湿気の吸收・通過及び発散 （第 3 報）

透湿量と吸湿量の関係

武田文七

Absorption, Passage and Evaporation of Moisture (3)

Relation between the Permeability and the Absorption of Moisture.

Bunshichi Takeda

ABSTRACT: Under various conditions of vapour pressure, both the moisture permeability and the moisture adsorption of several organic films have been measured. The experimental results have shown that the moisture permeability/vapour pressure curve resembles much in shapes the moisture adsorption/vapour pressure curve. It has been hence concluded that moisture should be absorbed in a film before it permeates through the film.

(Received September 2, 1952)

序言

第1報1) にて透湿係数  $P$ は拡散係数  $D$ と溶液度係数  $S$ との積  $P=D\cdot S$ で示されることを導いたが、本報にては膜の両面の水蒸気圧を変化した場合  $P$ がどんな変化をするかを見にした次第。測定方法としては第1報と同様の装置及び方法を用いた。b 飽和溶液としては水蒸気圧の低い  $\text{MgCl}_2$ 飽和溶液を用い、a 飽和溶液としては  $\text{NH}_4\text{Cl}、\text{KNO}_3$、$\text{MnCl}_2$、$\text{K}_2\text{CO}_3$ をそれぞれ用いて膜上面の水蒸気圧  $P_a$ を変えた。

第1図にてある値は槽内を摂押しているから異常ではないが、膜下面の  $P_b$ の値は容器内の空気を摂押していない故、b 飽和溶液の呈する水蒸気圧  $P_b$ と同くならない。

然れど第1報にて示した様に高さ  $h$ を変えて透湿量  $Q$ を測定した場合、$Q$ と  $Q\cdot h$ の直線関係が成立し、それもその直線は必ず  $(Q\cdot h)_0 = D_z\cdot (P_a - P_b)$ なる定数を通ることが分っている。従って  $h=0$ の場合、則ち膜の下面の水蒸気圧が  $P_b$ になったと仮定せる状態の時の透湿量の値は直線が縦軸を切る点として求められる。

$P_a$ として  $\text{KNO}_3$ 飽和溶液、$P_b$ として  $\text{NH}_4\text{NO}_3$ 飽和溶液を用いた時の  $(Q\cdot h)_0 = 1150$ が得られているから、この値を基準にして  $P_a$ 及び  $P_b$ が変化した場合の  $(Q\cdot h)_0$ を求めて見たのが第1表がある。

測定としては高さを変えて  $Q$ を求め、$Q$ と  $Q\cdot h$ の関係を図示し、この点を  $(Q\cdot h)_0$ と結んで縦軸を切る点を  $Q_0$ として求めた。

§1. 透湿量の水蒸気圧差による変化

次に用いた試料は第1報と同じ筋胱膜、セロラ
第1表  \((Q \cdot h)_a = D_a \cdot (\rho_a - \rho_b)\) の値

<table>
<thead>
<tr>
<th>塩類の種類</th>
<th>(\rho_a) cmHg</th>
<th>相対温度%</th>
<th>塩類の種類</th>
<th>(\rho_b) cmHg</th>
<th>cmHg</th>
<th>((Q \cdot h)_a) g\cdot cm/m²\cdot 10hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO₃</td>
<td>2.88</td>
<td>90.6</td>
<td>NH₄NO₃</td>
<td>1.89</td>
<td>0.99</td>
<td>1150</td>
</tr>
<tr>
<td>KNO₃</td>
<td>2.88</td>
<td>90.6</td>
<td>MgCl₂</td>
<td>1.03</td>
<td>1.85</td>
<td>2150</td>
</tr>
<tr>
<td>KCl</td>
<td>2.68</td>
<td>84.0</td>
<td>MgCl₂</td>
<td>1.03</td>
<td>1.65</td>
<td>1920</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>2.46</td>
<td>77.4</td>
<td>MgCl₂</td>
<td>1.03</td>
<td>1.43</td>
<td>1660</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>2.30</td>
<td>72.4</td>
<td>MgCl₂</td>
<td>1.03</td>
<td>1.27</td>
<td>1470</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>1.89</td>
<td>69.5</td>
<td>MgCl₂</td>
<td>1.03</td>
<td>0.86</td>
<td>1000</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>1.70</td>
<td>53.4</td>
<td>MgCl₂</td>
<td>1.03</td>
<td>0.67</td>
<td>780</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>1.37</td>
<td>43.0</td>
<td>MgCl₂</td>
<td>1.03</td>
<td>0.34</td>
<td>390</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1.03</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃COOK</td>
<td>0.64</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ファン、ニ釀酸繊維素、ポリビニアルコール、醋酸ビニールである。

