K-9 M-12 による黄道光輝度観測

田鍋浩義*

Photoelectric Observation of the Brightness of Zodiacal Light by Rocket

By
Hiroyoshi Tanabe

Abstract: An observation of the brightness of zodiacal light in three colors, 4,300 Å, 5,300 Å and 6,000 Å, was carried out by a sounding rocket of K-9 M-12, which was launched on July 26, 1965, at the Kagoshima Space Center. The instantaneous attitude of the rocket was determined by using the data of the geomagnetic aspectmeter and also by identifying the increase at the horizon which was recorded in the observed brightness.

From this analysis, it is found that the measurements in the region between the elongations of 14.8 and 42.5 from the sun in the ecliptic are available. The final results will be reported in the future.

概 要

1965年7月26日に、K-9 M-12号機によって4,300 Å, 5,300 Å, 6,000 Åの3波長域での黄道光の輝度観測を行なった。この観測の性質上、ロケットの空間的な姿勢を知らなければならない。そのために、地磁気変動計のデータのほかに、観測記録中に現れた地平線のデータを使用してこれを決定した。

その結果、太陽関角14.8〜42.5の範囲の黄道光の測定を行なったことがわかった。最終値は後ほど発表する予定である。

1. はじめに

黄道光（Zodiacal Light）は、これまで地上から多くの人々によって輝度、偏光度の分布やスペクトルなどが観測されているが、地上観測では、大気光の輝線を避けたわずかな波長域でしか観測できないことも、ときに地平線付近の測定が主となるので、下層大気による散乱光や大気光連続スペクトルの混入がどうしても避けられず、これらが観測誤差の大きな原因となっている。

そこでわれわれは、ロケットによって大気光や散乱光のない高層からこれを光電観測することを計画し、1965年7月にK-9 M-12号機によってこの観測を行なった。今回は第1段階として、4,300 Å, 5,300 Å, 6,000 Åの3波長域での輝度観測のみを行なったが、これら

* 東京天文台
の波長域を選んだ理由は、今までの地上観測を再検定するためであって、またできならば外
部コロナと黄道光の間の地上からは観測不可能の部分を埋めることを目的とした。
しかし、使用した望遠鏡は視野が3°であって、それが黄道光のどの部分を測定したかを知
るためには、飛しょう中の刻々のロケットの姿勢を正確に知らなければならない。したかっ
て、データの整理の段階で、ロケットの姿勢を決定するためのみに相当の時間と労力を費さ
なければならなかった。このことは、今後の観測を行なう上に、十分考慮検討しなければ
ならない問題であろう。
ここで、われわれの行なった姿勢決定の方法を前半に述べ、観測結果は予備報告として
最後に簡単に述べる。

2. 観測器

この観測に用いた光電測光器の外観は、第1図に示したものである。左上部の双眼望遠鏡
から入射した光は、反射鏡によって中央の円筒部に収められた2本の光電子増倍管に導か
れる。2本の光電子増倍管の前には、それぞれ4,300 A, 5,300 A と 5,300 A, 6,000 A の干
渉フィルターが順次入り、また標準光源、シャッターも周期的に入るようになっている。光

第1図 K-9 M-12号機に搭載された黄道光
光電測光器
電流は、写真中央左の増幅器箱を通じてテレメータ送信器に送られる。最下部の円筒部分は、光電子増倍管に供給される高圧電源部である。

またこの双眼望遠鏡は、ロケットが開頭した後、仰角 ±42°から -22°まで約200秒かかった後1回だけ動き、その後は -22°に固定されたままとなる。この望遠鏡の動きとロケット自体のスピンによって、観測範囲の変動を測定を行なう。

3. ロケットの飛しょう

K-9 M-12 号機は、1965年7月26日21時01分（JST）に鹿児島宇宙空間観測所から仰角80°、方位角335°で発射され、560秒後に落下した。第2図はその飛跡であって、東大宇宙航空研究所の慶應研究室で出されたものである。これによって、最高点は発射後290.8秒、高さ327.6 kmであった。

またこのロケットは発射後51秒で開頭した後、スピンと共にプレッセッションを行なった。その周期はスピンが0.55秒、プレッセッションは79.7秒であった。これらはその後の飛しょう期間を通じて一定であった。第3図は、このロケットに搭載した地磁気計のデータから、東北大の加藤、青木両氏によって出されたプレッセッションの状況を示したものである。このグラフは、わずかに右上りの周期曲線となっているが、これはロケットの移動によって、地磁気信号が変化するためで、それを補正すればグラフは水平になる。したがってこ
のロケットは、全飛しよう期間を通じて、空間的に一定の軸のまわりでプレッシャッションを行なっていたことがわかる。

4. ロケットの姿勢の決定

前述のようにこの観測は、視野3°の望遠鏡を使っていて、それが黄道光のどの部分を測定したかを知るために、各瞬間のロケットの空間的な姿勢がわからないわけではない。それには第3図のデータがあのものであるが、それだけでは不十分である。第3図からわかるとは、第4図に示すように、プレッシャッションをしているロケット軸の方向が天球上で動いた

