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Summary: Autorotation of an elliptic cylinder around its spanwise axis fixed perpendicular-
ly in a uniform flow was numerically simulated by using discrete vortex-blob method and
compared with experimental results using wind tunnel and water channel. The flow fields
around the cylinder driven externally with constant angular velocity were investigated, and
the effects of the moment of inertia and of the thickness ratio of the cylinder on the starting
condition of autorotation were analyzed, which clarified the mechanism of autorotation.
That is, the driving force is due to shedding of the vortex clinging behind the retreating
edge. The cylinders with sufficiently large moments of inertia rotate with constant angular
velocity, whereas those with smaller one induce periodic variation of angular velocity.
The cylinders with smaller moment of inertia than a critical value cannot sustain autorota-
tion. It was also found that the autorotation frequency increases as the thickness ratio of
the elliptic cylinder decreases, and eventually reaches the maximum values which is larger
than the one of a flat plate.

1. INTRODUCTION

it is well known that a fallen rectangular card falls obliquely in air, having been
rotating around one of its spanwise axes. This so-called autorotation phenomenon is
defined as continuous rotation of a symmetrical body without mechanical force. Such
a body has one or more stable neutral attitudes at which no torque at resting state
acts, and also can autorotate around the fixed axis, if sufficiently strong initial drive
to start is applied.

Autorotation phenomena have been extensively investigated by many authors [/-
4]. Smith [/] studied experimentally over a wide range of Reynolds number the ef-
fect of the moment of inertia of the body and the motion of the freely falling wings.
The result is that the non-dimensional autorotation frequency of a 15% thick ellip-
tic cylinder about its center axis fixed perpendicularly to a uniform flow approaches
asymptotically a constant value at sufficiently high Reynolds numbers, and that the
flow pattern around a falling wing is similar to that around a wing of which axis is
fixed. Lugt [3] studied the numerical solutions of the Navier-Stokes equations and
described the autorotation phenomena by means of the stream lines and the equi-
vorticity lines around an elliptic cylinder rotating with constant angular velocity. The
Reynolds numbers of the calculated flows were limited to 200 and 400, which are far
smaller than those of experimental cases. The flow around a rotating wing is charac-
terized as an unsteady flow around a bluff body. Such phenomena have been re-
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Fig. 1. Coordinate system and notation.

viewed and discussed by McCrosky [5], Barman and Graham [6], and Ericsson [7].

In this paper, the autorotation of a two-dimensional elliptic cylinder is numerically
simulated by means of discrete vortex-blob method including the viscous diffusion ef-
fect. Discrete vortex method is based on the potential flow theory combined with
a model of vortex generation and has been proved to be very suitable for analyzing
the incompressible, high Reynolds number flow past a bluff body [8]. The autorota-
tion frequencies and the flow patterns resulted were compared with those by the ex-
periments using a wind tunnel and a water channel. The experiments were carried
out in both of the autorotating state and the forced rotating state with the constant
angular velocity driven by a stepping motor.

Figure 1 gives the coordinate system. The elliptic cylinder with the chord length
of ¢, the thickness ratio ¢ and the moment of inertia I is rotating clockwise in the
uniform flow with the speed of U. The rotational angle (or angle of attack) of the
cylinder is measured clockwise starting from the x-axis, andw is the angular velo-
city of it and M is the counter-clockwise rotational moment acting on it. Three non-
dimensional parameters characterizing this phenomenon are defined as: the Rey-
nolds number Re=Uc/v, the spin parameter (or the non-dimensional frequency) S=
co/2zU, and the non-dimensional moment of inertia of the cylinder I*=321/mpc’,
where v and p are the kinematic viscosity and the density of the fluid, respectively.
That is, I* represents the ratio of the moment of inertia of the body to that of the cir-
cular cylinder of fluid with the diameter ¢. The models with smaller I* does not
autorotate in water but results in rocking motion because that the model cannot store
sufficient angular momentum to overcome the retarding period.

2. NUMERICAL STUDY

2.1 Model formulation
The equation for the angular motion of a two-dimensional elliptic cylinder rotat-
ing around its spanwise axis fixed perpendicularly to a uniform flow is

19 _ M Ko, (1)

dt

where ¢ is the time and K(=0) is the coefficient of the friction or the load acting to
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the body rotation. After integration with respect to «, one obtains the relation be-
tween » and the average value of the angular velocity during one cycle @;

wzzaz_%r Mda——%r Kowda, (2)

where @ is the angle at o=a@. This means that the cylinder rotates with a constant
angular velocity if the moment of inertia I is large enough.

