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Abstract

A new flux splitting and limiting technique which yields one-
point stationary shock capturing is presented. The technique is
applied to the full Navier-Stokes and Reynoids Averaged
Navier-Stokes equations. Calculations of laminar boundary
layers at subsonic and supersonic speeds are presented
together with calculations of transonic flows around airfoils. the
results show very good agreement with theoretical solutions or
existing experimental data. It is shown that the proposed
scheme improves the resolution of viscous flows while
maintaining one-point shock capturing property.

1. Introduction

The calculation of compressible viscous flows requires
schemes which could not affect the global accuracy ot the
solution of the physical viscous problem though they should be
numerically dissipative enough on the other hand. Recently a
large class of schemes including High Resolution Switched
schemes, Symmetric Limited Positive (SLIP), and Upstream
Limited Positive (USLIP) schemes has been analyzed.5:13
SLIP and USLIP schemes were implemented and tested using
several forms of flux-splitting including scalar, characteristic, and
Convective Upwind and Split Pressure (CUSP) schemes.
Careful comparisons with analytical results for laminar boundary
layers clearly indicate that the limiting process plays a greater
role than the flux-splitting in determining the quality of viscous
resuits. However, new trade-offs between the different forms of
flux-splitting arise whenever crisp resolution of shocks becomes
important.

Roe has shown that characteristic splitting can yield an
optimal discrete shock resolution with only one interior point.10
More recently Jameson has shown that a discrete shock
structure with a single interior point can be supported by artificial
diffusion which both produces an upwind flux for the fiow
determined to be supersonic and satisfies a generalized
eigenvalue problem for the exit from the shock. These two
conditions can be satisfied by both the characteristic and CUSP
schemes whereas scalar diffusion fails to satisfy the first
condition.

The present work focuses on the CUSP based schemes
which combine perfect one-point shock capturing of stationary
shocks with high resolution of boundary layer properties.

2. Formulations
1 Convectiv win lit Pe r P
For simplicity we consider the general one dimensional

conservation law for a system of equations which can be
expressed as

2+ 2 ) =0, )
Here the following are the state and flux vectors.
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If ¥ is the ratio of specific heats and c is the speed of sound,
then

2
p=(y—1>p(E—“7)

1P

2 2
H=E+2=° 2%
p y-1 2
In a steady flow H is constant. This remains true for the discrete
scheme only it the numerical diffusion is constructed so that it is
comparable with this condition.
The conservation law (1) is approximated on a mesh with an

interval Ax by the semi-discrete scheme

dw;
Ax7+hj¢1/2 —hi, =0, ®)
and the numerical flux can be taken as the following equation.
|
I =5(fj+l +f)—dian @

d,., is a diffusive flux which is introduced to enable the

scheme to resolve discontinuities without producing oscillations
in the discrete solution.

Suppose that the first order diffusive flux is defined as a
combination of differences of the state and flux vectors

1 . 1
dM/z = Ea f“”zc(wjﬂ - wj)+ Eﬂjmz(fju ‘fj) . )

Schemes of this class are fully upwind in supersonic flow if one
takes @,,,,=0 and f3,,,,,=sign(M) when the absolute value of

the local Mach number satisfies |M|> 1. In order to support a
stationary discrete shock structure with a single interior point,

o and B cannot be chosen independently. It turns out that

once o is chosen, B is uniquely determined by the

equilibrium at the exit of the shock, leading to a one parameter
family ot schemes satistying the relation
a =1+pB)(1-M)

when M > 1 . The choice 3 = M corresponds to the Harten-
Lax-Van Leer (HLL) scheme, which is extremely diffusive. We
will develop schemes of this class based on a decomposition of
the flux vector f. If the convective terms are separated by
splitting the flux according to the following equations {6) and (7},
then the total effective coefficient of convective diffusion is
expressed as (8),

0
f=uw+f,  where f, =| p )
up
fia—fi=ulw, —w)+wy,, - “,')"’fp,,, —fp/ @
ac=a'c+pua ®

where i and W are arithmetic averages.
The choice of ac =u leads to low diffusion near a stagnation
point, and also leads to a smooth continuation of convective

diffusion across the sonic line since & =0 and S=1 when

|M|>1. The scheme must also be formulated so that the cases

of u>0 and u<0 are treated symmetrically. Using the notation

M=u/c and A* = u * ¢, this leads to the ditfusion coefficients
u+ A

+max(0, ) if 0<M<L]
7
a=M| B= —max(O,Ei%) if -1sM<0 ©
“—
sign(M) if [M|21

Near a stagnation point @ may be modified to

1 M’
o= —2-(010 +—) if [M| is smaller than a threshold @, .
o, :
Equation (9) remains valid when CUSP scheme is modified to
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allow solutions with constant stagnation enthalpy. The
coefficients a (M) and (M) are disptayed in figure 1 for the

case of @, = 0. The cutoff of § when |M|<1/2, together with

a approaching zero as |M| approaches zero, is also
appropriate for the capture of contact discontinuities.