第2表の1. 測定値

<table>
<thead>
<tr>
<th>塩類</th>
<th>KNO₃</th>
<th>KCl</th>
<th>NH₄Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q \cdot h)_a</td>
<td>215</td>
<td>1920</td>
<td>1660</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>塩類</th>
<th>試薬</th>
<th>h cm</th>
<th>Q g/m²\cdot 10hr</th>
<th>Q \cdot h g\cdot cm/m²\cdot 10hr</th>
<th>h cm</th>
<th>Q g/m²\cdot 10hr</th>
<th>Q \cdot h g\cdot cm/m²\cdot 10hr</th>
<th>h cm</th>
<th>Q g/m²\cdot 10hr</th>
<th>Q \cdot h g\cdot cm/m²\cdot 10hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>試薬</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>590</td>
<td>885</td>
<td>585</td>
<td>0.9</td>
<td>376</td>
<td>339</td>
<td>0.9</td>
<td>401</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>465</td>
<td>930</td>
<td></td>
<td>1.5</td>
<td>330</td>
<td>495</td>
<td>1.8</td>
<td>225</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>440</td>
<td>1056</td>
<td></td>
<td>1.9</td>
<td>312</td>
<td>593</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セロフアシン</td>
<td>0.5</td>
<td>680</td>
<td>340</td>
<td>250</td>
<td>0.5</td>
<td>500</td>
<td>250</td>
<td>0.5</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>535</td>
<td>856</td>
<td>835</td>
<td>2.2</td>
<td>380</td>
<td>835</td>
<td>2.3</td>
<td>327</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>440</td>
<td>1100</td>
<td>792</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二釀酸繊維素</td>
<td>0.6</td>
<td>325</td>
<td>195</td>
<td>1.3</td>
<td>250</td>
<td>325</td>
<td>0.6</td>
<td>195</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>260</td>
<td>364</td>
<td>1.7</td>
<td>230</td>
<td>391</td>
<td>1.5</td>
<td>175</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>280</td>
<td>532</td>
<td>2.5</td>
<td>216</td>
<td>213</td>
<td>2.0</td>
<td>163</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>ポリビニアルコール</td>
<td>1.3</td>
<td>211</td>
<td>274</td>
<td>0.6</td>
<td>66</td>
<td>39</td>
<td>0.6</td>
<td>19</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>190</td>
<td>264</td>
<td>1.3</td>
<td>82</td>
<td>52</td>
<td>1.4</td>
<td>20</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>68</td>
<td>213</td>
<td>1.8</td>
<td>60</td>
<td>108</td>
<td>2.0</td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>醋酸ビニール</td>
<td>0.7</td>
<td>33</td>
<td>23</td>
<td>0.7</td>
<td>20</td>
<td>13</td>
<td>0.7</td>
<td>20</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>32</td>
<td>55</td>
<td>1.8</td>
<td>19</td>
<td>34</td>
<td>2.0</td>
<td>19</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
第2表の2. 測定値

<table>
<thead>
<tr>
<th>a. 稠和溶液</th>
<th>NaNO₃</th>
<th>MnCl₂</th>
<th>K₂CO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q-h)₀</td>
<td>1470</td>
<td>780</td>
<td>390</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. 稠和溶液</th>
<th>MgCl₂</th>
<th>MgCl₂</th>
<th>MgCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q-h)₀</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>膠 膜</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h cm</td>
<td>1.2</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Q g/m²・10hr</td>
<td>290</td>
<td>138</td>
<td>62</td>
</tr>
<tr>
<td>Q-h g・cm/m²・10hr</td>
<td>348</td>
<td>88</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>セロファン</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h cm</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Q g/m²・10hr</td>
<td>382</td>
<td>160</td>
<td>57</td>
</tr>
<tr>
<td>Q-h g・cm/m²・10hr</td>
<td>76</td>
<td>80</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>二酸硫酸鶴糸素</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h cm</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Q g/m²・10hr</td>
<td>173</td>
<td>79</td>
<td>42</td>
</tr>
<tr>
<td>Q-h g・cm/m²・10hr</td>
<td>121</td>
<td>31</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ポリアミノル アルコール</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h cm</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Q g/m²・10hr</td>
<td>13</td>
<td>79</td>
<td>46</td>
</tr>
<tr>
<td>Q-h g・cm/m²・10hr</td>
<td>8</td>
<td>31</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>酸酸ビニール</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h cm</td>
<td>1.1</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Q g/m²・10hr</td>
<td>15</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Q-h g・cm/m²・10hr</td>
<td>17</td>
<td>30</td>
<td>1.3</td>
</tr>
</tbody>
</table>

