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Detection of Echo by Linear Prediction
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Summary: A new method of echo detection is proposed which is based on the principle
that an echo appears as a delta function in the impulse response function of the optimum
predictor for the signal containing the echo. The delta function showing the existence of
the echo is scarcely overlooked because of its sharpness and easily detectable even if the
band width of the time series is not wide enough and if the delay time of the echo is small.
Experiments of sound propagation and flexural wave propagation show the effectiveness
of this method. Comparison between this method and correlation method is also shown.

1. INTRODUCTION

In many different fields of research, there are many problems naturally arising
as, or easily convertible into, questions of the existence and timing of echoes in
time series. The use of correlation technique or Cepstrum analysis has proved
powerful to solve these problems. If a time series is expressed by the sum of an
original signal and its echo which is that delayed by a time difference ¢ seconds,
the echo shows up as a peak at ¢ sec lag in the auto-correlation function. However,
the correlation method is likely to fail to detect it if the spectrum of the original
signal is complex enough to conceal the echo in the auto-correlation function.
In such cases, Cepstrum analysis is very powerful [/]. A time series produced
by adding an echo to the original series has a nearly cosinusoidal ripple in the
power spectrum, whose “quefrency” is just equal to the time difference between
the original signal and its echo. Cepstrum analysis is a technique suited for
determining the quefrency. Nevertheless it is difficult to detect the echo under
such conditions as the band width of the time series is not wide enough and the
delay time is small. This paper presents a new method which is more useful even
under these conditions. Applications to sound propagation and flexural wave
propagation are also illustrated.

2. THEORY

In the simplest echo, values of a time series y(z) are multiplied by a constant
a, delayed by a time difference ¢, and added to the original series to give a new

series

[29]
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30 H. Kobatake

x(1)=y(t) + ay(t—o) (1)

The parameter g is the attenuation constant and its absolute value is supposed to
be smaller than 1.0.

The intuitive understanding of the theory of the echo detection method is
as follows. From Eq. (1), the echo in x(#) is expressed by the infinite series

— i‘(—a)"x(t—na). This expression holds for all ¢, and then the echo in the future
n=1

value x(¢ -+ ) is given, if 0<<a <o, as a linear combination of the past of x(z), which
has already observed, as follows

ay(t+o—o)=— Zi:l(——a)"x(t—}—a——na) (2)

This equation shows the existence of a realizable system whose output for the input

x(?) is ay(t+a—0). The impulse response function of the system, denoted by u(z),
is given as

u(z)= — g}("a)"a(‘l‘-i-a—na) (3)

where d(z) is the Dirac delta function. As the echo in x(z+ «) can be expressed
using the past values of x(¢), we may be able to find a predicting filter for x(1+ )
whose prediction is perfect with respect to the echo in it. The weighting function
of such a predicting filter must have sharp pulses corresponding to the right hand
side of Eq. (3). Their positions and heights will give us the information about the
echo.

The optimum predicting filter in the sense of least mean-square error gives the
perfect prediction for the echo. It is proved as follows. A time series x(z) is
assumed to be a sample function from real-valued wide-sense stationary random
processes. The weighting function A(z) of the realizable filter which gives a minimum
mean-square error prediction for x(¢+4 «) must satisfy the next integral equation [2].

¢z<r+a)=j: W) a(c — p)dp, =0 (4)

where « is a prediction time span, which should be selected so as to be smaller than
o, and ¢,(z) is the auto-correlation function of x(z). From Eq. (4), the transfer
function H(jw) of the optimum predicting filter is given

: 1 r Cee r Y . ,
H —_— Jor jo' (s+a) (F Vd 5
(jo) 5wl Jo &) Le (jo')dw (5)

where G(jw)=G(p) is a function with all its poles and zeros in the left half p plane
and also satisfies

G(jw)-G*(jo) =D (jo) (6)

where G*(jw) is the complex conjugate of G(jw) and @,(jw) is the power spectral
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density of x(¢#). From Eq. (1),

