オンビーム速度がイオン音波速度程度でイオン・イオン不安定が起るのが観測された (Fujita et al. 1977)。この不安定は生活フィードバックでソリトンが増大するのも実験された (奥津ほか 1978: Okutsu et al. 1978)。ビームの速度方向と斜めに波が伝播する場合には、伝播方向に投影した速度が音速程度となるので、不安定となるビーム速度は大きくなる (Ohnuma et al. 1976)。イオンビームに変調を加えると、不安定によって増大するノイズの振幅が抑制される (Okutsu et al. 1979)。

3-2-4 その他の実験

大型スペースチェンバーで用いられている後方拡散型プラズマ源で、自然発生しているプラズマ波がチェンバー製作後すぐに観測された (Matsumoto et al. 1971)。それ以後は外部の波が励起されている。2つの波のパラメトリック結合（倉橋、鎌田 1972）低周波（イオン音波）が電子プラズマ波に及ぼす周波数変調（Ito et al. 1976）、低周波による高周波の励起実験(Fujiyama and Nambu 1984)が行われた。

スペースチェンバーの外壁には一組のヘルゴルツコイルが設置されており、一様磁場がプラズマに印加できる。これを用いて電子パーセンシュタイン波の三次元伝播特性が測定された (Ohnuma et al. 1979)。また電子プラズマ周波数が電子サイクロトロン周波数と比較して非常に大きい場合には、電磁的なサイクロトロン高周波の伝播が観測された (Ohnuma et al. 1981)。

3-3 プラズマ粒子計測

はじめに

この論文は主に電離層の熱エネルギー程度のエネルギーを持つ電子およびイオンに関して dc ブロープ、ac ブロープ及びフラジマップを用いてスペースチェンバーで得られた基礎的な実験の成果を総括したもので、これ実験を基にしてロケットおよび衛星で得られた成果については塔載機器のテストに関するレビューで述べられている。スペースチェ
3-3-1 電子密度の測定

プローブ特性そのものを議論したのは雨宮と土手（1966）である。彼らは低い密度のプラズマ流の中でそれまでシースがプラーブ半径に較べ、極端に大きいかあるいは小さい場合のいずれかにしか取扱われておなかった円筒プローブの電圧電流特性を一般的な場合に拡張した。その中で彼らは流れが平行および垂直においた円筒プローブのイオン電流からイオン温度をもとめることを示唆した。

雨宮は電離層プラズマ中でのオリフィスプローブの特性を含む中で述べている（Amemiya 1974）。土手はいわゆるランジ構造を解くことの一つとして推進電極あるいは壁からの距離をパラメータとして電子密度の測定を含む（Dote 1969）。壁面に近づくにつれ電子温度が上昇することを見つけていている。

上記の研究は前記した（1）のカテゴリにいるべきものであるが、もう一つの（1）のカテゴリに属する研究として土手のプラズマ密度の決定法に関する研究がある。プラズマ密度をプローブ特性の正イオン電流測定領域から求める従来の手法はプラズマのシースを分離して扱い、捕集電流式とシース内の空間電荷電導式を連立させてシースの厚さを消去する事に基づいていた。最近の理論はプラズマとシースを分離する事なく、プラズマ
図 2 空間電位をもとめるために考え出されたツウィンプローブサウンディングプローブの電圧をパラメータとしてリファレンス電極の電圧を変化させた時のサウンディングプローブの特性。Dote (1966) より転載

マからプローブまで統一的に解こうとするいわゆる統一解方式によって発展されている。この理論は無衡突プラズマの場合 Allen, Boyd and Reynolds に発し、Bernstein and Rabinowitz を経て Lam により詳細な解析を通して実際のプローブ測定法として使いやすい形にまとめられた。Lam の理論はプローブ半径 \(R_p \) とデバイ半径 \(\alpha \) の比 \(\xi_p \) が 1 より極めて大きい時に妥当な結果を与える。しかし現実のプラズマにおいては \(\xi_p \) がそれほど大きくない場合が多い。土手はこのような場合においても使えるように Lam の理論を発展させ同時に実験的な検討を行った（土手, 1970；Dote 1968, 1970, 1972）。