Two different techniques were used in order to analyze this problem. The first
one is to calculate the average value of the aerodynamic moment, of force M acting
on the cylinder, which is assumed to be rotating with a given constant angular velo-
city. Then the critical condition (upper limit) of the autorotation is denoted by

M=0, (OM /3w) 5 -,>0. (3)

The second method is to solve Eq. (1) by numerical integration under a given finite
moment of inertia. A pursuit of motion results in either autorotating state or rocking
motion while eventually stops.

2.2 Computational scheme

Discrete vortex-blob method using the conformal mapping was applied for
the computation. The flow quantities are made dimensionless by U and c. In par-
ticular, the dimensionless time ¢* is defined as tU/c. The flow field around the ro-
tating ellipse on the z-plane is mapped outside the static unit circle on the {-plane by

z=e AL+ B/O)=G(, 1), (4)
where G denotes the mapping function with
A=(1+¢e/4, B=(1—¢)/4. (5)
The complex velocity potential F expressing the flow field, which is impulsively start-
ed from rest, at the time step N is given by

Ky =
Fy=A(e~'"C+ et /) +27iABS /040 3 T llog ((—Cs) —log (C—1/8:01. (6)

=1

where the subscript N denotes the time step, K is the total number of vortices, 7,
and ¢y, are the strength and the position of the k-th vortex, respectively, and the
over-bar indicates the complex conjugate. The induced velocity of k-th vortex is
given by

: oFy, 02  9G\ ol
g:[< - ) l : 7
w 8: Jz ot 0z dz-cvn ( )
where
FA\';;:F,\'”‘ITA\';; lOg(gmg\A) ( g )

The positions of the vortices at the next time step are determined by
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CNH,k:CNk‘iLAZ*C.Nk, (9)

where 4t* is the dimensionless time step. The forces acting on the cylinder can be
calculated from the unsteady Blasius formulas,

Cyp—iC,=i | <4F~>2dz—2id 2dF,

dz dt
dF \: d (10
C,=—Re J (d{) zdz+Re N JdeF,

here Re indicates real part, C,, C, and C, are the drag, lift and moment coefficients,
respectively.

2.3 The boundary conditions

Strength of the newly generated vortices at each time step are determined by the
no-slip condition, which introduces the viscous effect in the vicinity of the body sur-
face. When the tangential component of the velocity difference between the ellipse
and the fluid is zero, the relation is represented in the {-plane as follows;

w20 e

where Im denotes the imaginary part. Inte grating between two indicated target points
£, to £, one has

Arg(ga) oG oG
== I (096 96 gy, 12
@C‘CE e IATE(CI) m{¢ o¢ ot g (12)

where ® =Re(F). It means that no net slip exists on the average sense along the
element. In case of a flat plate, two discrete vortices are generated near the both
edges, at which the Kutta condition is applied [9]. That is, no slip condition is adopt-
ed along the infinitesimal elements. In case of a circular cyilnder, the boundary layer
azlong the circumference is divided into two parts and no-net-slip condition is applied
along each half surface [/0]. Since an elliptic cylinder has the intermediate shape
between a flat plate and a circular cylinder, we set the no-net-slip condition along
the partial sections around the two edges, at which two discrete vortices are generated
(partition A in Fig. 2). The range of each sections are determined so as to satisfy
no net slip approximately along the other sections (partition B). By using the solu-
tion of the potential flow about the rotating ellipse in the steady fluid, they, that is,

z-plane &plane

Fig. 2. Boundary conditions.
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¢, and 6> on {-plane (in Fig. 2) are uniquely determined as the function of only
the thickness ratio ¢;

de(n/2 —0)=(1 —¢*) sin 26,, 0,=0, 13)

2.4 Core of vortex-blob
The other effect of viscosity is diffusion. In order to take into account this effect,
each vortex is supposed to have a viscous core, of which the radius is denoted by

0, =2.2418[(¢ +1/281)/Re]” (14)

where Re is Reynolds number, 7 the elapsed time from the generation of the k-th
vortex, and S¢ the Strouhal number of the vortex shedding. At the generation time,
each vortex is assumed to have an initial core, which touches the surface of the el-
lipse. When some cores are overlaped, they are supposed to be replaced by one
vortex at the center of gravity. The numerical integration of Eq. (1) was done by
Euler method. The computation was carried out with 4¢¥=0.04. The correspond-
ing Reynolds number is 10°.