第2表の値から、胶膜、セロファン、酸酸ビニールのQとQ-hとの関係を示す。第2図、第3図に示した。図を見るとQとQ-hの関係を示す直線は、Q₀を通り、Q₀を0にすることで直線を求める。図からQ₀を求め、Q₀とQ-hの関係を示す。次に第5図にQ₀の値と膜の上面の水蒸気圧（相対湿度であらわした）の関係を見た。

次に第5図にQ₀の値と膜の上面の水蒸気圧（相対湿度であらわした）の関係を見た。第5図を見ると、透湿量Q₀はP₀の増大につれて直線的に単調に増大する。Q₀の
第3表 透湿係数 $Q_0$ と透湿係数 $P$

<table>
<thead>
<tr>
<th>$P_a$ cmHg</th>
<th>$P_a - P_b$ cmHg</th>
<th>鹽素膜 0.08mm</th>
<th>セロフラン 0.025mm</th>
<th>酸酸繊維素 0.100 mm</th>
<th>ポリビニルアルコール 0.211 mm</th>
<th>酸酸ビニール 0.146mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_b = 1.03$ MgCl$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.88 KNO$_3$</td>
<td>1.85</td>
<td>900</td>
<td>380</td>
<td>850</td>
<td>115</td>
<td>350</td>
</tr>
<tr>
<td>2.68 KCl</td>
<td>1.65</td>
<td>650</td>
<td>315</td>
<td>595</td>
<td>90</td>
<td>300</td>
</tr>
<tr>
<td>2.46 NH$_4$Cl</td>
<td>1.43</td>
<td>465</td>
<td>260</td>
<td>210</td>
<td>147</td>
<td>34</td>
</tr>
<tr>
<td>2.30 NaNO$_3$</td>
<td>1.27</td>
<td>400</td>
<td>252</td>
<td>425</td>
<td>84</td>
<td>195</td>
</tr>
<tr>
<td>1.77 MnCl$_2$</td>
<td>0.67</td>
<td>150</td>
<td>177</td>
<td>165</td>
<td>61</td>
<td>85</td>
</tr>
<tr>
<td>1.37 K$_2$CO$_3$</td>
<td>0.34</td>
<td>65</td>
<td>154</td>
<td>55</td>
<td>41</td>
<td>45</td>
</tr>
</tbody>
</table>

第4図 酸酸繊維素の $Q$ と $Q_a$ の関係

第5図 透湿係数 $Q_0$ と水蒸気圧

第6図 透湿係数 $P$ と水蒸気圧 $P_a$

見ると透湿係数は $P_a$ の変化により変っていることがある。
これか変る原因として $P = D \cdot S$ の式に於て $D$
あるいは $S$ が水蒸気圧差により変ることが考えられる。
次に溶解度係数 $S$ を測定してこの点を調べることにした。

§ 2. 吸湿量の測定

測定装置は第1図に示した透湿量測定装置をそのまま用いた。測定装置の容器を
の代りに小片箱を置きその中に試料を置く。相対湿度は飽和溶液 $a$ の種類を
変えて目的の値に保つ。その値は第1表に示す。相対湿度を零に保つことはこの装置では不可能であるので
次に測った。酸酸化炭の入ったデシケーターの中に
の容器を満たし、その中に試料の入った小箱を取り入れ、その中の小箱を
を用いてよくその箱をゴム栓の小孔を通して外に出
しておく。小孔のゴム栓を閉じる様にしてお
く、秤量値をあける時は水を引つば、間める時には水をゆるめると、デシケーターの蓋をあけずに場の蓋の開閉が出来る。今、場の蓋をあけておいて、試料を相対湿度の乾燥気中に充分にさらしておき、次に蓋をしめる。デシケーターから蓋の閉まった秤量値をとり出し、手早く重量を測り乾燥試料の重量を求めた。これを何回か繰り返して重量の一定になるまで続ける。斯くして一定になった試料を蓋のしまえてある秤量値に入れたまま吸湿量測定装置の中に置き、秤量値の蓋をあけ試料の入った金網をとり出し目的の相対湿度の乾燥気中にさらす。そして時間毎に上部の穴から鈴で吊して重量を測り一定重量になるまで繰り返す。6〜7 時間後と 24 時間後に測ったが試料により差異があるが 6〜7 時間後で一定の値を示した。本報告では 24 時間後の増加量をもって吸湿量とした。