プラズマ密度はほとんどの場合、電子密度として計測するわけではないが、DC ランジミュアープローブ法による時、空間電位におけるプローブ電流 \(i_{pop} \) を知り、かつ電子温度 \(T_e \) を知ることによって

\[
n_e = \frac{i_{pop}}{e \cdot S \cdot \sqrt{kT_e / 2\pi m}}
\]

として求める。従って空間電位を測定する事が必要とされるが土手は二つの方法を提案した、その一つは電子密度をもとめるためにプローブ（リファレンス電極）の近くにサウンディングプローブと称する小さなプローブをおきこれに一定の電圧をかける一方、リファレンス電極の電圧を掃引する。リファレン
図 3 空間電位を求めるために考え出された方法、放電源あるいは別のプローブに高周波電圧を印加し、測定しようとする場所でその電圧を検出した。図は検出した高周波電圧の振幅が周波数によって変化する様子を示したものである。参考のため図22で述べたツウィンプローブ法による空間電位を示した。Dote（1969）より転載

ス電極による遮乱がもっとも小さくなる時、即ちリファレンス電極が空間電位にある時サウンディングプローブの電流は（サウンディングプローブに印加した電圧によるが）、最大あるいは最小をとる（Dote 1966）。

もう一つの方法は空間電位においてシースキャパシタンスは消失し、従ってプローブからプラズマを見た時のインピーダンスはプラズマのみのインピーダンスとなることを利用したものである。測定しようとする空間電位はプローブによって検出する高周波信号が最
小になる点である。
これらの方法を比較した結果を図3に示す（Dote 1969）。上記の方法によって得た空間電位における電子電流から得た電子密度とインピーダンスプローブによって得た電子密度とは図4に示すように±20％の誤差で一致を示した（Ejiri et al. 1973）。

この比較実験の中で宮崎等の用いたツーワイヤープローブは長さ300 mm、直径2 mmの線を70 mmの間隔をもって平行におき、一方の電極に高周波電圧を印加し、これを0-10 MHzまで掃引した。他方の電極はこの高周波電圧の受信に使われた、受信シグナルのメインディップにおける周波数がアッパーハイブリッド周波数としてインピーダンスプローブによって得られた値と比較すると10^{3}/cc以下でツーワイヤープローブが電子密度を系統的に高く与える事が報告されている。この原因は以下のようにセンサー根元のプラズマの擾乱にあると思われる。

南等（1975, 1977）は宮崎等が高周波を検出したのに対し宮崎らと同じように直径6 mm、長さ500 mmの円筒電極を2本用いて一方の電極に高周波電圧を印加して周波数に対する浮動電位の変動を他方の電極の浮動電位の差として検出した。このようにして得た浮動電位の差分にあらわれたディップはアッパーハイブリッドレゾナンスと考えられ、同時に電極の一方をインピーダンスプローブとして使った時に得られた値と良い一致を示し
図5 南等の差動レゾナンスプローブによる電子密度(N_{eav})とインピーダンスプローブによる電子密度(N_{eq})との比較。両者は良く一致を示しているが、ロケットが深く沈み込んだ時にインピーダンスプローブによる電子密度が低く見積もられていた。南(1977)より転載

た。センサーの根元がビームの中に深く沈み込む場合電子密度が低く見積もられる事は留意すべきである(図5)。

江尻等はロケット実験によって行われたインピーダンスプローブによる実験で$2 f_r$の周波数でシーザー容量が変化する事を見つけこれを実験で確かめた(Ejiri et al. 1973)、これら
の実験に先立ち土手等(Dote 1967)はインピーダンスプローブとレゾナンスプローブの振舞いをフラズマとシーザーに電流的に等価回路の考え方に導入して磁場中での、平板および球プローブについて解析的かつこれを実験で検証した。