2.5 Results

Figure 3 shows the relation between the aerodynamic forces averaged during one
cycle and the spin parameter, in which the 15% thick cylinder is rotating with con-
stant angular velocity. The curve of C, indicates that the 15% thick elliptic cylinder
can autorotate with §=0.38 if the model has no friction or no load. When the model
has finite frictional load, the zero line of C,, shifts down to the value corresponding to
this load and the frequency of the autorotation is found as the intersection of the
moment curve with the shifted line. If the load is so large that no intersection exists,
then autorotation cannot occur. The values of C, are almost constant against the
spin parameter, whereas those of C, increase proportionally to S except near $=0.21.
We conjectured that the reason of the smaller lift at this point is due to the marging
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Fig. 3. Average aerodynamic forces vs. § by
numerical simulation (air model).
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Fig. 4. Instantaneous streamlines without the uniform flow at $=0.35 at
every 30° of the phase angle (air model).
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of the vortices behind the body. The sequence of the instantaneous streamline with-
out uniform flow at $=0.35 is shown in Fig. 4 at every 30° of the phase angle. In
Figure 5 (a), the averaged values of C, are plotted against «. They are smaller
than those predicted by the potential flow theory;

C,= —-Z—(l — &%) sin 2« 15)

The region where C,, is positive, that is, oppose to rotation is named as the retarding
period and the one where it is negative as the supporting one. As § decreases, the
curve of C,, in the retarding period shifts lower and, therefore, the average value of
C,, decreases. It means that the driving force is related to the vortex shedding from
the retreating edge. However, when S is extremely small such as 0.035, the prema-
ture shedding introduces another growing vortex and increase C, in the retarding
period again. Figure 5 (b) shows plots of half cycle of C,. The peak of C, shifts
down with increasing S. Figures 4 and 5 (c¢) denote that C, increases as growing of
the bound vortex and decreases after shedding. In case of §=0.035, the curves of
C,, C,, and C, has two peaks, that is, two vortices are shed during half a cycle.

Figure 6 shows the variations of the angular velocity in case with the finite mo-
ments of inertia. The amplitude of S is larger with decrease of the moment
of inertia. When the angular velocity reaches zero, the cylinder begins rocking mo-
tion and eventually stops at right angle to the flow. When /* is smaller than 0.5,
the cylinder no longer autorotates. It is seen that the maximum speed point appears
near 70° with decreasing I*, and the minimum does near 160°.
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Fig. 6. Variations of w vs. @ by numerical
simulation (air model).
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3. EXPERIMENT

3.1 Experimental apparatus

Two kinds of the models were used. An elliptic cylinder with the chord length of
15 c¢m, the aspect ratio of 3, the thickness ratio of 15%, the non-dimensional mo-
ment of inertia of 20 to air flow was mounted by a ball bearing system in the wind
tunnel, which has the speed range of 6 to 45 m/s. The smaller models with the
chord length of 3 cm and the aspect ratio of 6 to water were mounted in the water
channel, which has the speed range of 30 to 70 cm/s. Their thickness ratios and
the non-dimensional moments of inertia varies from 15% to 50% and 0.7 to 2.6,
respectively. The models were set either in the autorotating state or in the forced
rotating state with the constant angular velocity driven by a stepping motor. In
autorotating state, autorotation frequency were measured by a frequency counter
triggered by a laser-photodiode system. The variation of the angular velocity of the
water models was measured by using a video recording system. Flow visualization
was done by smoke wire method in the air and hydrogen bubble method in the
water.

3.2 Results

Figure 7 shows the relation between the Reynolds number and the autorotating
frequency of air model. The values of S are kept almost constant over the high
Reynolds number region. The value of $=0.35 corresponds that the speed of the
wing edge is slightly higher than the uniform velocity (S=1/2 means that the edge
speed is equal to the uniform velocity). Figure 8 shows the instantaneous streak lines
around the autorotating cylinder visualized by smoke wire method at every 30° of
the rotational angle. Figure 9 (a) is comparison of the flow patterns in forced rotat-
ing state with the various frequencies at «=0°. As the frequency decreases, the vortex
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Fig. 7. Non-dimensional autorotating frequency vs. Reynolds
number by experiments (air model).
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shedding from the retreating edge becomes earlier. Figure 9 (b) shows the numeri-
cal results of the vortex distributions at the same condition with the experiments. The
square marks denote the clockwise vortex and the X marks the counter clockwise
one, representing the strength by their sizes. Figure 9 (c¢) shows the instantaneous
streak lines originated from the same points of the smoke wires in the experiments.

