超音速境界層: 安定性と遷移予知

越岡 康弘, 谷 泰 寛, 吉田 茂雄

富士重工株式会社

An Experimental and Numerical Study on Supersonic Boundary Layer Stability and Transition Prediction.

Fuji Heavy Industries, LTD

Yasuhiro KOSHIOKA, Yasuhiro TANI, and Shigeo YOSHIDA,

ABSTRACT

Wind tunnel tests and stability analyses were carried out on supersonic boundary layer stability and transition prediction. Wind tunnel tests were performed on a swept wing model which has 45 and 65 degrees of sweep angle. To clarify transition phenomena, a boundary layer stability analysis code was developed based on the linear stability theory and wave packet method. The growth of three dimensional disturbance in the compressible boundary layer was shown by analyses.

Key Words: Supersonic, Boundary Layer, Stability, Transition, LFC

1. はじめに

航空機主翼の激化したことにより, 撃突抵抗が低減されること
はぐくら知られており, 超音速飛行においても, 主翼層
流化による大幅な性能向上が期待されている。一般に,この
種の飛行体, 床面抵抗を低減させるため, これ以上の大きな

2. 本実験

2.1 審査要項

超音速における遷移現象について, 風洞解析による検討
を行った。

風洞試験は富士重工業株式会社製造の2ft×2ft高
速風洞において実施した。今回試験を実施したマッハ
2および, 同様の規定風速 (CPm) における, 1%未
過誤差を含む, その測定を従来の方法で試みた。

このような状況を鑑み, 超音速領域の激化を不安定, および,

条件において, 压力分布, および, 雲洞法による風洞体
2.3 計測結果概要

境界層を吸い込む場合の上面付近の圧力分布を図2-3に示す。マッハ2において超音速切線となる後部25°のケースでは、壁面における圧力分布の変化が確認されている。一方、垂直切線となる後部65°のケースでは、相対的に変化が認められるため、これよりも多少強度となっている。また、後部6°付近で、前線結合によるものと思われる前線サクションピークが生じている。

図2-4は、図2-3の拡大図を示している。境界層圧力分布の変化を示している。特に、後部25°の場合は、圧力分布の変化が著しく、特に後部65°の場合は、圧力分布の変化が全体的に見られる。
3. 解析

3.1 解析手法概要

圧力分布計測結果（境界層吸込みなし）

N-factor法による流体の流動特性に関する研究

3.2 解析手法検証

圧力分布計測結果（境界層吸込みなし）

3.3 解析結果

風洞における代表条件として、後退角45°、迎角0°、境界層吸込みの条件において3次元圧力特性
4. まとめ

3次元超音速境界層の安定性と境界層変動予測に関する実験を経て、および、境界層安定解析を実施した。風洞実験においては、3次元柱状境界層の動的解析に関するデータを取得し、境界層変動に基づく、波動の効果、圧力の効果、境界層変動の効果を確認した。また、境界層安定解析方法により、風洞実験データの解析の有用性を把握することにより、N-factor法が強力な手段であることを示した。

参考文献