0. (jew) =B, (je)(1 + ae=5+)(1 + ae’™) (7)
% where @,(jw) is the power spectral density of y(r). Let K(jw)=K(p) be a function
; with all its poles and zeros in the left half p plane and satisfy

K(j)K*(jw) =0, (jo) (8)
Then G(jw) is given as

Glje) =K (jw)(1 + ae=7*7) (9)
E Substituting G(jw) as given by Eq. (9) into Eq. (5) yields

H(jw) = R(j)[Py(je) + ae5=~] (10)
‘E " where

R(jo)=(1+ae 7*)~" (11)
and

Py(jw) = ~jor dy J " K(o)e™ <+ de (12)

1 J‘ " e
2nK(jw) Jo

y(t+a;
)=y (t)+ay(t—g) i 0 %

. ;c(t‘!-a)
p S
l+aeJec .

-jwl(o—a,

ay(t+a—o:

Fic. 1. The transfer characteristics of the optimum predictor.

The putout of the system with transfer characteristics R(jw) is y(¢) if the input is the
§ ’ sum of y(¢) and ay(t—oa). P,(jw) is the transfer function of the optimum predicting
¢ filter for the original signal, which gives the optimum prediction y(¢+ a) for y(t+ @)
if the input is y(z). The transfer characteristics ae7*¢“~= is that of a pure gain
element with the time delay of (¢ —a) seconds. Then, the output of the optimum
predicting filter H(jw) for the input x(?) is, as shown in Fig. 1, the sum of the pre-
diction y(¢4 a) for y(t+«) and the perfect prediction for the echo ay(t4+a—a).
The impulse response function A(z) of the predicting filter is

RN e s

_ 1 *° . jar
he)=—— Lc H(jw)ei™dw

= 3 (—a)"8(c—no)+{py(z) +adle +a—a)}
- Z::l(—a)"ﬁ(r+a—na)+ 20(—a)"po(z'—no) (13)

where
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hiz )

ab(t+a—o0)

po‘(fi)
'\/ 2y s (r+a—30)
0 0__ TN S 1
N 4 ‘If z

—a?2d(t+a—-20)

Fi1c. 2. The impulse response function of the optimum predictor.

pi)= | Piredo (14)

and the symbol * means convolution integral. Then the impulse response h(z) can
be illustrated as shown in Fig. 2, from which it is clear that

h(z)=ad(z + a—a)+ pz), 0<r<o (15)

This delta function is the biggest in the impulse response function and then it is easy
to detect it. It is this delta function that gives us the information about the echo.
Namely, its position and height correspond to the timing (¢ —a«) seconds and the
coefficient a respectively. To obtain such information,” we must detect the delta
function under the disturbance of p,(z). The advantage of this prediction method
is attributable to the sharpness of the delta function. If the original signal is a white
noise, which is unpredictable, p,(z) vanishes and the delta function ad(zr+a—o) 1s
easily detectable. If y(z) is a coloured noise, p,(z) does not vanish, but in many
cases of physical phenomena it seems to be a smooth function and the delta function
is too sharp to be covered up by p,(r) and also easily detectable.

If the echo travels by a different path from the direct signal, there is no reason
for the relative intensity transmitted or the relative time delay to be independent
of frequency. If the intensity and the time delay of the echo depend on fre-

quency, the sum of the original series and its distorted echo can be represented
by the Fourier transform of

K(jw){1 + D(jw)e~ ¢} (16)

where D(jw)e 7*# shows the distortion of the echo and the magnitude of the linear

phase lag p is selected so that the phase of D(jw) does not become positive. All
poles and zeros of the function (16) are in the left half p plane if

ID(p)| <1  where  Re(p)>0 (17)

Then the transfer function of the optimum predicting filter is given as

. 1 . . ‘
H — P —Je(p—a)
(jeo) m D(ja))e'f”P[ ojw) + D(jw)e l, a<p (18)
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and the impulse response function A(z) is
h(z) = py(t) + d(z + a — p) + higher order terms (19)

where d(z) is the inverse Fourier transform of D(jw). If the frequency dependence
of the echo is not strong, the function d(z) is a pulse-like function and no difficulty
will arise in detecting the echo. In this case, we can know the mean delay time of
the distorted echo, which we denote by . The function d(zr +a— p) reaches its
maximum at (¢ —a) sec lag.

