No. 246.

(Published December, 1942.)

Characteristics of the Installed Engine-Air-Cooler System.

(Part II:—Overall Performance of the Aero-Engine, Using an Engine-Air-Cooler of Parallel-Counter-Flow Type.)

By

Niiti Nisiwaki.

Member of the Institute.

Abstract.

Assuming

\[P_e \propto k G_t \]

\[k = \frac{1}{w}, \quad w \approx 0.00085 \text{ kg/IP/sec.} \]

where \(P \) = (propeller horsepower) + (the horsepower necessary to drive supercharger) = \(P_b + P_s \)

\(G_t \) = rate of flow of the engine air (kg/sec.)

then

\[\frac{P_e}{P_{e0}} = \frac{G_t}{G_{t0}} = \frac{\sqrt{T_{2o}}}{\sqrt{T_2}} \cdot \frac{P_3}{P_{30}} \]

where suffix 0 indicates the case without cooler, and suffix 3 the state of the engine air in front of the suction port. \(P_e \) is calculated with the aid of equations (3.2.9) or (3.2.9'), and the ratio \(\frac{P_b}{P_{b0}} \) with the aid of equations (3.2.10).

2. Drag of the installed cooler system

\[P_d = \text{Drag horsepower of the cooler} \]

\[\frac{P_d}{P_{b0}} = \frac{u_0^2 w}{g \cdot 75 \cdot \gamma_p} \cdot \frac{1}{\beta} \left\{ \frac{1}{b'} \cdot \frac{u_{k'}}{u_0} \right\} \cdot \frac{P_b}{P_{b0}} \cdot \frac{1}{1 - \frac{P_s}{P_e}} \]
Assume the weight of the cooler per unit area, \(W \)
\[
= 0.03 + 1.14 \log_{10} \frac{1}{1 - \eta_{th}} \quad \text{kg/dm}^2
\]

3. Overall performance of the aero-engine, using the above mentioned equations and the relations explained in the first report.

The overall performance of the aero-engine, using engine-air-coolers of the parallel-counter-flow type is examined for a number of cases, namely,

- Flying height = 6, 8, 10, 12, 14 km.
- Boost pressure = 760, 760+300 mm Hg
- Flowing speed of engine-air in the cooler core, \(v_2 = 20, 50, 100 \text{ m/sec} \)
- Temperature efficiency of cooler, \(\eta_l = 40, 60, 80, 90 \%
- Area ratio, \(b_4' = \frac{F_4'}{F_1'}, \quad b_2' = \frac{F_2'}{F_4'} \), \(= 1, 2, 3, 5 \)

and putting the

- Adiabatic overall efficiency of supercharger = 65 \%
- Adiabatic thermal efficiency of supercharger = 55 \%
- Flying velocity = 650 km/hr.

Figs. 4-32 illustrate the calculated performance, where the convex full-line curves indicate \(\left(\frac{P_d}{P_b} - \frac{P_d}{P_{b0}} \right) \).

4. Results.

(i) In order to obtain better overall performance \(\frac{P_b}{P_{b0}} \) of the aero-plane by using the engine-air cooler, it is preferable to use

a) in which the cooler has a higher temperature efficiency value, namely 80-90-95 \%.

b) in which the flowing velocity values of the engine-air in the cooler-core are smaller, namely 20-30-50 m/sec. and

c) in which the area ratio \(b_4' \) of the cooler area to the outlet area of the cooler-duct is larger,

(ii) in which the maximum gains in the performance in these examples are

- 10 \%, for flying height 10 km, boost pressure 760 mm Hg
- 14 \%, for flying height 10 km, boost pressure 760+300 mm Hg
- 14 \%, for flying height 12 km, boost pressure 760 mm Hg

(iii) In the case of the inter-cooler, it is desirable to take the pressure ratio of the first stage supercharger as large as possible.
給気冷却器の性能
（第2報 逆流型冷却器の装備性能）

所員 西脇 仁一

1. 緒 言 ... 480
2. 考への進め方 480
2.1. 基礎の関係式 480
2.2. 計算のやり方 481
2.3. 高度10kmの場合 481
2.4. 湿度効率の90%の場合 482
2.5. 高度の影響、中間冷却器 482
3. 計算法 .. 482
3.1. 絙気冷却器の計算に関する基礎式 482
 (i) 逆流型の給気冷却器の性能に関する式 482
 (ii) 逆流型の給気冷却器の性能に関する式 483
 (iii) 放熱がある場合の性能 485
 (iv) 放熱の影響 485
3.2. 発動機の駆馬力 485
3.2.1. 最終段冷却器（第2段退給機の後に給気冷却機を装備した場合）
 の性能 .. 486
 (i) 退給機の流量比をそのままにした場合 486
 (ii) 退給機の流量を一定にした場合 487
3.2.2. 中間冷却器（第一段退給機と第三段退給機との間に給気冷却器を
 装備した場合）の性能 489
3.3. 冷却器の抵抗馬力 490
3.3.1. 冷却器自身の抵抗馬力 490
 (i) 抵抗馬力 490
 (ii) 冷却器の通過面積 490
 (iii) 給気冷却器の重量 491
 (iv) 給気冷却器の重量による抵抗の増加 492
4. 例 項 .. 492
4.1. 高度10km、給気圧760mmHgの場合 492
 (i) 最終段冷却器、v = 100m/s. 492
1. 緒 言

既に第1報に於て給気冷却器の性能の要求に関して報告したが、今回はその実績報として給気冷却器を機首に装備した場合の性能について第1報で述べた計算法を基として具象的にを考察して見た。本報では給気冷却器としては従来の所最も普通に考へられてある直接冷却器及び、給気冷却器の側を高圧の給入空気が流れ、外側を低温の冷却空気（大気）が流れる型を取扱い、我々が第1報で紹介した冷却剤を媒介とした冷却法についての考察は第3報に譲りたいと思う。

