort, the code was expanded to include the analysis of a
plasma using cylindrical probe geometry, as well as an added subroutine that finds the
turning angle of the charged particle (repelled or attracted) around the probe.

2. Background

The goal of a probe theory is to determine the charge density, particle flux, and
the electrical potential about the probe. To find the current density and potential, two
governing equations are used — the Vlasov equation and Poisson’s equation. Poisson’s
equation states

V&' =-ple, ; ngsﬁmf{%m%} W

where @ is the plasma potential, p is the net particle density, g, is the permittivity of
space, ¢ is the particle charge, ¢ is the particle voltage, & is the Boltzmann constant, T is
the @"fﬂi‘ ¢ temperature, 7; is the ion zéems?;}; and n, is the electron density. The time-

i ent form of Vlasov’s equation is given as

VeV, f+2V @V f =0 @)

i

where V, and V, denote the gradient operator with respect to position and velocity space,
and fand m are the velocity distribution and the mass of the particle, respectively. In this
analysis we assume the velocity distribution j to be Maxwellian for both electrons and
ions. With the proper boundary conditions, it is possible to manipulate Viasov's equation
in order to solve for the particle density, known as the “Vlasov Problem”; conversely,
Poisson’s equation can be solved to vield the electrical potential given a constant particle
density, known as the “Poisson Problem”. By solving the Viasov Problem and the
Poisson Problem simultaneously on a set of grid points, the particle (and therefore
current) density and the plasma potential can be determined.

2.1. The Vlasov Problem

Solving the Vlasov Problem requires solving the Viasov equation for a set of
boundary conditions that classifies the particle orbits 1 %@ whether or not they coniribute
to the current density measured by the probe. The current density is defined as the first
moment of the Viasov equation:
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where p is 2 for a cylindrical probe and 3 for a spherical probe. Assuming a Maxwellian
velocity distribution, expressing the current density for a cylindrical probe in a
dimensionless form, {, vields

(% ¥ . 2 o | .
= } r exp(—~v° —gwdv %ﬁ{xm &). (4)
w Hinin

Here, ¢ and v are dimensionless quantity defined as ¢ = ©(kT/e) and v = W(Eﬁ}’m}” 2 The
evaluation of the current density can be simplified by transforming the integration of n
over v and finto mz‘:&gm}i;{m over the constants of motion, E and J°, where E is the mi i
energy of the particle and Fis the square of the angular momentum, Using ¥ and Fis
advantageous because these variables remain constant throughout the entirety of the
particle’s orbit, regardless of changes in r along that orbit. The constants of motion in
dimensionless form are

E=vi+g ; J'=r"'sin’8 (5
» . - . . 2 .
Transformation of the current density using £ and J* yields

y
i == eXD(G ) | SXP(-EVIEM, (E). (6)
v
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Osource 15 the potential at the source, which is @% for ambient particles and zero @i?@ﬁw%gg

[4]. M is the “monoenergetic” contribution to i for a cylindrical probe, defined a

st

'

M (E)= ;{@g{f/; \;}’ (7

where £ is held constant and the integrals are evaluated over /. The factor C represents a
differentiation between ambient and emitted particles, where C is unity for ambient
particles and 2 for emitted particles. The factor & gives orbit information pertaining to
what source an orbit will connect with. Thus, for ambient particles, =1 if the particle
comes from infinity and =0 if it comes from the probe surface. Similarly, for emitted
particles 8=0 if the particle comes from infinity and 8=1 if it comes from the surface
Simply put, a nonzero value for & means that an orbit is “occupied”. Evaluating M,
requires that the boundary conditions for the integral be determined, which can be done
by defining specifically which particles have an angular momentum that contribute to the
collected probe current and which do not. This is where the TPM becomes useful.

P
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The TPM defines a turning point as the péﬁ%iﬁi where the radial y@éa}{;;w component
v, = 0. Consequently, a particle will not vanish or change sign (i.e. a particle will exist) as
long as

2

g?’y {g}

or
J<g=r(E-9) (9)

In the above equation, g
5‘1 r) plane, all physical
In a collisionless ¢
Figure 1)

k4
Fipure 1: The 4 types of orbils

Type 1: Orbits that include ambient particles that pass from infinity to the sphere, or
emitted particles that pass from the sphere to infinity. These orbits have no turning point

and § =

Type 2: Orbits that include ambient particles that pass from infinity by the probe at a
minimum radius without intersecting the probe surface, and back out to infinity again.
These particles have one turning point and a delta factor of & = 2 to account for the
ingoing and outgoing trajectory contributions of the particle.