3. EXPERIMENTS

3.1 Calculation of the impulse response A(z)

In this chapter, considerations are restricted to systems with discrete time for the
convenience of computer application. The impulse response of a predictor g(r) is
approximated by a finite set of values

q(0), g(1), q(2), - - -, g(N—1).

where g(i) is the ith sampled impulse response of the predictor, N is so chosen that
N4t covers the significant duration of the impulse response and 4t is the sampling
period. Let the input sequence be

x(1), x(2), x(3), - - -

and then the output of the predictor x(n) at the nth sampling instant is given by

2(n) = z:q(k)x(n _k—A) (20)
where
A=% 2
At 2D

The calculation method is called ‘‘learning method for system identification,’’ which
is based on the error-correcting training procedure in learning machines [3]. Here
we denote the ith sample of the impulse response function of the optimum predicting
filter by A(i). The adjustment procedure for g(i) to converge into A(i) is as follows.
The correction 4g(i) for g(i) at the nth step is proportional to the magnitudes of both
the prediction error and the component of the input corresponding to g(i), that is,

4q() = - {x(m) —x(m)} - . 21— A) (22)

1

Z] x{n—k—A)

where B is an error-correcting coefficient and 0< < 2. Then 4q(i) is added to
q(i). By this training procedure,
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q(y =5 h(), (i=0,1,2,---,N—1) (23)

The proof of Eq. (23) is trivial.

The advantage of the use of this method is that it can be used to identify the
optimum predictor for the signal in which the parameters of the echo, a and o,
vary slowly in comparison with the time required for identification.

3.2  Simulation

An analog noise generator and a delay element whose delay time was 35 msec
were used. A noise generated by the generator was considered as a direct signal
from a signal source. Its echo was obtained by supplying it to the delay element.
By summing up these two signals with an analog adder, a time series containing
an echo was obtained. It was supplied to A-D converter and stored in core
memory of a mini-computer. Then the impulse response function of the optimum
predicting filter was calculated.

Two kinds of signals, a wide band and a narrow band signals, were used as
test signals. The results are shown in Figures 3 and 4. In each figure, the upper
shows the correlation function and the lower the impulse response function of
the predictor. ‘

Fig. 3 shows one example of the case where the signal band width is wide
enough. The direct signal is hardly predictable and it means that py(z) is
almost negligible. Then the impulse response function is composed of almost only
delta functions. The pulse observed at 30 msec lag indicates the existence of the
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Fic. 3. Simulation results. The upper Fic. 4. Simulation results. The signal

and the lower figures are the band width is narrower than that

~ >

auto-correlation function and the
impulse response function of the
optimum predictor respectively.
(frequency range of the signal:
0~355Hz, 4t: 1 msec, a : 5 msec)

of Fig. 3 and the echo cannot be
detected by correlation method.
(frequency range of the signal:
56~90 Hz, 4¢: S msec, « : 15 msec)
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echo. The negative pulse at 65 msec lag corresponds in the right hand side of
Eq.(3) to the second order delta function —a%(z 4+« —20).

Fig. 4 shows one example of the case where the signal band width is narrow.
The echo cannot be detected in the auto-correlation function. Nevertheless, the
impulse response function shows its existence clearly at 35 msec lag. In this
figure, the second order pulse cannot be observed. It is obtained empilically that
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| A | 4 <
Fic. 5. The experimental setup ‘of’sound (b). Frequency range: 0~2,200 Hz.
propagation.
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(a). Frequency range: 0~10,000 Hz. (¢). Frequency range: 7,100~9,000 Hz.