又更に冷却器の内面であるが、給入空気と冷却空気とが、並行に流れ、且つ並行し得る型の冷却器についてのみ考慮、同方向に並行に流れられる場合や直交する即ち場合の装備性能についてはこれを第3報に譲りたいと思う。

2. 考への進め方

2.1. 基礎の関係式

実際に上述の様々な並行流の冷却器を試作して見ると製作上、問題が発生し、設計上、不備が必要となり、空気通過面積比が小さく、その他改良すべき点が多い。故に熱伝達率を比較して抵抗係数を求める。然し、既に標準で取扱う冷却器とは等の不備が少なく改良もある程度施されて抵抗率と抵抗係数を求めるに於て一定の関係があるものとする。この事は既に普通の冷却器については多数の実例に基づき検討されたものである。それで、放熱の度合を表す数として、τα（温度係数、冷却器が無限に長ければこの冷却
給気冷却器の性能

器の面の温度と冷却空気との温度差は無くなる100%となるが、実際には有限の長さであるため温度差の寄与割合までしか冷却空気の温度が上らない。この割合を温度効率と云ふ。その冷却機の前後での圧力差を台形空気の管内風速を基とした動圧で割ったもののとの間には次の様な関係式が成り立つ。

\[C_w = 0.13 + 2.04 \log e \left(\frac{1}{1 - \eta} \right) \]

…………………(1)

上述の実験式は冷却器の構造が異なる場合2〜3%の誤差内で使用する式であるが、前記のよう給気冷却器ではこの式で求めた \(C_w \) よりも実際の抵抗係数は少し大きくなる（この事については別報に譲りたい）。

然し乍ら給気冷却器の設計や工作を改良する事により段々（1）式に近いものを得られるものとすれば、近似的には（1）式で充分に本計算の目的を達し得るものと思う。

2.2. 計算のやり方

i. 先づ給気冷却器を装置すると給気温度が低下するため給入効率が増し、それだけ指示馬力が増す筈である。

ii. 然し直ち一括給気冷却器を給気が通る際、抵抗があるため圧力低下を来たし、それだけ給気冷却器を使用しない場合よりも給入空気圧が下る。従ってこれ等は給気冷却器を圧力が高い方に動く。

iii. 給気冷却器を装置すると給気冷却器に冷却用として大気を流れさせねばならぬため、そのため冷却抵抗が増す（本報告ではこの抵抗馬力をプロペラの効率で割って発動機の出力単位にして考へてある。）

iv. 給気冷却器を装置したために給気冷却器自身の重量並びにその他の装置を要する重量が増加する。これは重量馬力として一種の抵抗馬力になる。

v. その他冷却器の抵抗や数度及び発動機ネセルとの干渉抵抗を考察すべきであるが、これ等は前者に比べ小さいので省略する。

此等の諸点を総合したものが給気冷却器の裝備性能であって、本報告では種々の温度効率の冷却器につき上述の點を算出して見た。

2.3. 前述の様なやり方で高度10kmの場合により装置性能を計算して見ると、給気冷却器を装置すると給気の温度が低下して指示馬力は増すが冷却器の抵抗もあるため実際の値は少し大きい事が分った。然し乍ら給気が給気冷却器を通る速度が100m/sでは高すぎて損であるが、50m/sにすると冷却昇華器が有効に働く、即ち給気の通過速度を減する可く低い様に冷却器を設計すべきである。

次ぎに給気冷却器を通る際の給気の壓力低下を補うため過給機の壓力比を少し増し
にして給気冷却器後の給気圧が 7600mm になる様にした場合についても計算したが、この場合には見掛け上は給気冷却器による出力の増大は大きい様になるが、流動機の压力比を増した場合のままで、給気冷却器を外した場合の性能に比べるとその出力の増分は矢張り前の場合と殆んど同様になっているった。（即ちどちらの場合でも殆んど似たりよったりである。（第 18 図参照））

2.4. 以上の考察で温度効率の高い冷却器程有利である事が分かったので実験室で試作研究した給気冷却器の温度効率が 92% であるのには少なからず、温度効率 90% のものにきり同様の計算を行った所これは可成り有効である様な結果を得た。

2.5. 又高度が低い程給気冷却器の装備効率は悪く、反対に高度が高い程よくなる事は計算で求めて見ると顕著の通りである。

以上の計算は第 2 段流動機の後に給気冷却器を入れた場合（アフターアーラー即ち最終段冷却器の場合）であるが、所謂冷却間給気冷却器として第 2 段流動の前に入れて使用した場合についても計算して見た。（この場合に最低段に置いた給気冷却器程には有効でない事が分った。）

3. 計算法

3.1. 給気冷却器の計算に関する基礎式

(1) 逆流型の給気冷却器の性能に関する式は（第 1 報参照）

\[\eta' = \frac{t_1 - t_2}{t_1 - \theta_1} = \frac{1 - E}{1 - \beta E} \quad \text{(3.1.1)} \]

\[\eta'' = \frac{\theta_2 - \theta_1}{t_1 - \theta_1} = \frac{\beta(1 - E)}{1 - \beta E} = \beta \eta', \quad \text{(3.1.2)} \]

\[\beta = \frac{W_t}{W_0} \quad \text{(3.1.3)} \]

\[E = e^{-\frac{y_t(1-E)}{(1+y_t/y_0)}} \quad \text{(3.1.4)} \]

\[y_t = \log_e \frac{1}{1 - \eta'} \quad \text{(3.1.5)} \]

\[y_0 = \log_e \frac{1}{1 - \eta''} \quad \text{(3.1.6)} \]

但し \(t_1 \)：給気の給気冷却器入口温度（℃）

\(t_2 \)：給気の給気冷却器出口温度（℃）
給気冷却器の性能

\[\theta_1 = 空気冷却器の給気冷却器入口温度 \quad (^\circ \text{C}) \]
\[\theta_2 = 空気冷却器の給気冷却器出口温度 \quad (^\circ \text{C}) \]
\[W_0 = C_1G_1 = 給気の流量 \quad (\text{kg/秒}) \quad (\text{水当量単位}) \]
\[W_0 = C_0G_0 = 冷却空気の流量 \quad (\text{kg/秒}) \quad (\text{水当量単位}) \]
\[\eta_1 = 給気冷却器の給気側の温度効率 \]
（壁の温度が一様な時の給気の温度降下率）
\[\eta_0 = 給気冷却器の冷却空気側の温度効率 \]