日本では現在、電子密度は大家等の努力によって確立されたインピーダンスプローブによっって測定されているが、時にはロケット実験においてDCランピングプローブを使って計測する事がある。この場合電極表面の汚染によって電子密度が濃くなればなるほど電子密度を低く評価する傾向がある事は注意すべきである(小山他1974, Oyama et al. 1976)。

最近円筒プローブによる電子密度計測が地球磁場のような弱い磁場の中で著しく影響をうけることが報告されている。10^6～10^6ccの電子密度で円筒プローブの地球磁場に対する電圧電流特性を見てみると事は価値がある。

3-3-2 電子温度の測定

プラズマ物理量としてのもう一つの基本的な量は電子温度である。スペースチェンバー

が稼動しはじめた頃、チェンバー内の電子温度密度をもとめようとした時プローブの電圧

電流特性にヒステリシスがあることに気づいたがこれは電気污染によるものであることが
明かになった(小山 1971)。これを契機に小山等は系統的に室内実験を繰返し、電流電流
特性のヒステリシスを生じるものか、電極表面に付着した水を主成分とする污れであり、
これらは等価的に容量と抵抗の並列回路であらわされることを見出した(Oyama 1975、
Oyama 1976)。小山等はまた当時問題となっていた E 層および F 領域における電子温度の
測定上の小さい違いの一つの原因が電極汚染にあることをロケット実験で証明した(Oyama
et al. 1973、平尾他 1975)。

電極汚染をとりのぞくために円筒プローブをベークして真空封じしたプローブを開発したが(小山他 1975、Oyama 1976)、これはその後 E 層の電子エネルギー分布測定に大

電子温度測定において特記すべきはレゾナンスプローブ理論に基づいて平尾等が開発した
電子温度プローブの改良である(Hirao et al. 1970)。改良点は電極 2 枚のうち一方を電子
温度プローブ、一方を浮動電位台を越すことの電極として至極簡単な事であったが、日本
の観測ロケットをはじめとしてインド、米国及び西独の観測ロケットにも搭載された。「たい
いよう」「極光」「ひのとり」「おおぞら」にも搭載され、特に「たいよう」「極光」では南
大西洋上空での電子温度の異常上昇をみいだした。「ひのとり」では日本の電子温度ブロー
プでしか計測することのできない「プラズマセル」中の電子温度を世界ではじめて計測
した。「おおぞら」では、電子温度の非等方性の存在を示し、これら非等方性を
系統的に調へた。これら二つの大きな成果は電子温度測定において特記すべきであ
り、このことはまた別の面で重要である。即ち、諸外国の先駆的な研究の後に、優秀な
測定器があれば大きな成果があげられるという事である。

電子温度測定の時間分解能をあげるために賀谷はグリッドとコレクターをもつ円筒電極
によって電子電流のみを取り出し、あらかじめ二つの電流を設定しておく、以下の式より
電子温度を即座に出す方法を考案した（Kaya 1982）。

\[T_e = \frac{C}{k} \Delta \phi / \ln(I_{\alpha}/I_\alpha) \]

これによってスペースチャンバーにおけるマイクロ波による加熱実験において、電子温度を測定した。また S-520-2 号機によるロケット実験で行われた小山等との比較観測は±50 K の範囲で一致を示している。

3-3-3 電子エネルギー分布の測定

スペースチャンバーにおけるプラズマの電子エネルギー測定も行われた。初期のチャンバー実験においてはそのプラズマ源として後方拡散型放電源がチャンバーの両端に設けられていたが、雨宮はオリフィスプローブを使ってチャンバー内の電子エネルギー分布の測定を行った。特に低ガス圧において 2 成分からなる非マクスウェル的なエネルギー分布が見出され、これが速度空間内の拡散を起こしている現象が観察された（雨宮 1975）。