F1c. 6. Experimental results of sound propagation. The band width of the sound
of Fig. (a) is wide enough and the echo is observed in both the auto-correla-
tion function and the impulse response function. The proposed prediction
method is, as shown in Figures (b) and (c), more effective than correlation
method if the band width of the sound is narrow. (4¢: 50 psec, «: 0.3 msec)
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the second order pulse and higher order pulses cannot be observed generally in
the impulse response function if the signal band width is not wide.

3.3 Sound Propagation in an Anechoic Room

A speaker, a microphone and a reflecting board were placed in an anechoic
room as shown in Fig. 5. The output signal of the microphone contained not
only the direct sound but also the reflected sound. Its delay time calculated from
geometrical arrangement was 0.5 msec.

Three kinds of signals were used. The results are shown in Fig. 6. The echo,
which should appear as a peak at 0.5 msec lag in the auto-correlation function,
can be observed only in the correlation function of Fig. 6(a). In the others, no
typical peaks can be observed. It is because (1) the echo is energyless, (2) the
band width of the sound is narrow and (3) the delay time is small. However
each impulse response function shows the existence of the echo clearly in spite
of these conditions.

3.4 Flexural Wave Propagation in a Steel Strip [4]

The propagation of the flexural wave in solid body, which is an example of
dispersive wave, was measured. The measuring system is shown in Fig. 7. A
long thin steel strip whose cross section was 0.5 X 38 mm was suspended by
cotton string horizontally. A small metal bar (about the size of pencil) was
used to strike the strip at the end to excite flexural wave. It was detected by
a light weight (about 1 g) accelerometer attached at 60 cm from the other end.
The signal obtained by the accelerometer was the mixture of the direct wave and

GOcn_'s_‘
Steel Strip

Amplifier

Lowpass l Correlator
Fitter

A .
Xty

[ Predictor ’

hiz) 7).

Fic. 7. The experimental setup of flexural wave
propagation.
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its reflection. .

The flexural wave is dispersive and its group velocity depends on frequency.
Then to measure the group delay time of the reflected wave, it is necessary to
know the lag time of the peak of correlation envelope. However it does not
necessarily agree with the group delay time precisely because it is disturbed by
other terms than the cross-term between the direct signal and its reflection. On
the other hand, it is known that the envelope of the flexural wave propagates
with the group velocity. Then the group delay time can be measured by linear
prediction of the envelope of the flexural wave. It is denoted by X(¢) in Fig. 7
and obtained by averaging the squared signal x2(¢) with first order low-pass filter.
Z(t) can be written as

(O =5 + a¥(t—a) + z(0) (24)

where $(¢) is the envelope of the direct wave and z(¢) is the cross-term between
the direct and the reflected waves. It is considered as a noise which disturbes the
relation that the observed signal is the sum of the direct signal and its echo.

Two examples are shown in Figures 8(a) and (b). In each figure, the peak of
correlation envelope is not easy to determine from the auto-correlation function
of the flexural wave itself. Nevertheless the impulse response function shows the

group delay time very sharply. The frequency dependence of the flexural wave
velocity is observed by comparing these two examples.
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(a) Frequency range: 560~900 Hz. (b) Frequency range: 1,120~1,800 Hz.
(4t : 500 psec, a: 5 msec) (4t : 200 pusec, a: 2 msec)

Fic. 8. Experimental results of flexural wave propagation.

4. CONCLUSION

A new method of echo detection was proposed. The method is based on the
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principle that an echo appears as a delta function in the impulse response function
of the optimum predictor for the signal containing the echo. It has an enormous
advantage in that the delta function can be scarcely overlooked because of its
sharpness. Experiments of sound propagation show its effectiveness even under
such conditions as:

(1) The signal band width is narrow.

(2) The delay time of the echo is small.

(3) The echo is not intense.
It is also shown that this method is effective for dispersive wave propagation. In
many cases, velocity measurement problems are convertible into those of the delay
time measurement and then this method may be effective in measuring the velocities
of signal propagations using only one signal detector.
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