上述の \(\eta'_1, \eta'_0 \) の式は \(\beta = 1 \) の場合には不定型となるが、このときは次式を用ひる。

\[
\frac{1}{\eta'_1} \quad \frac{1}{\eta'_0} = \frac{1}{\eta_1} + \frac{1}{\eta_0} + 1 \quad \cdots (3.1.7)
\]

（1）、（2）又は（7）式により \(\eta'_1, \eta'_0 \) 等が求まるとこれから給気の温度降下が直ぐに求まる。（此等の諸式を元として \(\beta \) \) と \(\eta'_1, \eta'_0 \) との関係は第1報の第2～6圖を参照された
い。）

（ii）次ぎに冷却器内の圧力降下を \(\Delta p \) とすれば

\[
\Delta p = \frac{1}{13.6} \cdot C_{m1} \cdot \frac{1}{2} \rho w^2 \quad \cdots (3.1.8)
\]

但し
\(\Delta p \) 壓力降下（mmHg）
\(C_{m1} \) 抵抗係数
\(\rho \) 空気密度
\(w \) 管内風速（m/sec）

放熱しておらない場合の抵抗係数としては前述の様に次式を採用するものとする。

\[
C_{m1} = 0.13 + 2.04 \log \left(\frac{1}{1 - \eta'_1} \right) \quad \cdots (3.1.9)
\]
\[
C_{m0} = 0.13 + 2.04 \log \left(\frac{1}{1 - \eta'_0} \right) \quad \cdots (3.1.10)
\]

上式中
\(C_{m1} \) = 給気側の抵抗係数
\(C_{m0} \) = 冷却空気側の抵抗係数

\(\eta_1, \eta_0, \eta'_1, \eta'_0 \) との関係は第1表又は第1圖の様になる。
抵抗係数

\[C_r = 0.13 + 2.04 \log \frac{1}{1 - \eta_{th}} \]

温度効率 \(\eta_{th} \)

第1図
給気冷却器の性能

第1表

<table>
<thead>
<tr>
<th>ηc 又は ηs</th>
<th>C_{sds} 又は C_{sw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>1.17</td>
</tr>
<tr>
<td>0.6</td>
<td>2.00</td>
</tr>
<tr>
<td>0.8</td>
<td>3.42</td>
</tr>
<tr>
<td>0.9</td>
<td>4.82</td>
</tr>
</tbody>
</table>

(iii) 放熱してある場合の圧力降下
第1報の2.3.2.節参照。

3.2. 発動機の軸馬力

一般に発動機の馬力は簡単のため

\[IP_e = IP_s + IP_a \] \hspace{1cm} (3.2.1)

であるものとする。上の式で

\[IP_e = \text{有効内部馬力（假に名付ける）} \]
\[IP_s = \text{プロペラ軸馬力} \]
\[IP_a = \text{遠給機駆動馬力} \]

前述の様な関係式を用いると大体に於て

\[IP_e \propto \text{給入空気量} \]

であつて、色々の実験データや熱力学的計算等を元にして考へると

\[IP_e(\text{馬力}) = kG_t \] \hspace{1cm} (3.2.2)

但し

\[G_t = \text{給気量（kg/sec）} \]
\[k = \text{常数} = \frac{1}{w} \]
\[w = 0.00085 \text{ kg/IP/sec} \] \hspace{1cm} (3.2.3)

としてよい様である。この \(w = 0.00085 \text{ kg/IP/sec} \) は少し多い目の様であるが、摩擦馬力やポンプ損失馬力を含んだ有効内部馬力の単位営りについてある。

又

\[\text{給入空気量} \propto \frac{P_a}{V T_a} \]

但し

\(P_a = \text{給気冷却器後の絶対圧力} \)
\(T_a = \text{給気冷却器後の絶対温度（°K）} \)

(1) 航空工学便覧、483頁、第5表の数字を元として求めた。
なる関係が近似的に成り立つものとすれば

\[\frac{H_p}{H_{p0}} = \sqrt{\frac{T_{so}}{T_2}} \frac{P_s}{P_{s0}} \]

(3.2.4)

上式中

\[H_{p0} = \text{給気冷却器の無い場合の有効内部馬力} \]
\[H_p = \text{給気冷却器の有る場合の有効内部馬力} \]
\[P_{so}, T_{so} = \text{給気冷却器の無い場合の給気の圧力,温度（°K）} \]
\[P_s, T_s = \text{給気冷却器の有る場合の給気の圧力,温度（°K）} \]

3.2.1. 最終段冷却器 第2段過給機の後に給気冷却器（アフターサーラー）を装備した場合の軸馬力と吸気温度。

(i) 過給機の圧縮比をそのままにして置いて給気冷却器を装備した場合第2図に示す様な気流に就いて考えるに

\[R = \text{過給機の圧縮比} \]

第一段の過給機では

\[R_1 = \frac{P_2}{P_1} \]

第二段の過給機では

\[R_2 = (P_3 + \Delta P_a)/P_2 \]

過給機の全断熱温度効率を \(\eta_{ad+1} \) とすれば

\[T_2 = \left\{ \left(\frac{R_1}{\gamma-1} \right)^{\frac{\gamma-1}{\gamma}} + 1 \right\} T_1 \]

(3.2.5)

\[T_3 + \Delta T_a = \left\{ \left(\frac{R_2}{\gamma-1} \right)^{\frac{\gamma-1}{\gamma}} + 1 \right\} T_2 \]

(3.2.6)

仮定

\[\gamma = \frac{C_p}{C_v} = 1.405 \]