Type 3: Orbits that comprise of particles emitted from the surface of the probe that travel
out to a maximum radius and then return back to the probe surface. Particles in type 3
orbits have one turning point aad a delta factor of § = 2 to account for the ingoing and
outgoing trajectory of the particle
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Type 4: Closed or “trapped” orbits where particles circle the probe indefinitely without
making contact with the surface. These orbits are assumed to be unpopulated in
collisionless plasmas and therefore 8§ = 0 for them.

From analysis of the orbit types, it is evident that type-1 and type-2 orbits can
contribute to the collected probe current simultaneously, and type-1 and type-3 orbits can
contribute simultaneously, but type-2 and type-3 orbits cannot contribute %imiﬂmﬁ*{i&ﬁ@h’
Also, %:%m@ will always be contributions by type-1 orbits between the lowest value of F
and F=0. %%mm there can be orbits populated by either type-2 or type-3 orbits above
the minimum J°.

When the turning-point function, g, is plotted in the (J°,7) plane, the least-values
of g can be analyzed in relation to the radial p@w%‘;wﬁ r, at where they occur. Here, three
cases are considered that encompass the relevant x{:{smﬁm case A - the least value of

g(r) (known as the “absorption radius”) occurs inside of the probe radius, r,, case B — the
E@a@i value of g(r} occurs outside of 7, and case C ~ tg‘;@m is a least va 3&@ of g(r) inside of

rp and a secondary least-value outside of r,. The three cases are illustrated in Figure 2.

Figure 2: Case A,B and C in (. J°) space
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Ez case A, the least value of g occurs g& point a, @mﬁ Q{}g"mgﬁm{i& to the least value
of F=J72 Only type-1 orbits exist between J° = 0 and J° = J;° and, since type-2 orbits are
outside of the absorption radius and type-3 orbits are inside the absorption radins, we
have

Case A: Forr(1,a), J2, =0, J;, =J., =J], J},=g(r) - no type-2 orbits
Forr(a,e0), Jo, =0, J2, =J}, J}, = g(r) — no type-3 orbits

Case A 1s the only case that we will analyze for the purposes of this paper. From this
analysis, it 1s possible to define M. for ambient or surface-emitted particles for a
cylindrical probe. The analysis is done in Parker [4] with the results as follows:

NE L b (VA |
M (E)y=[ ﬁga@{f/@) ﬂ@%} =, (10)

In this case, r = 1 since the current density of interest is that collected at the probe
surface.

To finish solving the Vlasov Problem, the integral over energy in equation (6},
with M, defined in equation (10), must be numerically evaluated using a guadrature
formula in the form

| exp(~E)dE-M (E)= &ge&f{ﬁ} (n

s 4=t

where C; is a constant that fﬁ*éﬁ% with the energy £y from k= 1,2,.. K. Cp and £ are
miﬁ wted %;},f estab @%@zﬁg a least value and greatest value of iﬁs: g:s@mmézzi distribution,
al wow be split up info two parts, one in the finite range of
{é‘mw O~ &ﬁéﬁi one in i%‘%@ semi-infinite range of (£, o)

[ sz«;;}{wfi}gﬁﬁ’&ﬁxf{g}xg“ exp(— 5}55?%%5{5{}«%5: exp(~EYAE-M(E)  (12)

i S g

The finite range consists of type-3 and type-4 orbits, where the potential dips into the
negative range along the orbit a ﬁ e particle changes trajectory around the pr %
Consequently, when only considering type-1 and type-2 orbits (or only case A scenarios),
Ein = Eqy and only the semi-infinite range applies.

For the Maxwellian case where the integrand contains a Gaussian function as a
weighted function, the coefficients C; and E; can be transformed into an abscissa-
coefficient pair defined from the data of Steen et al., and the semi-infinite range integral
becomes

[ exp(~E)IE-M (E) =exp(~E,,) [ exp(~U)dUM (U +E

mmx }
IS
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&
=> 2H,a,°M(a} +E,) “ (13)
k=)
Here, Cy = 2H g and B = ;:gg,g;. + Epax, where Hy and ay are the abscissa-coefficient pair
defined in Steen et al.
This completes the solution to the Viasov Problem. Next, the much simpler
Poisson Problem will be solved.