第4図 第3図の説明図。ロケット軸はプレッシャッションによってA, B両円の間をa円またはb円のように動く

範囲、つまりロケットを通る地磁気磁力線を延長して天球を交点Pを中心とした二つの円心円A, Bの間にあるということだけである。プレッシャッションの軌跡は円であるから、この場合第4図のa, b2種類の円が考えられるが、どのどちらであるかを判定することはできないし、またこれらは磁気線に対して軸対称であるから、円a, bがたとえばa', b'の位置にあったとしても、地磁気磁力線では全く同じデータが得られる。したがって第3図だけからでは、ロケットの姿勢として無限個の解が出てくるわけであり、その中から一つの解を選ぶためには、さらに他の空間的に基準となるものが必要である。

いまロケットは、全飛しよう期間を通じて一定のプレッシャッションを行なったと考えられるから、第2図の最高点付近の1プレッシャッション周期をとって、解析を行う。これはその付近では、ロケットから見た地平線の傾角がほとんど変化しないからである。

まず第4図のa, b2種類の円のどちらであったかを決定する。このロケットが発射された時刻では、最高点でロケットから見て太陽は地平線下約4°50'であるから、黄道光はもっとより地平線も他の方に比べて非常に明るいはずである。そこで、観測記録の上で望遠鏡が
その明るい方向を向いた瞬間のスピン、プレッシャーの*phase*を測定し、それを第3図から得られた半径をもつa, b両円の上に描いたものが第5図である。この図は、天球面を平面にようして描いたもので、図中の直線は大円の弧の一部に相当し、その方向が最も明るかったことを示している。この図からわかるように、b円ではその大円の方向が大きくばらついているのに対し、a円ではほぼ一定の方向、つまり、第1近似として西の方向に集っている。ことから、ロケットはa円に沿ったプレッシャーを行なったと考えてよし。

つぎにa円の中心位置を天球上で決定しなければならない。ロケットが最高点に達したときには、望遠鏡はすでに-22°に固定されていたので、ロケットのスピンによって望遠鏡は-22°の大円の小円上を描かしていたわけである。また最高点での地平線の仰角は17.9°であるから、ロケット軸が天頂から4.2°より大きく傾いていれば、第6図のQ点のように必ずどこかで地平線を切り、その点はプレッシャーによってQ'のように移動していく。実際に観測記録を調べると、黄道光の記録のほかに、望遠鏡が明るい地平線を切った記録が数多く出ている。これらの点のスピン、プレッシャーの*phase*を記録の上で測定し、第3図の値と組合せて第6図のプレッシャー中心から見た方位角Aと角距離OQを計算してプロットしたもののが第7図である。この図の点の配列にもっともよく合うような地平線の頃き、位置を求めると図の曲線となり、天頂がプレッシャー中心から19.9°傾いたものになる。

そして、この曲線の極小値を通る垂直な大円が天頂とプレッシャー中心を通るもので、この大円の方位角がプレッシャー中心から見た天頂の方位角となり、これから逆にプレッシャー中心の位置が決定される。
第6図 ロケットのスピンによって望遠鏡が地平線を切った点Qをプロセッション中心Oから見た方位角Aと角距離OQを求める

第7図 第6図の各Q点の方位角（横軸）と角距離OQ—ここでは経度（縦軸）をプロットしたもの。曲線はこれに最もよく合う地平線。
第8図 最高点における1プレッセーション周期（発射後270-350秒）で測定した黄道光の範囲。天球を西から見た図

第9図 測定された相対的輝度分布をBlackwellの帯に重ねたもの。縦軸はBlackwellによる。
このようにして求められたロケットの姿勢から、最高点における1プレセッション周期（発射後270-350秒）で、観測された黄道光の部分は第8図のようになる。これは天球を西から見た図であって、黄道に沿って太陽離角14.8°から42.5°の範囲の黄道光を観測したことになる。

5. 観測結果

観測の結果は、現在整理中であって、まだ最終値を発表する段階ではないが、最高点における1プレセッション周期で観測した5,300Åの黄道に沿った相対的な輝度分布を第9図に示す。また同図には、Blackwellが1954年の日食で飛行機で観測した外部コロナの値と、1958年に南米のChacaltayaで観測した黄道光の値を参考のためにプロットした。横軸は波長の値によるものである。

今回の観測は、発射前にこれで数倍の標準となる星を測定しているので、最終的には測定値を絶対強度に換算することが可能である。

なお、以上に述べたロケットの姿勢、観測値等には、まだ多少の補正などが残っているので、最終的にはいくらかの変動があり得ることを付記しておく。

1966年7月23日

質疑討論

永田：いろいろの波長領域で測定した結果を使用したものか、それとも固定波長であったか。

田鍋：固定波長である。