過給機の断熱温度効率は過給機の構造並びに使用状況で大いに変るものであるが、本報告では平均値として

\(\eta_{ad+1} = 65\% \)
給気冷却器の性能

を採用した。

又第一段、第二段過給機の駆動馬力をついて \(IP_{a1}, IP_{a2} \) とすれば

\[
IP_{a1} = \frac{G_t}{75 \eta_{out}} \left(\frac{\tau RT_1}{r-1} \left(R_1 \frac{\tau-1}{r} - 1 \right) \right) \quad \cdots\cdots(3.2.7)
\]

\[
IP_{a2} = \frac{G_t}{75 \eta_{out}} \left(\frac{\tau RT_2}{r-1} \left(R_2 \frac{\tau-1}{r} - 1 \right) \right) \quad \cdots\cdots(3.2.8)
\]

上式中

\[
R = \text{不等恒数} \left(= 29.3 \frac{\text{kg} \cdot \text{m}}{\text{N}} \right)
\]

\[
\eta_{out} = \text{過給機の全断熱効率}
\]

前同様 \(\eta_{out} \) の平均値として本計算では

\[
\eta_{out} = 55\%
\]

を採用した。

此等の関係式 (3.2.1), (3.2.2), (3.2.4), (3.2.7), (3.2.8) 式から軸馬力を求めると

\[
IP_b = IP_e - IP_{a1} - IP_{a2}
\]

\[
= \left[1 - \frac{w}{75 \eta_{out}} \left(\frac{\tau RT_1}{r-1} \left(R_1 \frac{\tau-1}{r} - 1 \right) \right) - \frac{w}{75 \eta_{out}} \left(\frac{\tau RT_2}{r-1} \left(R_2 \frac{\tau-1}{r} - 1 \right) \right) \right] IP_e
\]

又は

\[
IP_b = \left[1 - \frac{w}{75 \eta_{out}} \left(\frac{\tau RT_1}{r-1} \left(R_1 \frac{\tau-1}{r} - 1 \right) \right) - \frac{w}{75 \eta_{out}} \left(\frac{\tau RT_2}{r-1} \left(R_2 \frac{\tau-1}{r} - 1 \right) \right) \right] \frac{\sqrt{T_{a0}}}{T_a} \frac{P_3}{P_{a0}} IP_e
\]

\[
IP_{bo} = \left[1 - \frac{w}{75 \eta_{out}} \left(\frac{\tau RT_1}{r-1} \left(R_1 \frac{\tau-1}{r} - 1 \right) \right) - \frac{w}{75 \eta_{out}} \left(\frac{\tau RT_2}{r-1} \left(R_2 \frac{\tau-1}{r} - 1 \right) \right) \right] \cdot IP_{eo}
\]

又は

\[
\frac{IP_b}{IP_{bo}} = \left(\frac{\sqrt{T_{a0}}}{T_{a0}} \cdot \frac{P_{a0} - \Delta P_a}{P_{a0}} \right)
\]

上式が過給機の壓縮比をそのままにして置いて給気冷却器を装備した場合の発動機の出力比を求める式である。次ぎに

（1）給気冷却器後の圧力が何時も一定になる様、過給機の圧力比を増した場合、
この場合

\[\Delta T_a' : \text{給気冷却器による給気の温度降下} \]
\[\Delta P_a' : \text{給気冷却器装備による給気の圧力降下} \]

とすれば、

\[
T'_{1} = \left\{ \frac{T_{1}^{-1} \left(R_{1} \frac{T_{1}^{-1}}{T} - 1 \right)}{\eta_{\text{act}-t}} + 1 \right\} T_{1} \\
T'_{2} = \left\{ \frac{(R_{1} + \Delta R_{2})^{-1} - 1}{\eta_{\text{act}-t}} \right\} T_{1} - \Delta T'_{a} = T_{20} - \Delta T'_{a}
\]

但し

\[R_{1} = \frac{P_{2}}{P_{1}} \]
\[R' = (R_{2} + \Delta R_{2}) = \frac{P_{20} + \Delta P_{a}}{P_{2}} \]

\[P_{2} = \text{第一段給気機後の圧力} \]
\[P_{20} + \Delta P_{a} = \text{第二段給気機の吐出圧力} \]
\[P_{30} = \text{給気冷却器後の給気圧} \]

この場合の軸馬力は

\[
J_{P_{b}}' = \left[1 - \frac{w}{75 \eta_{\text{act}-t}} \left\{ \frac{\gamma R T_{1}}{T - 1} \left(R_{1} \frac{\gamma - 1}{T} - 1 \right) \right\} \right] \\
- \frac{w}{75 \eta_{\text{act}-t}} \left\{ \frac{\gamma R T_{1}}{T - 1} \left(\left(R_{2} + \Delta R_{2} \right)^{-1} - 1 \right) \right\} \times \frac{\sqrt{T_{20}^{'}}}{\sqrt{T_{30}^{'}} - \Delta T_{a}^{'}} \frac{P_{30}}{P_{20} + \Delta P_{a}} \cdot J_{P_{b}}'^{w}
\]

又このような圧力比の給気機を取付け、給気冷却器を使用しない場合の軸馬力 \(J_{P_{b}}^{w} \) は

\[
J_{P_{b}}^{w} = \left[1 - \frac{w}{75 \eta_{\text{act}-t}} \left\{ \frac{\gamma R T_{1}}{T - 1} \left(R_{1} \frac{\gamma - 1}{T} - 1 \right) \right\} \right] \\
- \frac{w}{75 \eta_{\text{act}-t}} \left\{ \frac{\gamma R T_{1}}{T - 1} \left(\left(R_{2} + \Delta R_{2} \right)^{-1} - 1 \right) \right\} \] \cdot J_{P_{b}}^{w}
\]

\[\frac{JP_{b}}{JP_{b}^{w}} = \frac{\sqrt{T_{30}^{'}}}{\sqrt{T_{30}^{'}} - \Delta T_{a}^{'}} \cdot \frac{P_{30}}{P_{20} + \Delta P_{a}} \quad \cdots \cdots \cdots \cdots (3,2.11) \]

