第3日 9月27日（土）9:00～12:00

固体物理，核物理

1-37. チタン酸バリウムはイオン結晶であるか（15）山下次郎。チタン酸バリウムの誘電性質とX線解析の結果と他のイオン結晶の凝集機構とを比較してBaTiO₃がイオン結晶であるか否かを決すべき。

1-38. XYO₃型誘電体におけるYイオンの役割（15）野村昭一郎，安藤林次郎。XYO₃型誘電体に於て，Ti⁴⁺を4個の他の金属イオンにおきかえていった時，それらの誘電性質がどのように変ってゆくかを調べた。

1-39. 酸化タンツングスの高温における相直（15）沢田正三。酸化タンツングスの900℃附近における異常について述べ更にそれ以上の高温における移転点の存在について論じる。

1-40. ロッシャル塩の分極構造と誘電的性質（第1報）中村輝太郎，高橋秀俊。ロッシャル塩の分極構造の結晶増材条件による変化，分極構造がCurie点で消失する過程，およびそれと焦電気現象との関係について述べる。

1-41. Ni, Co, Mnの混合酸化物の電気的性質（15）坂本昭三。Ni, Co, Mnの三成分系混合酸化物の混合比と比抵抗並びに活性エネルギーの結晶形との関係について述べる。

1-42. 貧μ中間子の自然崩壊に就いて（15）武藤俊之助，谷田勝，井上謙蔵，井上健男。これに関す問題に就て研究の中心報告を数回に亘って発表したが，今回は最終的に総括的考察を行う。

1-43. 核磁気緩和現象の理論（第3報）（15）武藤俊之助，渡辺光邦。原子核スピンの結晶格子振動との相互作用に関する問題である。五月の物理学会分科会で発表した内容に多少修正を施したので，これに就いて述べる。

1-44. 核磁気共鳴現象による水素結合的研究（第1報）（15）矢野正信，庄野久男，小松八郎。新しく作った磁場安定化の回路と測定装置とにより，水素結合を含む二元の結晶について行った測定について述べる。

1-45. 原子核の四極能率による共鳴現象について（10）亀井敷。沃質及び臭素の結晶の電場と夫々I²⁻及びBr⁻の四極能率との相互作用による共鳴吸收の周波数の温度による変化を示した。

13.00～

電波物理

1-46. 鉱石検波器による第4高調波としての超音波（10）阿部英太郎，岡田順一，熊谷寛夫。常磁性共鳴吸収に用いる8mm波を得るために，クライストンで3cm波を発振し鉱石検波器でその第4高調波を得た。

1-47. マグネットロンによる粒子再発生装置について（10）大野和郎，熊谷寛夫。マグネットロンに直接含まれる高調波をつり出して，粒子スペクトルの高いためにの放射源とする。

1-48. マイクロ波真空管に用いるスーパーヘテロダイナム分光器（15）原教室雄，熊谷寛夫。波長3cmでスーパーヘテロダイナム方式を用いて，SN比の高い分光器を作た。これを安定に動作させるために自動周波数制御等を行った。

1-49. 波長7cm伝道の常磁性吸収について（10）岩永貞，熊谷寛夫。波長7cmの新しい装置による二三の結果についてのべる。

1-50. マイクロ波電流計の測定器の設計に就て（15）岡崎宗一郎，相原公一，木下昭彦。マイクロ波に使用する矩形波状波発生器を製作の精度を向上するために考慮すべき要件の問題及び新しい工夫について述べる。

1-51. デクロロリエンタ，デクロロリエンの原子核について（15）八角正士，岡林英雄，白井道雄。デクロロリエン，デクロロリエンの透電率，損失率を3.24cmで測定した。これより原子核を求め，分子内転倒の立場から説明する。

1-52. 液状物質に関する放射能の原子核について（15）八角正士，白井道雄。液状物質のラジオ，酵素，酸面，酸面，イソ酸面の透電率，損失率を3.24cmで測定した。これより原子核を求め，その液状状態について論ずる。

1-53. エチレンクロルヒドリン，エチレンプロラミン，エチレンプロラミンの原子核について（12）八角正士，岡林英雄，白井道雄。表面の物質の透電率，損失率を3.24cmに於て測定し，分子構造の構造の立場から説明する。