Figure 1: Coefficients of the scheme

An important property of this scheme is that it has lower
diffusion than the standard characteristic upwind scheme, which
can be illustrated by introducing a Roe linearization and by
rewriting the diffusive flux as

1 *
dj+1/2=§((x cI+ﬁAj+1/2)(wj+1—wj). (10)
Introducing the characteristic decomposition, the diffusive flux
can now be represented as

-1
Ay =RMR “ (Wi =w;) (1)
The matrix M is diagonal with eigenvalues U,C, U,C, H3C
displayed in figure 2.
H2

Figure 2: Eigenvalues of diffusion matrix

Strict positivity is not enforced, but at a shock
Af = AAw = SAw

where S is the shock speed. Thus Aw must be an eigenvector
corresponding to one of the eigenvalues u * ¢, and positivity is
enforced for the corresponding characteristic variable.

2.2 H-CUSP Formulation

In steady flow the stagnation enthalpy H is constant,
corresponding to the fact that the energy and mass equations
are consistent when the constant factor H is removed from the
energy equation. Discrete and semi-discrete schemes do not
necessarily satisfy this property. In the case of a semi-discrete
scheme expressed in viscous form - equations (3) and (4) - a
solution with constant H is admitted if the viscosity for the
energy equation reduces to the viscosity for the continuity
equation with P replaced by pH .

In order to extend the CUSP formulation to aliow for
isenthalpic solutions, we introduce the linearization

fe—Fi=Aw,, —w,)
where w, is a modified state vector with pH replacing pE. The

matrix A, may be calculated in the same way as the standard
Roe linearization. In particular, by introducing the vector

P
v= \/Eu
\pH
all quantities in both f and w, are products of the form vv,
which have the property that a finite difference A(vjvt)
between left and right states can be eerssed as
A(vv,) = v,Av, +v,Av;
where ;;is the arithmetic mean 1/2(v;, +v,, ). Therefore,
Aw = BAv, Af = CAv=CB'Aw,

where B and C can be expressed in terms of appropriate mean
values of the quantities v;. Thus, by defining

uz\/P_R“R"' Py Hzx[aHR"’\/F"LHL
Pr+lPL NN

and
2
c=(r-DH-54),
it follows that
0 ) 1 0
A, = _yHlu y+lu 7_1.
Y 2 Y Y
—uH H u
The eigenvalues of A, are u, A*, and A~ where
Ai=y+lui\}(7+lu)2+cz_u2.
2y 2y Y

Note that A* and A~ have the same signas u+c and u—c,
respectively, and change sign at the sonic line u=%c. The
corresponding left and right eigenvectors of A, can be
computed, and are given in Reference 7.

Using the modified linearization, the CUSP scheme can be
reformulated as follows to admit isenthalpic steady solutions.
The diffusive flux is expressed as

4= la.CAwh +‘;‘ﬂAfv

! 2
where A denotes the difference from j+1 to j. The split is
redefined as
[=uw, +f,

where

0

f,=tp
0

and the diffusive flux can be expressed as
1 1 ,— 1
d'+1/2 = —2'aCAWh + EﬁWhAu+ EﬁAfp

)
As before, @ and 8 are defined by equation (9), using the
modified eigenvalues A* defined above.

.3 Implementation of Limiter:

In the case of scalar conservation law, high resolution
schemes which guarantee the preservation of the positivity or
monotonicity of the solution can be constructed by limiting the
effect of higher order or anti-diffusive terms, which might
otherwise cause exirema to grow. The fluxes appearing in the
CUSP scheme have different slopes approaching from either
side of the sonic line, and use of limiters which depends on
comparisons of these fluxes can lead to a loss of smoothness in
the solution at the entrance to supersonic zones in the fiow.
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This problem can be avoided in the implementation of the
CUSP scheme by forming the diffusive flux from left and right
states at the cell interface. These are interpolated or
extrapolated from nearby data, subject to limiters to preserve
monotonicity. in a similar manner to the reconstruction of the
solution in Van Leer's MUSCL scheme8, the following
construction is used. Define the limiter

9
u-v
e+

where g is a positive power which is set equal to two in the
present study. Also define the limited average