(iii) 兩方の場合の比較
3.22. 中間冷却器（第一段過給機と第二段過給機との間に給気冷却器を装備した場合）の性能

給気の温度は

\[T_z = \left(\frac{R_1}{\eta_{mot}} \right)^{\frac{\gamma - 1}{\gamma}} T_i \]

\[T_z = \left(\frac{R_2}{\eta_{mot}} \right)^{\frac{\gamma - 1}{\gamma}} (T_z - \Delta T_z) \]

\[R_z = \frac{P_z}{P_{30} - \Delta R_z} \]

過給気の騒動馬力は

\[\mathcal{H}_{P_{10}} = \frac{G_z}{75 \eta_{mot}} \left(\frac{\gamma R T_i}{\gamma - 1} \right)^{\frac{\gamma - 1}{\gamma}} \left(R_1^{\frac{\gamma - 1}{\gamma}} - 1 \right) \]

\[\mathcal{H}_{P_{20}} = \frac{G_z}{75 \eta_{mot}} \left(\frac{\gamma R (T_z - \Delta T_z)}{\gamma - 1} \right)^{\frac{\gamma - 1}{\gamma}} \left(R_2^{\frac{\gamma - 1}{\gamma}} - 1 \right) \]

\[\mathcal{H}_{P_{30}} = \mathcal{H}_{P_{10}} - \mathcal{H}_{P_{20}} - \mathcal{H}_{P_{o}} \]

\[= \left[1 - \frac{w}{75 \eta_{mot}} \left(\frac{\gamma R T_i}{\gamma - 1} \right)^{\frac{\gamma - 1}{\gamma}} \left(R_1^{\frac{\gamma - 1}{\gamma}} - 1 \right) \right] \times \sqrt{\frac{T_{30}}{T_z}} \frac{P_3}{P_{30}} \mathcal{H}_{P_{o}} \]

但し上式で

\[P_{30} = R_2 \cdot P_2 \]
3.3. 冷却器の抵抗力

3.3.1. 冷却器自身の抵抗力

(i) 抵抗力

給気冷却器に関する考察（第1報）から

\[
\frac{u'}{u_0} = \frac{1}{\sqrt{\frac{(b_1'^2 + f^2) a_{12}^2 + c_{12} + b_1'^2 + (b_2'^2 + f^2) c_{34}}{2}}}
\]

抵抗力

\[H = \frac{p u_0^3}{75 \eta_p} \cdot F_0 \cdot \frac{u_k'}{u_0} \left\{ 1 - (1 + a_b) b_4 \cdot \frac{u_k'}{u_0} \right\}
\]

\(\eta_p \): プロペラの効率

(ii) 冷却器の空気通過面積

\[F_0' = \frac{G_0}{\rho g u_k'} = \frac{1}{\rho g u_k'} \cdot \frac{G_i}{\beta} = \frac{1}{\rho g u_k'} \cdot \frac{w P_r}{\beta}
\]

\[F_0' = \frac{w}{\rho g u_0} \cdot \frac{1}{\beta u_k' / u_0}
\]

\[\frac{1}{P_r} = \frac{u_k' / u_0}{g \cdot 75 \cdot \eta_p} \cdot \frac{1}{\beta} \left\{ 1 - (1 + a_b) \cdot b_4 \cdot \frac{u_k'}{u_0} \right\}
\]

今

\[u_0 = 180.6 \text{ m/s}
\]

\[w = 0.00085 \text{ kg/IP/sec.}
\]

\[\eta_p = 0.75
\]

\[g = 9.80 \text{ m/sec}^2
\]

とすれば

\[F_0' = 0.00114 \cdot \frac{1}{\beta u_k' / u_0} \cdot P_r (dm^2)
\]

\[\frac{F_0'}{P_r} = 0.00114 \cdot \frac{1}{\beta u_k' / u_0} \cdot \frac{P_r}{P_b}
\]

\[\frac{P_r / P_b}{P_r / P_e} = 0.0524 \cdot \frac{1}{\beta} \left\{ 1 - (1 + a_b) \cdot b_4 \cdot \frac{u_k'}{u_0} \right\}
\]

\[\frac{P_r / P_b}{P_r / P_e} = \frac{1}{1 - \frac{P_r}{P_e}}
\]
給器冷却器の性能

\[
\frac{IP_d}{IP_{d_0}} = \frac{IP_d}{IP_{d_0}} \cdot \frac{IP_b}{IP_{b_0}} = \frac{IP_d}{IP_{d_0}} \cdot \frac{IP_b}{IP_{b_0}} \cdot \frac{1}{1 - \frac{IP_s}{IP_{s_0}}}
\]

高度 10km、給気の吐圧力 760mmHg、\(\eta_{out}=55\%\)、\(\eta_{in}=65\%\) の場合には

\[
\frac{F_{b'}}{IP_b} = 0.00148 \cdot \frac{1}{\beta u_k / u_o} dm^2
\]

給気側の通過面積 \(F'_{b'}\):

\[
F'_{b'} = \frac{G_b}{\gamma} \cdot \frac{1}{V_t} = \frac{uP_{b'}}{\gamma} \cdot \frac{1}{V_t} \ (m^2)
\]

高度 10km で、給気の吐出空気の \(\gamma=0.895 \ kg/m^3\) \((T_3=394.3^\circ K, 760mmHg)\) とすれば

\[
F'_{b'} = 0.00095 \cdot \frac{100}{V_t} IP_b \ (dm^2)
\]

\[
F'_{b'} = 0.00124 \cdot \frac{100}{V_t} IP_b \ (dm^2)
\]

但し \(V_t\)：給気の冷却管内通過速度 \((m/s)\)

\[
F'_{b'} + F'_{b'} = \left(0.00148 \cdot \frac{1}{\beta u_k / u_o} + 0.00124 \cdot \frac{100}{V_t}\right) IP_b \ (dm^2)
\]

又は

\[
F'_{b'} + F'_{b'} = \left(1.48 \cdot \frac{1}{\beta u_k / u_o} + 1.24 \cdot \frac{100}{V_t}\right) IP_{b_0} \ (dm^2)
\]