実測値は単位質量あたりの増加量であるので、これを単位容積あたりに換算するために比重を測定し、それぞれセロファン 1.52；硫酸紙 1.48；試験紙 1.30；酸化線維素 1.34；硝酸綿素 1.56；酢酸ビニール 1.19；ポリビニルアルコール 1.28 を得たのでこれらの比重値で換算した。

第 7 図、第 8 図、第 9 図にそれぞれ吸湿曲線を示した。

この吸湿曲線と第 5 図の透湿曲線を比較するとき、その形に類似性があり、特にポリビニルアルコールでは R・H 70〜80% から急激に上昇してゆくことがとても似ている。他に何か両者の間に関係

がありそうである。

§ 3. 結果に対する考察

膜内水の拡散係数を \( D_1 \)、膜内上部の水分の濃度を \( c_a \)、膜の下面の水分の濃度を \( c_b \) とするとき、膜内定常状態では透湿量 \( Q_0 \) は \( Q_0 = D_1 \cdot (c_a - c_b) / \mu \) となる。第 1 報で \( c_a, c_b \) はそれぞれ膜上面の水蒸気圧 \( p_a \)、膜下の水蒸気圧 \( p_b \) に比例しその比例係数が相等しいと仮定して透湿係数 \( P = D_1 \cdot S \) を導く。然し \( p_a \) を一定にしていて \( p_a \) を変えて透湿量測定を行った本報告の実験に於ては第 7〜第 9 図の吸湿量曲線からも見られる通り必ずしも比例係数は一定とみなされない。

今、前式の分母を \( p_a - p_b \) を乗じ \( I \) を左辺にもってゆくと

\[
\frac{Q_0 \cdot I}{p_a - p_b} = D_1 \cdot \frac{c_a - c_b}{p_a - p_b}
\]

(1) 式の右辺は測定されその値は透湿係数 \( P \) と定義された量であり左辺の実測値で示される。

第 7 図 吸湿曲線（1）

第 8 図 吸湿曲線（2）

第 9 図 吸湿曲線（3）
(i) 若し $D_1$ が一定で又 $a_b = S \cdot p_a$, $a_b = S \cdot p_b$ であれば $P = D_1 \cdot S$ で一定である。  
(ii) $D_1$ が変化するか $a_a - c_b/p_a - p_b$ が変化すれば $P$ は一定値をとらない。  
然るに第 6 図に示した知く $P$ は $p_a$ を変えることでよりかなり変化しているのが見られるので， 
その解釈として (i) の場合を考えねばならない。  
今 $c_b / p_a - p_b$ の値を図にあらわして見ると第 10 図の様になる。  

![第 10 図](image_url)  

第 10 図 $a_b - c_b/p_a - p_b$ と $p_a$  

(膜上面の水蒸気圧 $P_a$ 2cmHg)  

(1) 式に従って $D_1$ を算出してそれを図示したもののが第 11 図である。  
$D_1$ の単位は cm$^2$/sec である。  

![第 11 図](image_url)  

第 11 図 $D_1$ と $a_a$  

第 11 図を見て分かる、何れの場合も $D_1$ が一定でなく、膜上面の水蒸気圧 $P_a$ が増すにつれて増大してゆくという面白いい結果が得られた。  
特にそれがポリビニルアルコールで顕著に見られる 
ことば、$P_a$ の増大によって膜の内部に吸湿量増大し，その吸湿量に於て内部構造に於て分子間結合 
力が緩められ蒸気の拡散に対する抵抗がゆるめられることが考えられる。  

第 12 図に示した如く，膜上面の水蒸気圧を変えて検討した結果，拡散係数の変化と検討した、 
内視面積増大し、拡散に対する抵抗の減少量と考えられる。拡 
散係数 $D_1$ の内容を考察することは興味のあることである。  