電子エネルギー分布測定はブロープの電圧電流特性の二乗微分からエネルギー分布に直接比例するとするドレベスタン法に基づいてなされるが、この場合小山等は二次高調波法において印加する周波数をイオンプラズマ周波数以下にすべきであることを見出し（1971）、雨宮等はこの結果を更に発展させてビート法に応用し、電子エネルギー分布を得る時に印加する周波数電圧の周波数として 0.1 f_m 以下であれば、著しい誤差なく測定できることを示した（Amemiya and Shimizu 1979）。

電子エネルギー分布の測定が精密になるにつれ、分子原子の励起過程に基づくピークが電子エネルギー分布に現出されるが、二次高調波法でビート法である。有限の高周波振幅を使う以上、上記のピークは振幅より小さい分解能をもちえないか、ピークの幅も高周波振幅によって制限される。ピークが二つ相変わろう時は、二つのピークが明瞭に区別できないこともありうる。しかししながら測定系としてはどうしてもある程度以上の S/N を得るために印加高周波振幅をある程度大きくする必要がある。雨宮はデコンポリューション法によってこれらの問題を解くことを提案している（Amemiya 1989）。小山等による二次高調波法、雨宮等によるビート法に加えて、清水等は最近 V-i 特性を高速掃引し、この二次微分回路を LC 回路で作ることを提案した（速延法微分回路法とよぶ）。直接に V-i 特性の微分を得ようというわけである（清水、雨宮：1979）。これらエネルギー分布に関する実験室での地道な努力はガラス封入型ラングミュアプローブの開発と相補ってやがて高度 100 km 付近の熱エネルギー収支に関するロケット実験の歴史以来の大問題である。なぜ電子温度が中性ガス温度より高いのか？の質問に答えを与えることとなった。

即ち、高度 100 km 付近において測定された 0.2～2.5 V 領域での電子エネルギー分布には励起された窒素分子と相互作用していると思われるピークが発見されたのである。即ち高度 100 km 付近の電子は、中性ガスで冷却されるより、むしろ中性ガスからエネルギーをもらうということである。これらについての成果は「塔載機器のテスト」のレビューで述べられると思うのでこれ以上言及しない。

3-3-4 イオン密度及び温度の測定

イオン密度及び温度の測定は、プラズマからイオンだけを取り出す事が必要になるが、
図7b ガラス管封入型プローブによる電子温度の測定。小山（1975）より転載

図7a ガラス管封入型ラングミュアプローブと汚れたプローブによる電圧電流特性。汚れたプローブによる電子温度はプローブ電圧の掃引方向によって二つの温度をとる。
従来使用されているのが複数の電極をもつファラデーカップである。竹屋等（1973；Takeya et al. 1973）は従来電子密度の測定に用いられていたレジオネネプローブ法をイオン密度の測定に応用した。第1グリッドのバイアス電圧に係数周波数を重畳してコレクターでその応答を見た。コレクターで検出された高周波成分のディップから得たイオン密度とDC的なファラデーカップ特性から得たイオン密度とはよく一致した。

イオン温度を精度よく求めるためにはグリッドメッシュの間隔、各グリッドへの電位のかけ方等いくつかの留意すべき点がある。南は三枚のグリッド、ガード電極をもつコレクターからなるファラデーカップによってグリッド電圧及びガードコレクターの影響を調べた。精度の高いイオン温度測定には第1グリッドをまわりの空間電位に近づける事またデバイ長に対し、第1グリッドの寸法を大きくし、コレクターにガード電極をつける事を提案した（南 1982；南、竹屋：1981）。

このように工夫したイオントラップは良好な結果を与えることは勝保氏のイオンセンシティブプローブとの比較実験によって確かめられている。

室内実験に使用されるあるいは衛星に搭載されるファラデーカップは長時間真空中にさらされるので特別な場合を除いて電極汚染の影響はかなり軽減できることは容易に考えられる。ところが短時間飛しょうするロケット実験の場合、ファラデーカップをそのまま
図 9 未延回路法によるエネルギー分布の測定
(a) スペースチェンバーで得られた電圧電流特性
(b) 遅延回路法による電圧電流特性の二次微分
(c) ピート法による電圧電流特性の二次微分：0.4 V/div。