Fig. 8. Flow patterns visualized by smoke wire method in autorotating state
at §=0.23 and Re=60000 at every 30° of the phase angle.
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Fig. 9. Comparison of the flow patterns by the experiments, numerically simulated

vortex distributions and numerically calculated streak lines, in the forced
rotating state. S§=0.14 (a), 0.28 (b), 0.42 (¢)
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Fig. 10. Variations of w vs. « by experiments with
¢=0.2 and I*=0.89 (water model).

The agreement between the numerical and the experimental results are good. Down
wash becomes stronger as the frequency increases.

In Fig. 10, the variation of the angular velocity versus « is plotted in various flow
speeds in water with the small moment of inertia (/*=0.89). Figure 11 (a) is the
photographs of flow visualization in water in the autorotating state and in the forced
rotating state with the constant angular velocity. The numerical results correspond-
ing to these are shown in Fig. 11 (b) with the instantaneous streamlines and the vor-
tex distributions at «=0° and 90°. These figures show that the vortex shedding from
the retreating edge is delayed as compared with the constant angular velocity state
because of the fast rotation near the right angle of attack position in the small mo-
ment of inertia. The rotating frequency is quickly lowered as I* decreases less than
1 in Fig. 6.

4. DISCUSSIONS

4.1 Mechanism of autorotation

When the moment of inertia of the cylinder is large enough, the driving force of
autorotation is explained as follows: The suction effect due to a strong bound vortex
growing at the retreating edge favors rotation during the supporting period, whereas
this supporting torque changes into adversc torque during the retarding period. When
S is larger than the value at the critical condition of autorotation (upper limit), the
vortex shedding is delayed because of fas rotation, while it produces adverse torque.
Therefore the average value of torque becomes positive. On the contrary, when S
is small, the premature shedding reduces the adverse torque and made the average
value negative. When § is much smaller, the vortex shedding does not synchronize
with rotation. Then the average torque becomes positive again. Hence, the driving
torque derives from shedding of a strong vortex clinging behind the retreating edge.
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Autorotation Forced Rotation

(a) Experiments with I%=0.89 (water model)
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Fig. 11. Comparison of the flow patterns at S=0.14 in the

autorotating state and in the forced rotating state.
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4.2 Effect of the moment of inertia

When I* is small, the angular velocity at near the right angle to the flow becomes
larger and the vortex shedding is delayed. Then the average torque increases, and
the average angular velocity reduces, as shown in Fig. 6. Figure 12 shows plots
of the average non-dimensional frequency S versus /*. In case of air model
(Re=10°) the cylinder cannot autorotate with the value of I* less than 0.5. The
differences between the results of the computation and the experiments are supposed
due to the frictional load around the axis. The 50% model indicates the higher
value of the critical moment of inertia. Some computations for Re= 12000 corres-
ponding water model were carried out and the result indicates the qualitative dif-
ference caused by the Reynolds number difference.
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Fig. 12. Effect of I* on S; Air and Water correspond to
Re=10% and Re=12000, respectively.
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Fig. 13. Effect of ¢ on S predicted by numerical
simulation (air model).
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4.3 Effect of the thickness ratio

The effect of thickness ratio against S are seen in Fig. 13. The smaller thickness
ratio results in faster rotational speed, however the 13% thick elliptic cylinder can
autorotate faster than a flat plate. The reason is supposed to be the synchronization
of the vortex shedding from the advancing edge.

5. CONCLUSION

Autorotation in high Reynolds number flows was investigated and it is concluded
as follows:

(1) The critical condition of autorotation was determined by the numerical sim-
ulation as §=0.38 with the large moment of inertia, and gives a good argreement with
the results of experiments.

(2) The driving force of autorotation comes from the synchronized shedding of
a strong vortex clinging behind the retreating edge with rotation.

(3) The critical moment of inertia was determined as 7*=0.5 with 15% thick
elliptic cylinder in the high Reynoles number flow. It increases with increasing the
thickness ratio.

(4) The 13% thick elliptic cylinder can autorotate faster than a flat plate,
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