但し \(IP_{b_0}\)：1000 馬力とする。

(iii) 給器冷却器の重量

給器冷却器の前面積当り重量として大體

\[
W = 0.03 + 1.14 \log e \cdot \frac{1}{1 - \eta_{eb}} kg/dm^2
\]

と假定する。これは冷却器の構成法や材料の取扱い方により、この数値の 2 倍になったり半分になったりし得るものであるが、大體に於て上の式で示す価は少し軽くなる様に構成した給器冷却器の平均値を示すものと着做することが出来る。
(iv) 給気冷却器の重量による抵抗の増加

「給気冷却器に関する考察」（第1報）から

抵抗馬力（発動機の出力単位で）

\[
\frac{1}{2} \rho u_0^2 \frac{e_0}{\eta p w_s} \cdot \frac{1 + \lambda}{75} W
\]

\[\lambda = 1.2, \quad \frac{1}{2} \frac{e_0}{\eta p w_s} = 0.000062, \quad u_0 = 180.6 \text{m/s}, \quad \rho = 0.0421 \text{kg} \cdot \text{sec}^2 / \text{m}^4\]

とすれば

抵抗馬力 = 0.246 W 馬力

4. 例　題

以上で計算の準備が出来たから、

高　度 = 6, 8, 10, 12, 14 km

給気壓 = 760 mmHg, 760 ± 300 mmHg

の場合について給気冷却器の温度性能を計算することになる。この場合高度 6 km
では単段の過給機であるか、それ以外はすべて 2 段過給機を用いるものとした。

過給機の断熱効率 \(\eta_{\text{out}} = 0.65 \)

過給機の温度効率 \(\eta_{\text{ad}} = 0.85 \)

飛行速度

\(u_s = 180.6 \text{m/s} \)

給気冷却器内の給気速度 \(v_t = 20, 50, 100 \text{m/s} \) の 3 種類

\[
\frac{e_0}{\eta p w_s} \cdot \frac{0.010}{0.75 \times 200} = 0.0000667
\]

給気冷却器の温度

\(\eta_t = \eta_p = 0.4, 0.6, 0.8, 0.9 \)

の 4 種類について温度性能を計算することにした。

4.1. 高度 10 km, 給気壓 760 mm の場合の比較

(1) 最終段冷却器　給気冷却器を第 2 段過給機と発動機との間に設け、給気冷却器内の給気流速を 100 m/s とした場合、この場合 2 段の過給機を用い、圧力比を夫々 \(R_1 = R_3 = 1.956 \) とすれば \(\eta_{\text{ad}} = 65 \% \) の時 \(T^* = 391.3^\circ \text{K} \) となる。

(1) 実際問題になると \(R_3 = R_2 \) であるが簡単のため \(R_1 = R_2 \) と仮定した。
給気冷却器の性能

第2段給給機の出力率を760mm一定とした場合。
冷却器を\(\eta_t = \eta_b = 40\% , 60\% , 80\% \)として、発電機の出力の増加率\(\frac{I_P}{I_{P_{\infty}}} \)を求めるとき、第4、5、6図の傾線は太線の様になる。これ等の図で縦軸は給給冷却器を用いない場合の軸馬力\(I_{P_{\infty}} \)に対し、給給冷却器を用いたために増した軸馬力\(I_{P} \)の比\(\frac{I_P}{I_{P_{\infty}}} \)とし、横軸には給給（単位時間の流量\(G_t \)）に対する冷却空気（\(G_b \)）の重量比\(\beta = G_t/G_b \)をとっている。常識的に考えて見ても分かる事であるが、給給の流量に比べて冷却空気の流量が少ない程給給が冷却されれて発給機の有効馬力は増すことが図にも明瞭に現れてある。然し乍ら一方に給給冷却空気の流量を増そうとすれば相似形のまいか冷却器壁温では大気に対する冷却器を冷却空気の所要流量に比例して増さなければならぬ。そのため大気の通るための抵抗が増し所謂冷却器の抵抗馬力を負担せねばならぬ事になる。このため第4～6図に於て冷却器の大気側通過面積\(F'_{\infty} \)と冷却空気の入口面積\(F' \)及び出口面積\(F'_{\infty} \)の関係

\[
b'_{1} = \frac{F'_{\infty}}{F'_{t}}\]
\[
b'_{2} = \frac{F'}{F'_{t}}\]

を\(b'_{1} = b'_{2} = 5, 3, 2, 1 \)にした場合の抵抗馬力（プロペラの効率で割って、発給機の出力率に直接したものを）\(IP_{d} \)を算出し、これから更に

\[
\frac{IP_{d}}{IP_{\infty}} = \frac{IP_{d}}{IP_{\infty}}\]

を求める。この数値が給給冷却器を装備した場合の優劣を決める基準となるもの。
で、計算の結果を記入すると、
第 4～6 圖の細線の様になり、
η = η₀ = 40% よりも 60% 更に
80% の方が結局の装備出力比
は有利になるが、何れにしても
期待したほどの利益は得られず
η = η₀ = 80% で b₁ = b₄ = 5 の
時 β = 0.3 にして漸く 2〜3%
の程度の出力増加率である。
（これでは給気冷却器の重量の
影響は考慮していないが、これを考
へ入れると更に有利である。
）普通の冷却器の装備法の
b₁ = b₄ = 2〜3 では殆んど利益は
なく、雑音と特性性能としては損
であると云ふ結果に達した。

(i.b) 給気冷却器の吐出圧力を 760mm に
なる様にした場合。

即ちこの場合は給気冷却器を二階の圧力降下を補ひ、給気冷却器後の圧力が
760mm になる様第 2 段過給機の圧縮比を変へた場合である。この場合の IP₁/Ip₀.
を η = η₀ = 40, 60, 80% の 3 つに状態につき算出すと第 7〜9 圖の様になる。