R(u,v)y=1- s (12)

L(u,v) =%R(u,v)(u+v). (13)

Let w'*_denote the k th element of the state vector w . Now
define left and right states for each dependent variable
separately as

w _ oy, L (k) *)
W, =w; +5L(ij+3,2,ij_”2)

w1 ) )
Wp =W~ EL(AWp;/z’AWj-uz )
where
ijﬂ/: EWiaTwW;
Then
®) _ 0 _ AL () (k) (k)
W —w =AW, — L(Aw . Aw L), (14)

which in the case of a scalar equation reduces to the SLIP
formulation®.
For the CUSP schemes the pressures p, and p, for the left

and right states are determined from w, and wy. Then the
diffusive flux is calculated by substituting w, for w; and w, for

w;,, togive

| S 1
d,‘u = Ea c(wp —w )+ Eﬂ{f(wk)_f(”l)}-
The alternative reconstruction:
) _ o (k) (k) k) (k)
w =w + R(AW 5, Aw ) AW,
K _ (b k) k
Wp = W, = R(AW;+3/2'AW;—)uz)AW;i)yz
has been found to yield essentially identical results for
calculations of steady flows.

3. Numerical Results

Extensive numerical tests have been performed with the

CUSP type schemes 1o verify their properties?. Results for
inviscid flow calculated with the program FLO82 verify the one-
point capturing of shocks. Examples of an inviscid result are
presented in Figure 3, 4, and 5. The flow condition of
freestream Mach number 0.75 and an angle of attack of 3
degrees was selected for the flow around RAE2822 airfoil. The
typical O-type grid consisting of 320x64 structured grid points
was used in the case. The conventional Scalar-Switch
scheme13 needs 3 internal points to form the shock wave,
where the CUSP scheme needs a single point. Figure 5 shows
the convergence history for Scalar-Switch and CUSP schemes.
Both schemes show very rapid convergence, especially the
CUSP needs only 100 multigrid cycles to achieve a final level of
the averaged density residuals of the order of 10-11, where

the initial level is the order of 101, In this section the results
obtained for two dimensional viscous flows are mainly reported.

The calculations were performed with the program FLO103,
which uses a cell-centered finite volume scheme to discretize
the full Navier-Stokes equations. Time integration is carried out
by a five-stage scheme which requires re-evaluation of the
dissipative operators only at alternate stages’. This scheme
couples the desirable feature of a wide stability region along
both the imaginary and real axes with good high frequency

damping. The efficiency of the scheme was enhanced by using
an implicit averaging scheme with variable coefficients, and an
effective multigrid strategy which utilizes a W-cycle.

The set of calculations presented in Figure 6 and 7 are aimed
at investigating the behavior of the scheme in the supersonic
regime for a flat-plate laminar boundary layer problem. Resuits
are presented for a Reynolds number of 1x105, on a grid with
32 cells in the boundary layer. They are scaled by using the
illingworth-Stewartson transformation?, and compared with the
Blasius solution. The results show that the scheme accurately
reproduces the boundary layer properties in the supersonic
regime.

The next test case is a turbulent boundary layer developing
over a flat-plate at zero incidence. The case was chosen to
investigate the behavior of the scheme for the Reynolds
Averaged Navier-Stokes equations coupled with a typical
turbulent model. To make comparisons as simple as possible,
the well known algebraic model! was used in the cases. The
computation results are compared with the following logarithmic

formulall.

X =5.85logy* +5.56, u, =T, /p, y =yu /v. (15)
u

T

Here u, 7,, p, ¥y, and v are tangential velocity component,
wall shearing stress, density, normal distance from the wall, and
kinetic viscosity respectively. The freestream Mach number of
0.15 and the Reynolds number of 1x107 have been chosen for
the case. Figure 8 and 9 show the results of u/u_ in terms of

logy* using Scalar-Switch and CUSP respectively. Although
the computation resuits don't seem to perfectly follow the self-
similarity law and there are small differences between the both
schemes, all the results follow the logarithmic formula in general.
This fact suggests that the property of each scheme, which has
been validated in laminar cases, is not much influenced by the
presence of a turbulence model.