2.2. The Poisson Problem

Poisson’s equation, given earlier as equation (1), can be rewritten in dimensionless form
using the di ‘nm%mﬁémx terms described earlier plus Ay, which is the ambient-electron

E}ﬁ%}’ h, Ap, divided by rg (the “Debye number”). For a cylinder, Poisson’s equation
may be mmé@m@@d to

{g 2@ {%}2{(
me{ﬁezwﬁfE %{Eé}
i ”

In the cylindrical case, u = In r. Through the transformation of Poisson’s equation, it is
possible to solve for the electrical potential and obtain a result that is easily analyzed
through computational means:

) ., Qi{’m A .
,1_3 ﬁ.,«;gi% %«{2’? %;,53555”( —-{7, 5} . (15
| A

%M ) m}’

Ar and Ay are the interval lengths on a uniform grid, and { and j denote the grid point of

ang Ju are the in
gs 8

%mzz‘%&gﬁzaﬁﬁ AnNavsis.

o

2.3, Turning Angle Calculations ;

It is desirable to express the equation of the orbit of a particle in terms of rand &
while eliminating the time dependence, with E and J as constants of integration. In a
central force problem (where the only two forces interacting with each other are the
particle and the probe), the orbit is symmetrical about the turning points, meaning that if
any two turning points are known, the complete orbit of the particle can be traced [5].
The classical equation of motion for angular momentum states that

[ =mrté (16)

where [ is the angular momentum with dimensions. Equation (16) can be rewritten as

s;f%}w (17

Since conservation of energy states that
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E= émgﬁ L PV () (18)

and assuming that E is a constant of motion, we can solve for df and combining it with d@
to eliminate ¢ from the g@izﬁzm for a time-independent result for 46

dé = = (19

When eqguation (19) is transformed into units used by Parker and the Turning Point
formulation, the resuli is

(20)

For the specific case when ¢(R) = dprono/R, an analytical answer for déis
available. In Parker notation, it is

By definition, the TPM identifies the position at which a particle of a uﬁz“’i‘:&m
energy will turn in a potential field. A particle with an angular momentum of F (held
constant throughout the particle’s orbit) will turn at a radius » when it intersects with the
turning function (below the curve), g, and proceed back out to infinity along a trajectory
symmetrical to its incoming path. Therefore, the TPM can calculate the turning angle of a
particle by computing the d& s at each grid point out to infinity (effectively the end of the
grid) and adding them together to form one &value for each g function value. Afis

interpreted according to the following geometry for attracted and repelied particles:
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paticle trajectory

» Attracted Particle Trajectories

particle trajectory Repelled Particle Trajectories

By examining the geometry of the problem it is clear that, for an attracted particle
trajectory, the turning angle 0 will approach 360° as the impact parameter b decreases,

and approach 180° as the impact parameter reaches infinity. The repelled particle

trajectories do the opposite — 0 approach 0° as b decreases and converges to 180° as b
goes to infinity.

3.0. Computational Applications of the Turning Point Formulation

Obtaining a numerical solution for the particle density, current density and
electrical potential of a plasma requires simultaneously solving Vlasov’s and Poisson’s
equations through the solution of two sub-problems, the Vlasov Problem and the Poisson
Problem. The easiest way to solve the two sub-problems is using an iterative procedure
on a computer, consisting of developing a certain amount of radial grid points extending
from the surface of the probe to an approximation of infinity, which is what TurningPoint
does. At each grid point, the Vlasov Problem is solved to yield the particle density, while
the Poisson Problem is solved at the same time to yield the electrical potential to produce
mutually consistent solutions. For this paper, the TurningPoint program was expanded to
include plasma analysis using a cylindrical probe as well as a spherical probe.
Specifically, in-depth analysis was done for cylindrical current collection probes. The
program modifications consisted of adding “IF” statements that differentiated between
spherical and cylindrical probe collection models based on the initial user input,
according to the cylindrical current collection and monoenergetic energy definitions
described €arlier.

The TurningPoint program was also expanded to calculate the trajectory of the
particle in question around either an attracting or repelling probe of cylindrical or
spherical geometry by calculating the turning angle of the particle from its turning point
out to the end of the grid, or an approximation of infinity. A separate subroutine, called
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turn_angle, was added to the end of TurningPoint that ﬁam@?fgs&ﬂy alculates the turning
icle at

angle ol éﬁ@ particle at each grid point using the electric potential field of the probe
defined earlier in the TurningPoint program.