但し IP₀ は R₀ = R₀ = 1.056 に
に対する値である。次ぎに上述の
様に第 2 段過給機の圧縮比 R₂ を
変更したま 1 の状態で冷却器
を取除いた場合の IP'. を求め
IP'./IP₀ を図上に描くと第 7〜
9 圖中の「給気冷却器なし」と
示した曲線になる。細線の是夫
々 b₁ = b₄ = 5, 3, 2, 1 に対する
IP₁/Ip₀ をあらはしてある
から、この細線と「給気冷却
器なし」との間が結局の綜
合装備性能として出力増加（又
給気冷却器の性能

は減少）になる。この場合も (i.a) の場合と同様に給気冷却器を装着しても余裕からぬ事
が分る。唯催かに \(\eta = \eta_0 = 80\% \)
なる様な冷却器を用ひ、\(b' = b' \),
\(\beta = 0.3 \) では約 5\% 程の値け
となる。（同様重量やその
他の影響は考えてないから実際
はもう少し、小さい値となる。）
(ii) 最終段冷却器

給気冷却器を第 2 段過給機と発動
機との間に設け、給気冷却器内の
給気流路速度を \(v_t = 50\text{m/s} \)とした
場合。

i の場合には給気の流路速度が
高いため、給気冷却器での圧力降
下が大きく、そのため \(P_t / P_0 \) が大
きくならなかった。これを防ぐため、\(v_t \) を少し下げて
\(v_t = 50\text{m/s} \) にすると前の場合に比
べ圧力損失 \(dP \) は約 1/4 となる。

(iia) 第 2 段過給機の吐出圧力を
760mm 一定とした場合（給気圧
調整せず）この場合につき i
t 同様の計算を行と第 10 〜 12 図
の様になり \(\eta = \eta_0 = 60\% 〜 80\% \)
は給気冷却器を用ひたための利
益が少し減少みある様になった。

図中の点線は \(b' = b' = 5, 3, 2, 1 \) 場合の冷却器の重量による
抵抗を考慮した結果の装着出力である。第 12 図からも分
る様に \(\eta_0 = \eta = 80\% \) では \(\beta = 0.4 \) の時、約 10\% 程の出力の増しとなる。これ等の
場合（\(\eta_0 = \eta_1 = 80\%\)の給気冷却器の前面積（\(F'_1 + F'_4\)）並びに重量（第3.3.1節のii及びiiiによる）をIP_0 = 1000馬力（即ち IP_3 = 1000 × (IP_2 / IP_3)）馬力の場合により示すと第13～14図の様になり、\(\eta_0 = \eta_1 = 80\%\), \(b'_1 = b'_4 = 5\), \(\beta = 0.4\)で給気冷却器の前面積32.0dm², 重量60.9kgの程度となる。

(ii.b) 給気冷却器の吐出圧力を760mmになる様にした場合（給気圧調整）

この場合につき、(ii)と全く同様に求めると第15～17図の様になり、\(\eta_0 = \eta_1 = 80\%\), \(b'_1 = b'_4 = 5\), \(\beta = 0.4\)で夫々13, 14%の出力の増けとなる。（但し重量の影響を含んでない、これは約-2, -1%の程度である。）

(ii.c) 給気圧を調整せぬ場合と調整した場合との比較。

即ち(iia)の場合と(iiib)の場合とにき、\(\eta_0 = \eta_1 = 80\%\)につき各々での給気冷却器のない場合の出力を単位1として比較すると第18図の様になり、両者の間の差異は1%以下で、どちらの場合でも本問題の比較の立場から云へば差異はない様である。

(iii) 給気冷却器として温度効率の高いものを即ち\(\eta_0 = \eta_1 = 90\%\)のものを用ひた場合。

\(\eta_0 = \eta_1 = 90\%\)になる様な冷却器を通し、給気冷却器内の給気の流速速度\(v_t = 50m/s\), 20m/sの2種類については装置性能を求めると第19, 20図の様になる。この場合は装置性能は前の場合よりも又一層有利となり\(v_t = 20m/s, 50m/s\)の場合、最もよい時約15%, 12%程、結局の出力増加となる。然し乍ら第21, 22図に示す様に\(\eta_0 = \eta_1 = 60, 80\%\)の場合に比べて前面積（\(F'_1 + F'_4\)）が大きくなり、又重量も相當に重くなる欠点がある。

(iv) 中間給気冷却器、760mmHg

第1段給給機と第2段給給機との間に給気冷却器を装着し、第2段給給機の吐出圧力を760mmになる様、第2段給給機の出力圧力を加減した場合。

\(\eta_0 = \eta_1 = 80\%\)の場合につき装備性能を求めると第23図の様になり、重量の影響を入れると\(\beta = 0.5\)の場合で\(b'_1 = b'_4 = 5, 2\)の時夫々5, 6%の増けにしかならぬ。（第2段）給給給機の圧縮比を本例の場合

第23図

高度10km, 給気圧（760mm）調整
（中間冷却器の場合）
このページの図は、高度10km、周囲の影響は1.5、圧力比は5の場合を示しています。
給気冷却器の性能

に加減したまま給気冷却器を取外した場合の出力比は図中の「給気冷却器なし」の線で示される。この図から分かるようにこの場合の出力を基準にして考えると、中間給気冷却器を装備しても b' = b' = 5, 8 の場合欠かせないことがあるの。

第 24 圖はこの場合の過給機の運動馬力比 = (過給機の運動馬力)/(有効圧力) = IP_1/IP_2 を比較したものです。図からも分かるように、給気冷却器の冷却効果の大きい程（β = 0 に近い程）第 2段過給機の運動馬力 IP_2 は給気冷却器を用いない場合に比べて小くなる。即ちこの例では給気冷却器を用いると第 2段過給機の馬力駆動が減少して有利であるが、結局の全体としての出力（装備出力）は前段過給機の場合程有利ではない。

第 24 圖中的③は第 2段過給機の後に給気冷却器を設け給気冷却器後の吐出圧力を 560mm になる様にした場合の第 2段過給機の運動馬力を示している。（この時は β = 1 に近づきほど IP_2 が僅かに増す。即ち β → 1 ほど給気冷却器での圧力低下が大きい。）