Calculations presented in Figure 11 and 12 are aimed at
examining the applicability of the CUSP to laminar viscous flow
problems around airfoil-like shapes. A diamond shape airfoil was
chosen for the purpose. The computational grid is shown in
Figure 10, where C-type grid consisting of 512x64 structured
grid points is used. The freestream Mach number and an angle

of attack are M_=3.0 and =0 degree, respectively. 1x104

and 1x10% of the Reynolds number were used in the case to
assume the flow is laminar. The Euler equation's case was also
conducted for the comparison. Figure 11 shows the computed
surface pressure distributions together with an inviscid analytical
solution, where the Euler computation using CUSP nicely
recovers the analytical solution. The result for Re_=1x10%
suggests that the comparison between computed boundary
layer velocity profile and the scaled Blasius solution would be
meaningful since there-is not much pressure gradient on the
first half of the airfoil surface. Figure 12 clearly proves this
hypothesis by showing that the computed tangential velocity
profiles follow the self-similarity law recovering the scaled
Blasius solution.

The next two cases are to examine the behavior of the CUSP
scheme in practical transonic turbulent flow problems. The first

one is the flow around RAE2822 airfoil with M_=0.75, r=3.19
deg., and Rem=6.2x106. The grid consists of a total of 480x64
grid points with 360 points fitted on the airfoil. Transition was
fixed at the experimental location of the trip wire3. A Baldwin
and Lomax turbulence model has been used for this case
because the flow field was expected to be attached, and the
behavior of the solution predicted by this model is reasonably
well understood?. Figure 13 shows a comparison of the
computed and experimental pressure distribution along the
airfoil, where the agreement between them is fairy good.

The second case consists of a RC(4)-10 airfoil with
M_=0.59 and Re_=7.5x106. The airfoil was designed for
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application to the inboard region of a helicopter main rotor

blade9. The turbulence model used here is again the simple
algebraic one. Figure 14 shows the C-type grid consisting of a
total of 512x64 grid points, which was used in th calculation.
Figure 15 shows the comparison of surface pressure
distribution between the computed resuit and experimental
data at @=3.41 degrees. The agreement is very good including
the shock location where the critical pressure coefficient Cpgrit
= -1.36. The computed lift, drag, and pitching moment
coefficients in terms of & are shown in Figure 16 in comparison
with experimental data. The agreement is again pretty good
except at higher o where steadiness of the flow is
questionable.

4. Conclusion

A new flux splitting and limiting scheme has been applied to
the solution of the compressible Navier-Stokes equations. The
calculations performed so far indicate the scheme, which was
originally tailored for non-oscillatory shock capturing, yields
accurate solutions for viscous flows. It will lead an improvement
of the overall computational efficiency in practical problems by
allowing the use of coarser grids.
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Figure 3:Cp distribution - Euler equations with Scalar-Switch
RAE 2822 airfoil, M=0.75, a=3deg.
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Figure 5: Convergence history - Euler equations
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Blasius Solution
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Figure 8:Flat plate laminar boundary layer tangential velocity
profite at M=2.0 and Re=1x10% - CUSP
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Figure 7:Flat plate laminar boundary layer transverse velocity
profile at M=2.0 and Re=1x105 - CUSP
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Figure 8:Flat plate turbulent boundary layer tangential velocity
profile at M=0.15 and Re=1x107 - Scalar-Switch
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Figure 9:Flat plate turbulent boundary layer tangential velocity
profile at M=0.15 and Re=1x107 - CUSP
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Figure 11:Cp distribution on a diamond airfoil
at M=3.0 and ¢x=0deg. - CUSP
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Figure 12:Laminar boundary layer tangential velocity profile on a
diamond airfoil at M=3.0, ¢=0deg., and Re=1x105 - CUSP

1.0} ] Experiment
) " FLO-103

1.5 i 1 L
) . 0.6 0.8 1.0
x/c

Figure 13:Cp distribution on RAE2822 airfoil
at M=0.75, (¢=3.19deg., and Re=6.2x106 - CUSP
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Figure 14:Computational grid for RC(4)-10 airfoil
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Figure 15:Cp distribution on RC(4)-10 airfoil
at M=0.59, @x=3.41deg., and Re=7,5x106 - CUSP

e CH{WTT)
A Cd(WTT)
o Cm@.25¢c(WTT)

Cl1'2 | ——e—— CI(CUSP)
| —&— Cd(CUSP)
1.0 || —#— Cm@.25¢(CUSP) -~
0.8 F
0.6 F0.06 ¥
0.4 F0.04
0.2 Fo.02
. b—:%—H Cm@.25¢
0.0 £0.00 0.02
-0.2 - .......... ' 0.00
_0(4-lllllllilllilll bt lidd il 0 02
%4 8

.0-2.0 0.0 2.0 4.0 6.0 8.0 10
a (deg.)

Figure 16:Comparison with experimental data for
RC(4)-10 in CI, Cd, and Cm at M=0.59 and Re=7,5x106
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