£3

Several particle trajectories were defined for different amounts of space
charge (or debye length, Ap), for both attracting and repelling particles in a cylindrical
and spherical probe sheath. For a probe voltage held at +100 Volts, the turning angle for

various attracted and repelled particles of £100 Volts for varying amounts of space
charge are shown in Figure 3. As expected, Figure 3 shows the repelled particles coming
towards the probe from infinity, where their turning angle is 180°, and being increasingly
repelled from the probe as they approach. At a close enough impact parameter, the

re venslled com %K@Lgé}z and cannot reach the g;mq‘%a “ngwp 5 1ilustrates that o

2ERs SoGRRREERNSL ShoddhoRi LRENW OooF 12RO GRRRD LIRGL &

& Rt EJ’
+10 Volt particle approaching a +100 Volt probe cannot even penetrate the probe sheath
Y i N
until it reaches an impact parameter of ~ 4%R,,.. , at a probe radius of ~ 27*Ryope-
An attracted particle coming into the probe from infinity will fall into the pmée
and approach 360°. Figures 3 and 5 illustrate an interesting phenomenon as the parti
first enters the probe sheath — the deflection angle initially jumps up, suggesting that é:%}e
SR s s &
particle gains Adas it transverses across the contours of the probe sheath and then slopes

down as the impact parameter decreases and the particle avoids the sheath irregularities.
The effect is more siriking as the space charge of the plasma increases and the probe
sheath radius decreases.

Figure 4 shows the expected result that at lower space charges (high p), the

potential profile approaches a 1/r characteristic, while at higher space charges (low xp)
the potential profile approaches a log(s) characteristic. This behavior makes it
test for consistency of the numerical results by testing the analytical solution for A&

when the potential profile is forced to be ¢(r) = dprone/R, equation (21). The resuits,

shown in Figure 7, illustrate what the turning angle of a particle of varying energies in a
plasma of high space charge would be in the absence of a sheath. Figure 4 also includes

the potential profile of a probe with Ap/Rjepe Of less than 1.0, the OML limit for a

oyi;ﬁéri@&; probe. It is of interest to note that, even though the probe analysis dealt with
space charges within the OML limit, significant changes in orbital trajectories between
different space charges were still observed.
Result so far support the common sense expectation that higher plasma shielding
(low Zp/R) limits the range of impact parameters that experience significant scattering.

Because the analysis of orbital trajectories does not yield information about the intensity

of the incoming particles, a discussion about the total scattering cross-section of the

particles is not possible. However, the first moment of the orbital trajectories can be
calculated, as & 53} , providing a somewhat arbitrary number that reflects the

momens

quantity of particles that will be deflected to some degree by probe.

izeanf?

ey

Pable 1 illustrates the
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result that higher plasma shielding limits the range of impact parameters that experience
significant scattering.

}»D/Rpmbe Attracted, 8, Repelled, 8,0
| (radians*R/R ;) (radians™ R/R,,,.)
i 35.6 40.6
3 1444 159.9
5 264.6 294.3
16 431.1 510.0
30 571.2 708.5

Table 1: Turning Moment, V., = 100V

¥ La L] L Ll L L] L v
2*19 r &
d attracted particles
Beeda,,
PR NP B s .
%e@ -*;P?MWWW 24 AR R SRR 20K K R %
b 1" a2 DU e L
180 F i ff:;i,};;?z AGIRANANIMTB AN ”:‘;”,,igl";ﬁy&@m@y P S R G VW
i A e 2 e
Ag 1&3 " -
repelled particles
1HoF | 4
i
120 b -
Lo
lcﬂ A A A 'y 2 A A, 5
o 5 10 i5 Pt} b} k] ] 40 45 a0

Impact Parameter, b Rprobe

Attracted, Abp Rprobe = 1.0 - Attracted. Ab Rprobe = 38.80 Attracted, Ap Rpeobe = 10.0
Attracted. Ap Rprobe = 3.0 Repelled, Ab Rpod: = 1.0 «  Attracted, Ap Rprobe = 30.0
Astracted. Ap Rprobe = 186 & Repelled, \p Rprobe = 3.0 L]

%

Figure 3: Turning Angle vs Impact Parameter for Attracted and Repelled Particles
where V05, = +100 Volts and V. = 100 Volts :
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Figure 4: Electric Potential vs Radius from the Probe For Different Debye
Lengths
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Figure 5: Impact Parameter vs Impact Parameter and Radius from the Probe
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Figure 6: Radius from the Probe vs Impact Parameter for V,,,;. = +100 V and
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Figure 7: Turning Angle vs Impact Parameter for Attracted and Repelled Particles where
Vorobe = +100 Volts for the Case Where ¢(r) = ¢prane/R
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