清水、雨宮 (1980) より転載

塔載してイオン温度を測定する試みは無用である。南らは発射直前まです乾燥ガスを電極に流し込む等して実験する一方、電極の表面に付着した汚れによる容量と抵抗を電気的に打消す方法を試みて良好な結果を得ている (南他, 1978)。しかしながら日本におけるファラデーカップは、第 3 号科学衛星'たいろう'に塔載されたのみでその後の衛星には塔載されていない。米国のファラデーカップが質量分析、イオン温度及びドリフト速度の測定等、電離領域の大気科学に大きな貢献をしているようにファラデーカップは極めて貢献度の高い観測器である。今後金星等の惑星ミッションには欠かせない観測器であるので、日本独自の idea による優秀な観測器として作りあげておく必要がある。
宇宙科学研究所報告 特集 第18号

主に熱的エネルギーにおけるプラズマパラメータの測定をめざしてきたファラデーカップは日本初の人工惑星'さきがけ'において宇宙空間のプラズマ物理量を測定するべく3年を費して開発された(Oyama et al. 1984)。このファラデーカップは現在数コ/ccのイオン密度、300 km〜700 km/secのパルク速度、〜10⁵Kのイオン温度、プラズマの流れの方向の4つのプラズマパラメータを測定しており、1986年3月のハレー彗星同時観測に備えつつある。

おわりに

スペースシャトルで行われた熱的エネルギー・領域における荷電粒子の実験について述べたが、今後地上実験として取組むべき問題として以下のものがあげられる。

(1) ファラデーカップをイオン温度、イオン分布関数及び質量分析等の熱的イオンのパラメータおよびプラズマのドリフト速度を測定できるよううとめる事、最近になり米国でも低いエネルギーへと関心が向けられつつある。電磁気圏の殆どが熱的領域の荷電粒子であり立っている事を考えると当然の事かもしれない。

この研究は単にファラデーカップの改良のみでなく、衛星に搭載されたファラデーカップをシミュレートできるようなプラズマ源（ドリフトしたイオンを生成できる）の製作を含む。この事は特に米国のテキサス大が持つファラデーカップより勝るものを作ろうとする時には不可欠である。

(2) 数百個/cm³以下のプラズマ密度を持つ環境で特に衛星が太陽光の照射を受けてそのままを二次電子雲でおおわれている時の熱的電子およびイオンの測定法を確立する事、即ち3000 km以上における衛星高度での熱的電子、イオンの計測を可能にする事。このためには宇宙空間における極端な太陽光源が必要であるが、今年度中には製作が終了する予定である。

(3) E層の熱的電子と分子成分の相互作用をシミュレートするための実験を行う事。いわゆる宇宙空間で起っている中性ガスー熱的電子相互作用を詳しく調べる事が必要である。また近い将来カウンティングタイプの静電アナライザーで高度100 km付近の熱電子エネルギー領域を測定することは興味深い。過去に一度だけエアハルト等が測定し興味深い結果を出しているが公表に至っていない。当時に測定結果を疑ったのであろうが、彼らの得たエネルギー分布は小山等の測定したエネルギー分布と似ている。以上思いつくさまに列挙したが、充分な室内実験があちこちで行われていて、ロケットあるいは衛星による実験で信頼できる結果を得る事ができた時として、あるいは往々にして宇宙空間で観測された現象の解明に手がかりを与えると信じるものである。

3-4 光計測

鈴木 勝 久*

ロケット・人工衛星による超高層の光学観測は、超高層の構造を知るうえで、重要な情報を与えてくれる。光計測の分野で、チェンバーと関連施設を使用して、これら観測機器

*横浜国立大学教育学部