総 括  

各種有機物膜の下面の水蒸気圧を一定にしておき，水蒸気圧 $P_a$ を変えて，膜の透湿量を測定し，透湿係数 $P$ と算出した。透湿係数 $P$ は一定とならず $P_a$ と共に増大することが分った。  
次に吸湿量を測定し，$P = D_1 \cdot S$ に従って拡散係数 $D$ を出した。$D$ も又 $P_a$ と共に増大することが分った。
その結果から透湿現象を理解するには吸湿及び
拡散をあわせて考えねばならぬことを推論した。

文献

(1) 武田文七: 理工研報告, 4 (1950), 120.
   (1952年9月2日受理)

"Transport and Equilibrium Phenomena in
Gas-Elastomer Systems"
J. Polym. Sci. 3 (1948) 549

(2) W. Jost
   "Diffusion in Solids, Liquids, Gases"
   Academic Press, 1952

(3) W. W. Bowler
   "Water Vapor Permeability and Sorption in
   Hevea Latex Films"
   Ind. Eng. Chem. 44 (1952) 787

(4) A. M. Thomas
   "Moisture Permeability, Diffusion and Sorption
   in Organic Film-Forming Materials"
   J. App. Chem. 1 (1951)

(5) R. M. Barrer
   "Diffusion in Elastomers"
   Kolloid Z. 177 (1951)

(6) L. Simril, A. Herschberget
   "Permeability of Polymer Films to Organic
   Vapors"
   Mod. Plast. 27 (1950) 97

(7) L. Simril, A. Herschberger
   "Permeability of Polymer Films to Gases"
   Mod. Plast 27 (1950) 95

(8) J. R. Kanagly and R. A. Vickers
   "Factors affecting the Water-Vapor Permeability"
   J. Bur. of St. April (1950) 347

(9) P. M. Hauser and A. Douglas Molaren
   "Permeation through and Sorption of Water
   Vapor by High Polymers"

(10) R. M. Barrer & G. Shirrow

(11) G. J. Van Amerongen
    "Solubility, Diffusion and Permeation of Gases
    in Gutta-Percha"
    J. Pol. Sci. 2 (1947) 381

(12) A. E. Korvee and E. A. J. Mol
    "Diffusion of Water Vapor through High
    Polymeric Membranes"
    J. Pol. Sci. 2 (1947) 371

(13) P. E. Rouse
    "Diffusion of Vapors in Films"
    J. Am. Chem. Soc. 69 (1947) 1098

(14) M. S. Renner
    "Sources of Variability in Water Vapor
    Permeability Determination"
    Paper Trade Journal, Vol. 125, No. 6, Aug. 7 (1947)

(15) J. F. H. Custers
    "Diffusion of Water into Polymers"
    J. Pol. Sci. 2 (1947) 301

(16) Van Amerongen
    "The Permeability of Different Rubbers to Gases
    and its Relations to Diffusivity and Solubility"
    J. App. Phys. 17 (1946) 972

(17) P. M. Doty, W. H. Aiken and H. Mark
    "Temperature Dependence of Water Vapor
    Permeability"
    Ind. Eng. Chem. August (1946) 789

(18) R. M. Barrer
    "Permeation, Diffusion and Solution of Gas in
    Organic Polymers"
    Trans. Farad. Soc. (1939) 628

(19) R. M. Barrer
"Activated Diffusion in Membrane"
*Trans. Farad. Soc.* (1939) 644

(20) H. A. Daynes
"Absorption and Diffusion of Water in Rubber"

"Permeability of Varnish Films"
*Ind. Eng. Chem.* Vol. 29, No. 8 (1937) 893

(22) G. A. Kline
"Permeability to Moisture of Synthetic Resin Finishes for Aircraft"
*J. Res. of the Nat. Bur. of Stand* 18 (1937) 235

(23) A. Abram and G.J. Brabender
"Factors affecting the Determination of Water Vapor Permeability"
*Paper Trade J.* 102 (April 1936) 204–213

"Diffusion of Water through Insulating Materials"
*Ind. Eng. Chem.* Vol. 28 (1936) 1255

(25) R. I. Wray and A. R. Van Vorst
"Permeability of Lacquer Films to Moisture"
*Ind. Eng. Chem.* 28 (1936) 1289