した。
2—47. Al—Mg 合金に関する研究（15）広田宏、田中英八郎、小森進一。Hydronium 合金の耐酸性に関して、輝造方法及び添加元素の影響について報告する。
2—48. α+β Brass 板の弾性異方性について（15）広田 宏、田中英八郎、小池吉蔵。
6—4 Brass 板の弾性異方性を、弾性率、顕微鏡組織及びX線によって実験した結果を報告する。
2—49. Al—Mg 合金板の研究（15）広田 宏、田中英八郎、小池吉蔵。近来、この種の合金板の機械的性質に不備の点が見られているので、焼入、焼戻し、又は第三元素の添加に依って生ずる結果について報告する。
2—50. 再結晶初期における Al 板の聚合組織（15）広田 宏、田中英八郎、小池吉蔵。高冷間延延を受けた高純 Al 板を 300°C で恒温焼鈍を施し、再結晶開始より、一二次再結晶完了に至る間の聚合組織の変化を調べた。
13.00 — 15.00
冶 金
2—51. 精密鍛造用特殊切削材料の研究（15）和田次郎、岩崎喜二。快削合金の中、鈷合金としては現在 Pb 入紙銅が一般に使用されてい
るが、之では鍛造性に難点がある。此の點を改善するため Pb に注目して鋳塊鍛造方法並に変形抵抗等について実験した結果を報告する。
2—52. 亜鉛粗大結晶粒の成長過程（15）和田次郎、中村隆行。亜鉛板に僅かな歪を與えて後高温に加熱した場合生ずる大結晶の発達を顕微鏡によって追跡した結果を報告する。
2—53. 真空蒸気による金属の精製の研究（第 1 報）（15）和田次郎、苞川雅信。金屬の精製、
粉末の製造、並に固体態に於ける金屬の分離に於て低圧蒸気の問題はますます重要になる。此處では低圧蒸気法で得られた Zn の純度及びその性質について報告する。
2—54. 真空蒸気による金属の精製の研究（第 2 報）（15）和田次郎、苞川雅信。主として蒸流中的
機構並に蒸設条件について報告する。
2—55. 亜鉛合金の表面処理の研究（第 1 報）（10）和田次郎、苞川雅信。亜鉛合金上にえの表
面処理は（i）電気鍍金法、（ii）防止被膜法、（iii）塗装等があるが、此の中直接 Ni 鍍金を
行う場合の条件について報告する。
2—56. 亜鉛合金の表面処理の研究（第 2 報）（10）和田次郎、苞川雅信。今回は下地鍍金た
る Cu 鍍金を厚く迅速に結するための条件について報告する。

<table>
<thead>
<tr>
<th>2 7 日</th>
<th>2 8 日</th>
<th>2 9 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>(木)</td>
<td>(金)</td>
<td>(土)</td>
</tr>
<tr>
<td>9.00—12.00</td>
<td>13.00—17.00</td>
<td>9.00—12.00</td>
</tr>
<tr>
<td>13.00—17.00</td>
<td>13.00—17.00</td>
<td>9.00—12.00</td>
</tr>
<tr>
<td>13.00—15.00</td>
<td>13.00—15.00</td>
<td></td>
</tr>
</tbody>
</table>

講演題目のうち内の数字は講演時間（分）。○印は講演者。