(5) 各種の場合の比較

以上の色々の場合につき総合的比較を行ふと第 25 圖の様になる。即も図からも分かる様に本例で取扱った様々な 1段および 2段過給機の帯圧比が 1.956 程度では中間冷却器は結局に於て余り有利でなく、又 n_p, n_e が大きい程装備性能は良好で（結局の出力比が大きくなり、更に給気の流速速度 n_e はなるため小さな方が有利である事が分る。

4.2. 高度 10km, 給気圧 760+300mmHg の場合

最終冷却器同様、第 1段及び第 2段過給機の運動比 R_1 = R_2 = 2.312, 第 2段過給機の吐出力を 760+300mmHg とした場合前と同様 n_p = 50m/s, = 100m/s の 2 種につき装備性能を求める第 26, 27 圖の様になる。図中の點線は前同様、重量の影響を考慮に入れたもので、第 28, 29 圖は IP_2 = 1000×(IP_2/IP_0) 馬力として夫々この場合の所要前面積 (F' + F''/F) 及び所要重量を参考のために図示したものである。

4.3. 高度 6.8, 12km, 過給機吐出圧力 760mmHg の場合

高度 6.8, 12km, n_p = n_e = 80%, n_p = 50m/s 最終冷給気冷却器の場合に追及前と同様の計算を行ふと第 30, 31, 32 圖の様になる。

これ等の図からも分かる様に高度 6, 8km（給気圧 760mmHg）の程度では給気冷
卸器を装備してもその効果は多くなく、却って損である場合もある位である。

以上の計算結果から給気圧力760mmでは給気高度8〜10km以上の場合に給気冷却器の効果が少し現れる程度である。（但し給気圧力がもっと大きい場合は給気冷却器の効果がもっと現われる。）

然し乍ら給気冷却器の重量だけを発動機の方で増す事が出来、その重量増加に相應しただけ（1kg當り3馬力程度）発動機の出力を増すことが出来るとすれば給気冷却器を装備しても得にはならぬと云ふ事になるつて了ふ。

4.4. 最終段給気冷却器での温度降下、馬力降下

今まではすべて装備性能の立場から考えて来たが、給気冷却器を用ひたための給気温度の変化、並びに給気冷却器の前後の冷気圧力降下に関し算出した数字を参考のため示すことにする。

第33図aは高度10km、給気圧760mmHg、給気圧を調整せぬ場合の給気冷却器前後の温度給気冷却器で冷却された後の給気吐出温度を、第33図bは給気圧の冷却器内通過速度のv₀＝100, 50, 20m/s, η₀＝η₀=90, 80, 60, 40%場合での冷却器前後の給気圧力の降下を示してある。

第34図a, bは第33図と同様の事を過給機の騒動速度比等を変えて給気圧を調整し、給気冷却器吐出力を760mmになる様にした場合に果て算出した結果を示してある。

第35図は以上と同様の事を過給機吐出圧力760mmHg, η₀＝η₀=80%、高度14, 12, 10, 8, 6kmにつき求めたものである。

5. 結 論

以上の考察は実験値を基として適度に係数を定めて、装備性能の計算を行ったものであるが、大體の所を要約すると次の様になる。

（1）給気冷却器を用ひて、装備した状態での出力増加のなるだけ大きくなる様にすると、どうしても給気冷却器としては温度効率の可成り大きいものを使はねばならぬ、又冷却器壁により冷却空気出口面積を絞って使はねばならぬ、この両者の點から給気冷却器はその面積も、又両も大きくなり、従って冷却器の重量は可成り大きいものとなる。

若しこの重量増加分だけ発動機の重量を増して、出力を比例的に高める事が出来るならば、一般にはフォッキングの點さへ考へたければ給気冷却器を使はない方が有利である。殊に給気冷却器の抵抗のために費される燃料消費率が餘分に増すから、
この燃料の損失を少なくしたい時は給気冷凍器を用いることは充分に得失を考慮した上で行うべきである。

即も使用せんとする発動機よりも一週り大きい発動機を使った方が有利である。

(ii) 然し乍らこの事は結局実際上は行えられないことであつて、既存の発動機に
給気冷凍器を用ひて少しでも馬力を稼がうと云ふ場合が実情に則したやり方かも知
れぬ。

この様な場合には

(a) 冷却器の温度効率 80〜90% 程度のものが望ましい。

(b) 給気冷却器での給気の流速速度はなし得れば 50m/s 以下出来れば 20〜30
・m/s にすることが望ましい。（100m/s 程度では給気冷却器をとりつけても壓力
降下が大きいため却って損な場合が多い。）

(c) 冷却空気側としては冷却器首の出口部を絞って冷却空気の流速速度を成る
だけ下げて使った方が有利である。（餘り絞ると冷却器の前側が大きくなり、
場所を要する事となり又重量を大となる。）

(d) 以上の様にして適當な性能の冷却器を採用し、又その装備法を巧くやると
高度 10km、給気圧 760mm では最大約 10%
高度 10km、給気圧 760＋300mm では最大約 14%
高度 12km、給気圧 760mm では最大約 14%
ほど出力が増大する。（然し乍らこの場合、冷却器壁、冷却管、冷却空気の
絞流の影響等があるからもう少し抵抗馬力が増し、結局の装備性能は更に低下
するものと思ふ。）

(e) 以上は最終段給気冷却器の場合であるが、所謂中間給気冷却器の場合には
第一段過給機の压力比が大きい場合でないと却って不利な事がある。

給気冷凍器としては上述の様な逆向き平行流の他に、直交流その他の諸型式があ
るが、これ等の場合の装備にに関しては既報に譲りたいと思ふ。

筆は能くに近り、本研究遂行上、幾多の助言を賜れられた中島飛行機の山田技師
に厚く御礼申し上げると共に、計算等に関し多大の助力を賜受けられた川口技手そ
他冷却実験室の諸君に厚く御礼申し上げる。